用户名: 密码: 验证码:
非晶硅薄膜太阳能电池材料PECVD关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体增强化学气相沉积(PECVD)是制备非晶硅太阳能电池a-Si:H薄膜材料应用最广泛的技术。非晶硅材料在可见光内有较高的吸收系数,原材料来源广泛,可实现低成本的大面积薄膜沉积,使之具有有广阔的应用前景。然而沉积高质量的非晶硅薄膜材料对PECVD设备技术性能要求很高,其中关键技术包括系统的反应室内电场、温度场、气流场以及辅助磁场的分布。
     本文采用计算机数值模拟的方法对PECVD的关键技术逐项做了分析,首先建立平板电极模型,研究了电源频率,接入点及电极尺寸对电场分布的影响;然后对整体加热和基片底座加热两种温度场及“极板喷淋”和“穿堂风”两种进气方式的气流分布模拟计算;
     结果表明射频电源频率越高,电极面积越大电场非均匀性也越大;
     整体加热基片表面温度很均匀,基片座加热方式在边缘处温度有所下降。“极板喷淋”布气方式,中心处压力高,边缘处压力低;气体流速则是中心处流速小,边缘流速大。随着进气流量的增加基片表面压力分布和气流速度的不均匀性呈线性增加;“穿堂风”进气方式,电极板区间压力梯度从进气口指向出气口线性减小,气流速度整体较均匀波动小。
     对辅助PECVD的均匀磁场和磁镜场模拟分析,优化设计了螺线管的缠绕方式,得到了均匀磁场。并讨论了磁镜场磁镜比的调节方式,获得了这两种磁场分布规律。
     通过各场量分布特性的研究,提出PECVD主要设计方案:室壁整体加热,选用13.56MHz射频电源,加装无侧边屏蔽罩的极板喷淋进气方式,极板间距40mm左右,能够获得较好的综合性能参数。
     其研究结果为制备a-Si:H薄膜材料的PECVD技术应用提供了理论依据。
Plasma-Enhanced Chemical Vapor Deposition (PECVD) is the most widely used technology to preparation of a-Si: H amorphous thin-film solar cell’s thin film. Because of high visible light absorption coefficient, Raw material origin is widespread, and large area thin film deposition with low cost enables the amorphous thin-film solar cell to have the broad application prospect. Then it requires high technical performance to PECVD depositing the high grade amorphous silicon membranous material. And the key technologies in system's reaction chamber include electric field, temperature field, flow field and the auxiliary magnetic field distribution.
     This paper used the computer numerical simulation method to analysis the items to the PECVD key technologies. First, establish plate electrode model, Study the influence of power frequency, feeding point and electrode size. Then whole heating and substrateholder heating styles two kind of temperature fields were Simulation calculation, as well as“electrode spraying”and“cross-ventilation”two kinds of inlet gas distribution mode.
     The results show that the higher frequency, the larger electrode area obtained the more obvious non-uniformity of the electric field.
     The substrate surface temperature is uniform with whole heating style, while substrate edge temperature declines with substrateholder heating style.
     There is high gas pressure in the central part of electrodes and low pressure in the edge part by“electrode spraying”style. And there is low gas flowrate in the central part of electrodes and low flowrate in the edge part. With the increase of gas flow into, the substrate surface pressure distribution and flow velocity uniformity increase linearly. The pressure reduces gradually from the air inlet to the air outlet by“cross-ventilation”style gas inlet, the gas flow is wholly uniform.
     Solenoid magnetic field and magnetic-mirror field were analysed, the existing magnetic field was improved by designing a solenoid magnetic field. Analysis both the radial and axial magnetic mirror confined plasma produced by the magnetic field, as well as the magnetic mirror ratio adjusting method. The distributions of two kinds of magnetic fields were obtained.
     Through the research of field distribution characteristics, the PECVD main design was proposed: whole heating style, 13.56MHz RF power, With no side shields of plate spray intake,“electrode spraying”gas inlet style, electrode plate spacing is about 40mm, good performance parameters can be achieved.
     This study provides a theoretical basis on the preparation of a-Si: H thin films of PECVD technology.
引文
[1] Stefan Krauter著,王宾董新洲译,太阳能发电-光伏能源系统[M].机械工业出版社2008.
    [2] Beneking.C, Rech.B, Wieder.S, et.al. Recent develop ments of siIicon thin film solar cells on glass substrates[J] Thin solid Films, 1999.351:241-246.
    [3]赵青,刘述章,童洪辉,等离子体技术及应用[M]北京,国防工业出版社2009
    [4]龙中俊,唐其环.实用的PCVD工艺技术[J].表面技术.Vol.21,No.5, 1992 P235-238
    [5] S. F. Lim. T. S. Wee, J. Lin, D. H.C. Chua, and K.L .Tan. Growth of carbon nitride thin films by radio-frequency-plasma-enhanced chemical vapor deposition at low temperatures[J]. Materials Research Society .Vol. 14. NO.3, May1 999. P1153-1159
    [6]戴永红,先进的等离子体增强化学气相沉积系统[J]微电子学Vol.2 5,N o.4 ,1 995 P54-56
    [7]钟迪生,硅薄膜太阳能电池研究的进展[J].应用光学.2001,22(3):34-37
    [8] Armin.G. Aberle. Overview on SiN surface passivation of crystal-line silicon solar cells [J]. Solar Energy Materials& Solar Cells, 2001, (65): 240-243.
