用户名: 密码: 验证码:
橡胶树乳管特异表达基因hevein、ref启动子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶树作为植物生物反应器理想场所,其乳管系统中表达外源蛋白具有易收获,易分离纯化等诸多优点。而要达到这一目的,则必须分离乳管特异表达的启动子。本研究首先克隆680bp的hevein基因cDNA片段。测序结果表明该680bp片段含一个开放阅读框架,编码204个氨基酸,其中N端17个氨基酸为信号肽,中间43个氨基酸为Hevein成熟肽,C端144氨基酸为未知功能多肽。然后克隆了526bp的ref cDNA片段。其中编码区414bp,编码138个氨基酸,3’端非编码区112bp。
     在分离hevein基因,ref基因的基础上,通过基因步移法分离了hevein基因5’端1306bp序列(Gene Bank登录号:AF327518)。以promoter prediction软件进行基础启动子的分析,发现在865~909,1147~1189处存在可能的基础启动子区域。对该序列以Plant core软件进行顺式作用元件分析,发现Atl-motif,HSE,I-box,ABRE,ERE,EIRE等元件。同样,通过基因步移法分离ref基因5’端763bp序列(Gene Bank登录号:AF380139)。其中,启动子区域的序列长378bp,409~706为内含子序列。通过promoterprediction软件进行基础启动子的分析,结果表明在219~268处存在可能的基础启动子区域。对该序列以Plant core软件进行顺式作用元件分析,发现Atl-motif,HSE,I-box,WUN-motif,P-box,G-box等元件。
     同样,通过基因步移法分离hmgl基因5’端317bp序列。其中,启动子区域的序列长258bp。通过promoter prediction软件进行基础启动子的分析,结果表明在155~205处存在可能的基础启动子区域。对该序列以Plant core软件进行顺式作用元件分析,发现CGTAC-motif,HSE,I-box,G-box等元件。
     随后,通过PCR的方法对hevein基因5’端1306bp的序列进行系列缺失,并通过取代pBI121上35S启动子序列,构建了含GUS基因的嵌合植物表达载体:pBIH1(1241bp),pBIH2(805bp),pBIH3(348bp),pBIH4(224bp)。ref基因启动子也通过类似的方法,构建了含GUS基因的嵌合植物表达载体:pBIR1(378bp)。
     这些嵌合植物表达载体,pBI121,以及不加载体的阴性对照3day后在胶乳中体外瞬时表达检测结果表明:pBIH1(1~1241),pBIH2(436~1241)兰色较明显,说明1241bp和805bp的hevein基因启动子片段在胶乳中具有较强的启动能力。pBIH3(893~1241),pBIH4(1016~1241),pBIR1,pBI121以及阴性对照无兰色显现。
     ABA具有诱导嵌合植物表达载体表达的作用。附加0.1%ABA的样品1day后的观
    
     2 邓晓东橡胶树乳管特异表达基因heve主n、ref启动子研究
    察结果显示。pBIHI,pBIHZ,pBIH3,pBIRI有较明显的 GUS活性。而 pBllZI,pBIH4
    以及阴性对照无明显的GUS活性。
     pBIHZ通过基因枪转化橡胶树叶片瞬时表达检测结果表明:pBIHZ包被的微弹轰击
    的叶片,沿着叶脉清晰地被染成兰色,侧脉也有微弱的兰色。PBllZI包被的微弹轰击
    的叶片,在叶脉处无兰色显现,在薄壁细胞处有分散的兰色斑点。对照叶片无兰色显现。
    此结果说明hevein启动子的乳管表达特异性。
     在pBMZ通过农杆菌转化烟草的研究中,共得到Kan抗性苗28株。对25株Kan
    抗性茵进行了 PCR检测,检测结果表明:转 pBIHZ的烟草植株,在约 800 hp的位且有
    目的片段扩增出来。共有15株PCR检测呈阳性。将PCR检测呈阳性的15株植株进行
    GUS的组织化学分析,结果显示:pBIHZ转化的烟草植株,在叶肉,叶脉和根中均未检
    测到GUS的活性。这一结果说明pBIHZ在薄壁细胞,韧皮部,维管束的组织中不表达,
    从侧面验证了pBIHZ的乳管表达特性。
As a ideal place for plant bioreacter, rubber tree has more advantages such as easy getting and purifing of the foregion proteins expressing in it's laticiferious system. The key step for this is to isolate the laticiferious specific promoters. By using the method RT-PCR, a 680 bp fragment of hevein cDNA had been cloned. The sequence analysis indicated that the fragment had a complete open reading frame that encoded a polypeptide of 204 amino acids with the N-terminal region containing 17 amino acids signal peptide, the mature hevein containing 43 amino acids and the C-terminal region containing 144 amino acids polypeptide. Then, a 526 bp fragment of ref cDNA had been cloned. The sequence analysis indicated that the fragment had a coding region of 414bp encoding 138 amino acids and a 3' end non-coding region of 112bp.
