用户名: 密码: 验证码:
影响井水位变化的几种因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下流体广泛存在于地表以下的地球固体介质中。地下流体指地表以下一切可流动的物质,一般指地壳浅层的水、气、油等以及深层的超临界流体与硅酸盐熔体,它们是地壳物质的重要组成部分,在压力、温度、浓度、密度等梯度作用下运动,具有可流动性。它们与地壳的固体介质发生相互作用表现出十分活跃的物理化学性质。同时地下流体在地壳运动及地震过程中具有独特的作用和表现,对构造活动与地震过程具有灵敏的信息响应。
     地震地下水位观测通常建立在井-含水层系统的基础上进行观测。井水位变化对地壳微小的应力-应变具有明显的放大作用和十分灵敏的反应。1毫米的水位变化一般可反应含水层10-10量级的体应变。所以,井—含水层系统可以看作是窥视地壳应力活动的天然综合仪器,它可以在一定程度上起到应变仪、蠕变仪和长周期地震仪的作用。研究井水位变化与应力-应变之间的关系,对监测地震可能引起的地壳形变,对研究地震孕育过程中地壳的应力-应变变化,以及探索地震预测等都具有重大意义。
     地震地下水位观测是以捕捉地震活动信息为目的的浅层地壳流体观测手段。但连续水位观测不仅仅观测到与地震活动有关的信息,而且还掺杂着许多非地震方面的信息,比如大气压力的波动引起井水位的反向变化,大气降水、降雪和其它荷载作用以及抽水、注水都会使井水位发生显著变化。研究地震地下水位动态中存在的各种影响因素,对于识别与提取地震前兆信息及对认识含水层特性都是至关重要的。
     本文以地球物理学和水文地质学为基础,利用中国大陆地震地下流体现有的观测条件,详细分析了地震地下水位观测的物理基础和观测中存在的几种影响因素以及提取有用信息的方法,讨论了井水位和应力-应变之间的关系,探讨利用地震地下水位观测资料获取含水层介质参数的方法以及介质参数的变化与中强地震活动之间的关系。这对了解含水层特性和探索井水位动态在地震孕育与发生过程中的作用,对地震预测研究具有一定的理论和现实意义。
Underground fluids exist extensively among solid earth mediums. Underground fluids are all of the matter that can flow under subsurface. Commonly they are water, air, oil and Supercritical Fluid (SCF) and silicate melt in the deep layer. They are the important composition of crustal matter. They can flow under the grads of pressure, temperature and concentration etc. The physical and chemical properties can be actively behaved when they interact with solid earth mediums. At the same time, the underground fluids have special actions and manifestations among the crustal movement and earthquakes process. They can sensitively response to tectonic activity and earthquake process.
     Earthquake underground water level observations often set up on the bases of well-aquifer system. The water level changes of well-aquifer system have obvious magnification and very sensitive action to slight stress and strain. The water level changes of 1mm can probably response to 10-10 volume strain. So, the observation of water level changes can look as natural synthesis instrument which can look into crustal stress activities. To some degree, they can act as strain gauge, creep gauge and long period seismometer. Studying the relationship between well water level and stress-strain has great significance to observe crustal deformation probably caused by earthquake, to study the crustal stress-strain activities in the process of earthquake and to explore earthquake prediction investigation.
     Earthquake underground water level observation is a means in order to get earthquake anomaly information. But not only seismic information but also other aseismic information can also be observed in the continuing water level observation. For example, barometric pressure fluctuations can arouse the reverse changes of well water level. Atmosphere precipitation, snow and other loading action and water pumping and water injection can also arouse well water level obvious changes. So studying all kinds of influence factor of earthquake underground water level observation and knowing of their relationship have great importance to understand aquifer characteristics.
     This paper is based on geophysics and hydroseismology. The existing observation condition of earthquake underground fluid in China mainland was used. to analyze physical basis and all kinds of influence factor of earthquake underground water level and to study the methods of getting useful information. The relationship between water level and stress-strain was discussed. The methods of obtain medium parameters about aquifer system was explored using earthquake underground water level data. The relationship between the changes of aquifer parameters and medium strong earthquakes was discussed. This study provides preparation for know of aquifer characteristics and exploring the action of well water level changes in the process of earthquake occurring and has certain theoretical and practical significance.
引文
Biot, M. A. 1941. General theory of three-dimensional consolidation. Appl.Phys. 12(2):155–164.