    [9] Spear, W.E.; Steemers, H.L.; Mannsperger, H. carrier lifetimes in amorphous silicon junction from delayed and interrupted field experiments[J], Philosophical Magazine B48, p l49-l54, Nov 1983.
    [10]孟庆巨,刘海波,孟庆辉,半导体器件物理[M]科学出版社,2004,10
    [11]张帅,太阳能电池工作原理简介[J],灯与照明,2009,49-51
    [12]徐温元,非晶硅太阳能电池工作原理及进展[J],物理1989.11.655-660
    [13] T.Fuyuki,K.Y.Du, Deposition of high‐ quality a‐ Si:H by direct photodecomposition of Si2H6 using vacuum ultraviolet light [J].Appl.Phys, 64,1988,2380:12
    [14] K.Miyachi,M.Koyama,H.Tanaka,et. Low hydrogen content a-Si:H produced by layer by layer deposition technique[J]. Journal of Non-Crystalline Solids Volumes 137-138, Part 2, 1991, Pages 705-708
    [15] T.G.Kim, S.C.Kim, J.M.Jun, K.C.Park, S.O.Koh, M.K.Han and J.Jang, Amorphous silicon double stacked solar cell using low band gap A-Si bottom cell [J]. Non- Cryst. Solids, 137&168,1161,1991
    [16] H.Shirai,J.Hanna and I.Shimizu, Role of Atomic Hydrogen During Growth of Hydrogenated Amorphous Silicon in the“Chemical Annealing”[J]. Appl. Phys., 30,L881,1991
    [17] Vikram L.Dalal,E.X.Ping,Sanjeev Kaushal,Mohan K.Bhan and Mark Leonard, High-Quality Hydrogenated Amorphous Silicon Films With Significantly Improved Stability[J] Appl. Phys. Lett.64,1862,1994
    [18] A.H.Mahan,J.Carapella,B.P.Nelson,R.S.Crandall and I.Balberg, Deposition of device quality, low H content amorphous silicon[J].Appl.Phys., 69, 6728,1991
    [19] M.Yamazaki,H.Ohagi,Jpn. Optical Degradation of a-Si:H films with Different Morphology [J].Appl.Phys.,27,L1739,1988
    [20] W.A.Nevin,H.Yamagishi and Y.Tawada, Improvement of the stability of hydrogenated amorphous silicon films and solar cells by light pulse treatment [J]Appl.Phys.Lett.54,1226,1989
    [21] G.L.Kong, D.L.Zhang, Y.P.Zhao,et, A new method for detecting subtle changes in Si-H bonds of a-Si:H[J]. Journal of Non-Crystalline Solids, 1993, P 211-21
    [22]陈建明非晶硅薄膜太阳能电池的新工艺及理论模拟[D],复旦大学硕士学位论文,2005
    [23]李定等,等离子体物理学[M],高等教育出版社,2006.5
    [24]菅井秀郎编著,等离子体电子工程学[M],科学出版社,2002
    [25]王群善,曹秀吉编著.工程物理现代工程技术物理基础.辽宁科学技术出版社, 1993.12.
    [26]袁敬闳,莫怀德,等离子体中的波[M],成都电子科技大学出版社,1990
    [27]金佑民,樊友三,低温等离子体物理基础[M],清华大学出版社1983
    [28] Aharon Inspektor-Koren, principles of Plasma-activated Chemical Vapor Deposition [J]. Surface and Coatings Technology, 1987,33:31-48
    [29]魏合林,刘祖黎,磁场对直流辉光放电阴极鞘层中电子输运过程的影响[J],物理学报,1995.2
    [30]钱苗根,材料表面技术及其应用手册[M],机械工业出版社,1998
    [31]甑汉生,等离子体加工技术[M],北京机械工业出版社,1990
    [32]小沼光晴著,张光华译,等离子体与成膜基础[M]国防工业出版社,1994
    [33] J.C.Knights, R.A.Lujan, Microstructure of plasma-deposited a-Si:H films [J]. Appl. Phys. Lett. 35, 244 (1979); 1063/1086
    [34] Akihisa Matsuda, Microcrystalline silicon Growth and device application[J] Journal of Non-Crystalline Solids,1998 v 338-340
    [35] J.Perrin, O.Leroy, M.C. Bordage, Contrib. Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry[J]. Plasma Phys.36(1996)3
    [36] Doyle, J. ; Robertson, R. ; Lin, G. H. ; He, M. Z. Gallagher, A.; Production of high‐ quality amorphous silicon films by evaporative silane surfacedecomposition[J]. Journal of Applied Physics Sep 1988, 3215–3223.