    Furthermore, By using the method of genome walking, a 1306bp fragment of hevein 5' end sequences, a 763bp fragment of ref 5' end sequences and a 317bp fragment of hmgl 5' end sequences, had been cloned respectively on the baisis of cloning these genes. The analysis of hevein 5' end sequences with the software of promoter prediction indicated that the core promoter regions could be in 865-909 and 1147~1189. The analysis of this sequence with the software of plant core found some elements such as At 1-motif, HSE, I-box, ABRE, ERE and EIRE. In the same way, the analysis of ref 5' end sequences found a core promoter region in 219-268 and the elements of Atl-motif, HSE, I-box, WUN-motif, P-box and G-box. Similarly the analysis of hmgl 5' end sequences found a core promoter region in 155~205 and the elements of CGTAC-motif, HSE, I-box and G-box.
    The 1306bp fragment of hevein 5' end sequence had been deleted into 4 fragments by the method of PCR, which replaced the CaMV 35 S promoter of pBI121 and constructed the plant chimeric plasmids including: pBIHl(1241bp), pBIH2(805bp), pBIH3(348bp) and pBIH4(224bp). So did the 763bp fragment of ref 5' end sequence, and a chimeric plasmid pBIRl(378bp) had been constrcted. The results of these chimeric plasmids, pBI121 and CK-in vitro transient expression test (3 days later) indicated that the samples contained pBIHl(l~1241) or pBIH2(436~1241) showed bright blue respectively, but the samples contained pBIH3(893~1241), pBffl4(1016~1241), pBIRl, pBI121 and CK- didn't show
    
    
    blue. It made out that the 1241bp and the 805bp fragments of hevein promoters were strong promters especially in latex. ABA could improve the expression of some of these chimeric plasmids. The samples contained 0.1%ABA(1 day later) including pBIHl, pBIH2, pBIH3 and pBIRl had been detected strong GUS activites, but samples contained 0.1%ABA(1 day later) including pBI121, pBM4 and CK- had not been detected GUS activites. pBIH2 had been tansfered into leaves of rubber tree. The results of the transient expression in leaves indicated that the veins of the leaves bombarded by the microcarriers coated with pBIH2 showed bright blue; veins of the leaves bombarded by the microcarriers coated with ddHaO did not show blue; veins of the leaves bombarded by the microcarriers coated with pBI121 did not show blue but in parenchyma cells there were some blue spots.
    In the research of transfering pBIH2 into tobacco through agrobacterium, 28 plantlets of Kan resistance had been obtained. 25 of them were detected by PCR and made out following results: A 800 bp fragment could be amplified in pBIH2 transgenic plantlets. We totally got 15 transgenic plantlets and used X-gluc for detecting GUS activities. The results showed that none GUS activitie had been detected in transgenic tobacco's roots, leaves and veins.
引文
1. Fay E, Jacob J L. Anatomical organization of laticiferous system in bark. Physiology of Rubber Tree Latex, London, CRC Press, 1998.3-14.