    Biot, M. A. 1955. Theory of elasticity and consolidation for a porous anisortopic solid. Journal of Applied Physics 26(2):182-185
    Biot, M. A.1962. Mechanics of deformation and acoustic propagation in porous media Journal of Applied Physics 33 (4):1482-1498.
    Bodvarsson, G., 1970. Confined fluids as strain meters. J.Geophys.Res.,75(14),2711-2718
    Bredehoeft, J. D. (1967), response of well-aquifer system to earth tides, J. Jeophys. Res, 72, 3075-3087.
    Bredehoeft, J. D., E. A. Roeloffs, and F. Riley. 1986. Water wells as strain-meters at Parkfield. Eos, Transactions, American Geophysical Union 67 (16):242.
    Bredehoeft,J. D., 1967. Response of well-aquifer systems to earth tide. J.Geophys.Res., 72(12),3075-3087
    Briggs RO 1991 Effects of Loma Prieta earthquake on surface water in Waddell Valley. Water Res.Bull. 27, 991-999
    Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 108 (B8):2390-2490
    Carr, P. A., and G. S. V. D. Kamp (1969), determining aquifer characteristics by the tidal method, water resources research, 5, 1023-1031.
    Carr, P. A., G. S. Van Der Kamp. 1969. Determining aquifer characteristic by the tide method. Water Resource Research, 5(5),1023-1031
    Cooper, H. H., J. D. Bredehoeft, I. S. Papadopulos, and R. R. Bennett. 1965. The response of well-aquifer systems to seismic waves. J. Geophys. Res. 70 (16):3915-3926.
    Daubechies, I., 1990, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961-1005.
    Eaton, J. P., and K. J. Takasaki. 1959. Seismological interpretation of earthquake-induced water-level fluctuations in wells. Bulletin of the Seismological Society of America 49 (3):227-245.
    Elkhoury JE, Brodsky EE, Agnew DC 2006 Seismic waves increase permeability. Nature 441,1135-1138
    Esposito, E., et al. (2001), Hydrological anomalies connected to earthquake in southern Apennins(Italy), Nature Hazard and Earth System Sciences, 1, 137-144.
    F. Tsunomori, K. Kawai And G. Igarashi,Tidal variations of gas composition in groundwater.Geochimica et Cosmochimica Acta, 67, A495,2003.
    Healy, J. H., et al. (1968), The denver earthquakes, science, 161, 1301-1310.
    Igarashi, G., and H. Wakita (1991), Tidal responses and earthquake-related changes in the water level in deep wells, J. geophys. res., 96, 4269-4279.
    Kano, Y., and T. Yanagidani. 2006. Broadband hydroseismograms observed by closed borehole wells in the Kamioka mine, central Japan: Response of pore pressure to seismic waves from 0.05 to 2 Hz. J. Geophys. Res. 111 (B03410):1-11.
    King, I. G., and R. Muir-Wood (1993), hydrological signatures of earthquake strain, J. Jeophys. Res, 98, 22035-22068.
    Kitagawa, G., and N. Matsumoto (1996), Detection of coseismic changes of underground water level, J. Am. Stat. Assoc, 91.
    Mallat S., 1989, Multiresolution Approximation and Wavelet Orthogonal Bases of L2(R),IEEE Trans, AMS., 315,68-87.
    Manga M 2001 Origin of postseismic streamflow changes inferred from baseflow recession and magnitude-distance relations. Geophys. Res. Lett. 28, 2133-2136
    Matsumoto, N, Kitagawa, G, Roeloffs, E.A, 2003, Hydrological response to earthquake in the Haibara well, central Japan---I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses, Geophys. J. Int, 155, 855-898.
    Matsumoto, N. (1992), Regression analysis for anomalies changes of ground water label duo to earthquakes Geophys. Res. Lett., 19, 1193-1196.
    Matsumoto, N., and E. A. Roeloffs (2003), Hydrological response to earthquakes in the Haibara well, central Japan-Ⅱ. Possible mechanism inferred from time-varying hydraulic properties, Geophys. J. Int, 155.
    Melchoir, P. 1983. The tides of the planet earth, Second Ed. Pergamon, Oxford Montgomery DR, Manga M 2003 Streamflow and water well responses to earthquakes. Science 300, 2047-2049
    Muir-Wood, R., and G. C. P. King. 1993. Hydrological signatures of earthquake strain. J. Geophys. Res. 98 (B12):22,035-22,068.
    Pradeep Talwani. 1997. On the Nature of Reservoir-induced Seismicity,Pure appl. geophys. 150,473–492
    Quilty, E. G., and E. A. Roeloffs (1991), Removal of barometric pressure response from water level data J. geophys. res., 96, 10209-10219.