    [37] Tsai, C. C. Knights,J. C. Chang, G. Wacker, B. Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon[J] Journal of Applied Physics, Apr 1986
    [38] S.Veprek, M.heintze, Role of higher silanes in the plasma‐ induced deposition of amorphous silicon from silane [J]. Plasma Chemistry and Plasma Processing Vol.10, No.1,3 1990
    [39] J.L.奥森,W.克恩等著,刘光诒译,薄膜加工工艺[M],机械工业出版社,1987
    [40]顾卫东胥超李艳丽, PECVD制备非晶硅薄膜的研究[J],微纳电子技术, 2009. 11. 664-666
    [41] Satake,Koji;Yamakoshi,Hideo;Noda,Matsuhei, Experimental and numerical studies on voltage distribution in capacitively coupledvery high-frequency plasmas[J]. Plasma Sources Science and Tech-nology,2004,13(3):436~445
    [42] Howling A,Sansonnens L,Ballutaud Jet al.Standing wave and skin effects in large-area, high-frequency capacitive discharges[J]. Plasma Sources Science and Technology, 2002,11(3): 283~293
    [43] Sansonnens L,Pletzer A,Magni Det al.Voltage uniformity study in large-area reactors for RF plasma deposition[J]. Plasma Sources Science and Technology, 1997,6(2):170~178
    [44] Perrin,Jerome;Schmitt,Jacques;Hollenstein,Christophet al.Physics of plasma- enhanced chemical vapour deposition for large-area coating:Industrial application to flat panel displaysand solar cells[J].Plasma Physics and Controlled Fusion,2000,42(12):B353~B36
    [45]杭凌侠,Y.Yin,大面积应用RF-PECVD技术研究[J],真空科学与技术学报,2005.3,172-180
    [46]谢拥军王鹏等,Ansoft HFSS基础及应用[M],西安电子科技大学出版社,2007
    [47]田民波,电子显示[M],清华大学出版社, 2001
    [48]徐国昌等,光电子物理基础[M]华东大学出版社,2000
    [49]李和平李果王森等,裸露金属电极大气压射频辉光放电研究进展[J],科技导报,2009.5.81-86
    [50] L Sansonnens, A Pletzer, D Magni, A A Howling, et al.A voltage uniformity study in large-area reactors for RF plasma deposition[J]. plasma source Sci Technol,1997,(6):170-178.
    [51] Akihisa Matsuda, Microcrystalline silicon Growth and device application[J]Journal of Non-Crystalline Solids, v 338-340
    [52] C.Niikura, M.kondo,A.Matsuda, Preparation of microcrystalline silicon films at ultra high-rate of 10 nm/s using high-density plasma[J], Journal of Non-Crystalline Solids 15 June 2004, Pages 42-46.
    [53] Howling A A, Strahm B, Hollenstein C, Fast equilibration of silane/hydrogen plasmas in large area RF capacitive reactors monitored by optical emission spectroscopy [J]. Plasma Sources Sci. Technol. 2007.16 679
    [54]薛俊明,侯国付,王凯杰等,用VHF-PECVD技术研制大面积均匀硅基薄膜[J],太阳能学报2007.11,vol28,1227~1232
    [55] M.T. Gutiérrez, J. Cárabe, J.J. Gandía A. Solonko Effect of preparation conditionnns on the properties of glow-discharge intrinsic amorphous silicon [J]Solar Energy Materials and Solar Cells,1992,26:259
    [56]张也影流体力学[M]高等教育出版社,1999
    [57] Capote, G. Prioli, R. Jardim, P.M. Zanatta, A.R.Jacobsohn, L.G. Freire Jr., F.L. Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure[J]. Journal of Non-Crystalline Solids, June 15, 2004.
    [58] Ricciardi, C.; Primiceli, A.; Germani, G.; Rusconi, A.; Giorgis, F. Microstructure analysis of a-SiC:H thin films grown by high-growth-rate PECVD[J] Journal of Non-Crystalline Solids, June 15, 2006
    [59]刘洪祥,魏合林,刘艳红,刘祖黎,弱磁场对SnO2薄膜性能的影响,功能材料,2001,32
    [60]陈家荣,陈文锦,邱凯,马文霞,磁场辅助等离子体增强化学气相沉积[J],真空Vol.44,No.Jan. 2007
    [61] K.D.Bonin and T.G.Mason.Changing fluorescence in a streaming barium plasma due to an axial magnetic field[J].Phys. Rev A 43(1990).3005
    [62] R. G. Greaves, D. A. Boyd, J. A. Antoniades and R. F. Ellis,Steady-state toroidal plasma around a spherical anode in a magnetic field[J]. Phys. Rev. Less. 64(1990),356
    [63] R. G. Greaves and D. A. Boyd, Ionization-enhanced currents to an anode in a magnetic field[J]. Phy. Rev., A43(1990),3015
    [64] J.R.Roth著;吴坚强等译.工业等离子体工程第Ⅰ卷基本原理[M].科学出版社, 1998.
    [65]王乃彦,聚变能及其未来,[M]清华大学出版社, 2001
    [66]徐家鸾,金尚宪.等离子体物理学.[M]原子能出版社, 1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700