    2. Backhaus RA. Rubber formation in plants-a mini-review. Israel J Botany, 1985, 34:283
    3. Bealing IJ. Carbohydrate metabolism in Hevea latex-availability and utilization of substrates. J Rubber Res Inst Malays, 1969, 21:445
    4.何康,黄宗道。热带北缘橡胶栽培。广东科技出版社,广州,1987
    5.周建南。近来国外主要天然橡胶生产国的产耗趋势。热带作物研究,1997,(5):61-67
    6.廖建和,陈达益。二十一世纪我国天然橡胶应用展望。热带作物研究,1996,(3):1-5
    7.蒋菊生,周钟。面向二十一世纪的我国天然橡胶科技。热带作物研究,1997,(3):1-7
    8. Na-Ranong N, de Livonniere H and Jacob J L. Caoutchouc naturel: le PRI en question. Plantations, Recherche, Developpement, 1995,2:44
    9. Jacob J L, Prevot J C, Clement A, Gohet E, Gallois R and Nicolas D. La production de latex (caoutchouc naturel) par l'Hevea brasiliensis: exploitation d'un systeme de defense chez un arbre. 3eme Conges International de l'Arbre, Montpellier. Naturalia Monspeliensia 96, 1995, hors serie
    10. Schwender J, Seemann M K, Lichtenthaler H and Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side chains of chlorophylls and plastoquinone) via a novel pyruvatelglyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J, 1996,316:73
    11. Jacob J L, Prevt J C and Kekwick R G O. General metabolism of Hevea brasiliensis latex, in "Physiology of Rubber Tree latex". J d'Auzac, J L Jacob and H Chrestin eds. CRC Press, Boca Raton, 1989, 145
    12. Lynen F, Biochemical problems of rubber synthesis. J Rubb Res Inst Malaya, 1969,21: 389
    13. Kekwick R G O. The formation of isoprenoids in Hevea latex, in "Physiology of Rubber Tree Latex" J d'Auzac, J L Jacob, H Chrestin eds - CRC Press, Boca Raton,1989,145
    14. D'Auzac J, Prevt J C, Jacob J L. What's new about lutoids ? A vacuolar system model from Hevea latex. Plant Physiol Biochem, 1995, 33:765
    15. Cardosa M J, Hamid S, Sunderasan E and Yeang H Y. B-serum is highly immunogenic when compared to C-serum using enzyme immunoassays. J Nat Rubber Res, 1994, 9:205
    16. Chye M, Tan C T, Chua N H. Three genes encode HMG-CoA reductase in Hevea brasiliensis: hmgl and hmg3 are differentially expressed. Plant Mol Biol, 1992, 19:473
    
    
    17. Chey M L, Kush A, Tan C T et al. Characterization of cDNA and genomic clones encoding HMG-CoA reductase from Hevea brasilienis. Plant Mol Biol, 1991, 16:567
    18. Light D R, Dennis M S. Rubber elongation factor from Hevea brasiliensis. J Biol Chem,1989,264(31): 18608
    19. Goyvaerts E, Dennis M S, Light D R et al. Cloning and sequencing the eDNA encoding the rubber elongation factor of Hevea brasiliensis. Plant Physiol, 1991, 97:317
    20. Gidrol X, Chrestin H, Tan H L, Kush A. Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem, 1994, 269:9278
    21. Lee H I, Broekaert W F, Raikhel N V, Lee H. Co- and post-translational processing of the hevein preproprotein of latex of the rubber tree. J Biol Chem, 1991, 266:15944
    22. Broekaert W F, Lee H I, Chua N H, Raikhel N. Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci USA, 1990, 87:7633
    23. Adiwilaga K, Kush A. Cloning and characterization of cDNA encoding FDP synthase from rubber tree. Plant Mol Biol, 1996,30:935
    24. Oh S K, Kang H, Shin DH et al. Isolation, characterization and functional analysis of a novel cDNA clone encoding a small rubber panicle protein from Hevea brasiliensis. J Biol Chem, 1999, 274(24): 17132