    Rhoads, G. H., Jr. E. S. Robinson. 1979. Determination of aquifer parameters from well tides. Journal of geophysical research, 84(B11),6071-6082
    Rice, J. R., and M. P. Cleary. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14:227-241.
    Roeloffs, E. A. (1988), fault stability changes induced beneath a reservior with cyclic variations in water level, J. Jeophys. Res, 93, 2107-2124.
    Roeloffs, E. A. (1998), Persistent water level changes in a well near Parkfield, California. duo to local and distant earthquakes, J. geophys. res., 103, 869-889.
    Roeloffs, E. A. 1995. Poroelastic techniques in the study of earthquake related hydrological phenomenon. Geophys. 37(Adv.),135-195
    Roeloffs, E. A., and Anonymous. 1996. Persistent water-level changes caused by seismic waves; evaluation of non-poroelastic mechanisms. Eos, Transactions, American Geophysical Union 77 (46, Suppl.):228.
    Roeloffs, E., and J. W. Rudnicki. 1984. Coupled deformation-diffusion effects on water-level changes due to propagating creep events. Pure and Applied Geophysics 122 (2-4, no special):560-582.
    Roeloffs, E.A., 1988,Hydrological precursors to earthquake: a review, Pure appl. Geophys, 126, 177-206.
    Rojstaczer S, Wolf S 1992 Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Geology 20, 211-214
    Rojstaczer S, Wolf S, Michel R 1995 Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373, 237-239
    Rojstaczer, S., 1988, Determination of fluid flow properties from the response of water level in wells to atmospheric loading, Water Resour. Res., 24, 1927-1938.
    Rudnicki, J. W. 1986. Slip on an impermeable fault in a fluid-saturated rock mass. Geophysical Monograph 37:81-89.
    Rudnicki, J. W. 1987. Plane strain dislocation in linear elastic diffusive solids. ASME J. Appl. Mech. 109:545-552.
    Rudnicki, J. W. 2001. Coupled deformation–diffusion effects in the mechanics of faulting and failure of geomaterials. ASME Appl. Mech. Rev. 54(6):483–502.
    S. Hainzl, T. Kraft, J. Wassermann, H. Igel, and E. Schmedes, 2006. Evidence for rainfall-triggered earthquake activity. Geophysical Research Letters, 33: L19303.
    Saar, M. O., and M. Manga (2003), seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon, Earth Planet. Sci.Lett., 214, 205-218.
    Sibson, R. H., and J. V. Rowland (2003), stress, fluid pressure and structural permeability in seismogenetic crust, North Island, New Zealand, Geophys. J. Int, 154, 584-594.
    Simpson, D. W., and W. S. Leith (1988), two type of reservior-induced seismicity, Bull. Seismol. Soc. Am, 78, 2025-2040.
    Simon Broda, Kai Carstensen, Marc S. Paolella(2007). Bias-adjusted estimation in the ARX(1) model. Computational Statistics & Data Analysis 51(7): 3355-3367
    Unsworth M, Bedrosian P, Eisel M, Egbert G, Siripunvaraporn W. 2000. Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California. Geophys. Res. Lett. 27, 3021-4
    Wakita H 1975 Water wells as possible indicators of tectonic strain. Science 189, 553-555
    Wang C-Y, Dreger D, Manga D, Wong A 2004c Streamflow increase due to rupturing of hydrothermal reservoirs: Evidence from the 2003 San Simeon, California, earthquake. Geophys. Res. Lett. 31, L10502, doi:10.1029/2004GL020124
    Wang C-Y, Rui F, Yao Z, Shi X . 1986. Gravity anomaly and density structure of the San Andreas fault zone. PAGEOPH 124, 127-140
    Zhao, D., H. Kanamori, H. Negishi, D. Wiens . 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? Science 274, 1891-1894.
    车用太, 鱼金子,张大维, 1993. 降雨对深井水位动态的影响. 地震 4, pp. 8-15. 车用太等,2006,地震地下流体学,气象出版社
    杜兴信,1997,基于小波变换的动态地震活动周期分析,地震,17(3),257-264。
    范雪芳, 张淑亮,王吉易, 2006. 水氡滑动变化率法对发震时间的预测检验. 山西地震, 125(1): 22-29.
    方晓祥. 1998. 北京地区地震前兆观测台站场地条件研究. 北京: 地震出版社.
    高福旺、李丽、牛安福等,2004,对体应变干扰因素的识别及排除,地震,24(增刊),90-96
    高静怀、汪文秉、朱光明等,1996,地震资料处理中小波函数的选取研究,地球物理学报,39(3),392-400。
    国家地震局科技监测司,1990,中国地震地下水动态观测网,北京:地震出版社。
    简春林,孙振辙, 1995. 高村井记录到的一次降雨荷载效应. 中国地震, 11: 2, pp. 181-190.
    黎令仪,刘德富, 1990. 雨震. 气象, 16: 4, pp. 40-43.
    刘希强、周惠兰、曹文海等,2002,高斯线调频小波变换及其在地震震相识别中的应用,地震学报,24(6),607-616。
    刘希强、周惠兰、沈萍等,2000,用于三分向记录震相识别的小波变换方法,地震学报,22(2),125-131。
    刘希强、周惠兰、郑治真等,1998,基于小波变换的弱震相识别方法,地震学报,20(4),373-380。
    梅世容、冯德益等, 1993. 中国地震预报概论. 地震出版社, 北京.
    梅卫萍, 章熙海, 冯志生, 庄明龙, and 张秀霞, 2002. 雨量观测数据的预处理方法. 地震地磁观测与研究, 23: 4, pp. 77-80.
    邵辉成、杜兴信、金学申等,2000,小波分析在地震趋势预测中的应用,中国地震,16(1),48-52。
    沈萍、郑治真、刘希强等,2002,小震的综合识别研究,地震学报,24(2),169-175
    宋登桥,李保进, 1990. 南北地震带M≥6.7级强震前气温与降雨量变化特征的研究. 四川地震 4, pp. 72-76.
    宋治平、武安绪、王梅等,2004,小波变换在前兆观测资料分析中的应用,中国地震,20(1),31-38。
    汪成民、车用太、万迪堃等,1988,地下水微动态研究,北京:地震出版社,149-180。
    王尤培, 张昭栋, 王晓闽, 张传海, and 藏秀峰, 1996. 鲁 04 井水位降雨影响的定量排除. 地震学刊 2, pp. 29-32.
    吴培稚, 徐平, 邢成起, 杨明波, 尹继尧, 赵桂儒, and 赵文忠. 2006. 东三旗台站的 GPS、体应变和水位观测. 地震 26 (3):131-135.
    薛年喜,2003,MATLAB 在数字信号处理中的应用,北京:清华出版社。
    严尊国、陈俊华、钱家栋等,2000,二进小波变换在地震前兆信号频率分解中的应用,地震,20(增),76-81。
    燕召信, 1991. 皖 18 井降雨干扰的定量排除. 地震学刊 3, pp. 98-103.
    杨从杰, 冯志生,范小平, 2004. 苏O5井数字化水位雨荷效应的处理与改正. 华南地震, 24: 3, pp. 18-24.
    殷积涛、汪成民,1988,承压含水层的荷载效应和井孔水位的气压效应,中国地震,4(2),39-48
    张风楼, 李春城,张柏德, 1992. 白城 ZK6 井水位的雨荷效应分析. 地震 3, pp. 66-69.
    张凤楼, 李翠萍,刘国明, 2001. 大暴雨引起深、浅井水位的异常变化. 地震, 21: 3, pp. 105-108.
    张凌空. 2005. 东三旗台 2004 和 2005 年印尼地震体应变观测报告. 地壳构造与地壳应力 (1):18-19.
    张素欣,郑云贞, 1999. 昌黎井水氡、水位、降雨之间的相关分析. 地震, 19: 3, pp. 309-312.
    张昭栋, 耿杰, 高玉斌,张铸钢, 1993. 井水位降雨影响的定量改正. 地震学报, 15: 2, pp. 202-207.
    张昭栋、段会川、王昌文等,1991,一种计算井水位气压系数、固体潮系数和海潮系数的新方法,地震,(6),48-53。
    张昭栋、郑金涵、耿杰等,2002,地下水潮汐现象的物理机制和统一数学方程,地震地质,24(2),208-214
    张子广,张素欣, 2000. 玉田井水位动态分析. 地震, 20: 4, pp. 86-90.
    中国地震局监测预报司,2005,2004 年印度尼西亚苏门答腊 8.7 级大地震及其对中国大陆地区的影响,北京:地震出版社,259-288.
    中国地震局预测预防司, 1998. 大陆地震预报的方法和理论——中国“八五”地震预报研究进展. 地震出版社, 北京.
    周坤根、殷积涛,1989,井水固体潮观测资料的海潮改正问题,地壳形变与地震,9(4),37-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700