    25. Miao Z, Gaynor J J. Molecular cloning, characterization and expression of Mn-SOD from the rubber tree. Plant Mol Biol, 1993,23(2): 173
    26. Sivasubramaniam S. Characterizaton of HEVER, a novel stress-induced gene from Herea brasiliensis. Plant Mol Biol, 1995,29(1): 173
    27. Martin M N. Cloning and characterization of chitinase cDNA rom Hevea brasiliensis. Plant Physiol, 1991, 95:469
    28. Chye M L, Cheung K Y. Beta-1,3-glucanase is highly-expressed in laticifers of Hevea brasiliensis. Plant Mol Biol, 1995, 29(2):397
    29. Rentsch D, Gorlach J, Vogt E et al. The tonoplast-associated citrate binding protein (CBP) of Hevea brasilliensis. J Biol Chem, 1995,270(51):30525
    30. Hasslacher M, Schall M, Hayn M et al. (S)-hydroxy-nitrile lyase from Hevea brasiliensis. Ann NY Acad Sci, 1996,709:707
    31. Chye M L, Tan C T. Lsolatian and nucleotide sequence of a cDNA clone encoding the beta subunit of mitechondrial ATP synthase from Hevea brasiliensis. Plant Mol Biol, 1992,18(3):611
    
    
    32. Chye, M L, Tan S A, Tan C T et al. Nucleotide sequence ofa cDNA clone encoding the precursor of ribulose-1, 5-bisphosphate carboxylase small subunit from Hevea brasiliensis. Plant Mol Biol, 1991,16(6): 1077
    33. Attanyaka D P, Keckwick R G. Molecular cloning and nucleotide sequencing of rubber elongaton factor from Hevea brasiliensis. Plant Mol Biol, 1991,16:1079
    34. Slater J E, Vedvick T. Identfication, cloning, and sequence of major allergen (Hey b5) from natural latex. J Biol Chem, 1996,271(41):25394
    35. Rozynek P, Posch A, Baur X. Cloning, expression and characteriation of the major latex allergen prohevein. Clin Exp Allergy, 1998,28(11):1418
    36. Yeang H Y, Ward M A, Zamri A S et al. Amino acid sequence simiarity of Hev b3 to two previously reported 27-and 23-KDa latex proteins allergenic to spina bifida patitends. Allergy, 1998,53(5):513
    37. Sowka S, Wangner S, Krebitz M et al. cDNA cloning of the 43-KD latex allergen Hev b7 with sequence similarity to patatins and its expression in the yeast Pichia pastoris. Eur J Biochem, 1998, 255(1):213
    38. Kush A, Goyvaerts E, Chye M L et al. Laticifer-specific gene expression in Hevea brasiliensis. Proc Nad Aced Sci USA, 1990,87:1787
    39. Arpkiaraj P. Agrobacterium-mediated transformation of Hevea cells derived from in vitro and in vivo seeding cultures. J Nat Rubber Res, 1991,6(1):55
    40. Arokiaraj P, Jones H, Cheong K F et al. Gene insertion into Hevea brasiliensis. Plant Cell Reports, 1994,13(8):425
    41. Arokiaraj P, Jones H, Jaafar H. Agrobactefium-mediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubber Res, 1996,11 (2):77
    42. Arokiaraj P, Yeang H, Cheong K F et al. CaMV 35S promoter directs β - glucuronidase expression in laticferous system of tramsgenic Hevea brasiliensis. Plant Cell Reports, 1998,17(8):62
    43.陈正华等。Expression of foreign gene introduced into plant cell by using laser microbeam puncture techniques.第二届亚洲太平洋植物细胞和组织培养会议。1996,北京。
    44.王泽云,陈雄庭,吴蝴蝶等。用离体花药诱导巴西橡胶植株研究。热带作物学报,1980,1(1):16-20
    45.王泽云,陈雄庭,吴蝴蝶等。橡胶雄蕊培养及体细胞植株再生中的温度效应。作物学报,1995,21(6):723-726
    46.刘志昕,邓晓东,魏源文等。反义Hevein基因载体构建及橡胶遗传转化研究初报。热带作物学报,2000,(21)增刊,102-107
    
    
    47.李一琨,王金发。高等植物启动子研究进展。植物学通报,1998,15(增刊):1-6
    48.余叔文,汤章成。植物生理与分子生物学,2001,北京,科学出版社。
    49. Joshi C P.Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis.Nucleic Acids Res. 1987,10;15(23):9627
    50. Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton M A, Lamb C.Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase.Plant Mol Biol. 1995,29(3):535
    51. Luehrsen K R, Walbot V. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet, 1991, 225(1):81
    52. Boehm U, Heinlein M, Behrens U, Kunze R.One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain.Plant J, 1995, 7(3):441
    53. Heinlein M, Brattig T, Kunze R.In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts.Plant J, 1994,5(5):705
    54. Borello U, Ceccarelli E, Giuliano G.Constitutive, light-responsive and circadian clock-responsive factors compete for the different 1 box elements in plant light-regulated promoters.Plant J, 1993,4(4):611
    55. Kosugi S, Suzuka I, Ohashi Y. Two of three promoter elements identified in a rice gene for proliferating cell nuclear antigen are essential for meristematic tissue-specific expression. Plant J, 1995,7(6):877-86.
    56. Kimura S, Suzuki T, Yanagawa Y, Yamamoto T, Nakagawa H, Tanaka I, Hashimoto J, Sakaguchi K.Characterization of plant proliferating cell nuclear antigen (PCNA) and flap endonuclease-1 (FEN-1), and their distribution in mitotic and meiotic cell cycles. Plant J, 2001,28(6):643
    57. Jame S K,Miltost,Pietro P et al. Plant Molecular Biology, 1994,24:327
    58. Lumbreras V, Campos N, Boronat A.The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene geherates an mRNA that encodes a novel 3-hydroxy-3-methylglutary1 coenzyme A reductase isoform with an extended N-terminal region.Plant J, 1995,8(4):541-9.
    59.胡廷章。植物激素效应启动子。生命的化学,2000,20(3)120-122
    60. Curry J, Morris C F, Walker-Simmons M K.Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol Biol. 1991,16(6):1073
    61. Skriver K, Mundy J.Gene expression in response to abscisic acid and osmotic stress.Plant Cell. 1990,2(6):503
    
    
    62. Xiong L, Ishitani M, Zhu JK.Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis.Plant Physiol. 1999,119(1):205
    63. Marcotte W R Jr, Russell S H, Quatrano R S.Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989,1(10):969
    64. Godoy J A, Pardo J M, Pintor-Toro J A. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern.Plant Mol Biol. 1990,15(5):695
    65. Pla M, Vilardell J, Guiltinan M J, Marcotte W R, Niogret M F, Quatrano R S, Pages M. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.Plant Mol Biol. 1993,21(2):259
    66. Pla M, Gomez J, Goday A, Pages M.Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants.Mol Gen Genet. 1991,230(3):394
    67. Mundy J, Yamaguchi-Shinozaki K, Chua N H.Nuclear proteins bind conserved elements in the abseisic acid-responsive promoter of a rice tab gene. Proc Natl Acad Sci U S A. 1990,87(4): 1406
    68. Marcotte W R Jr, Guiltinan M J, Quatrano RS.ABA-regulated gene expression: cis-acting sequences and trans-acting factors.Biochem Soc Trans. 1992,20(1):93
    69. Straub P F, Shen Q, Ho T D.Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1.Plant Mol Biol. 1994,26(2):617
    70. Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress.Plant Cell. 1994,6(2):251
    71. Shen Q, Zhang P, Ho T H.Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell. 1996,8(7): 1107
    72. Shen Q, Ho T H.Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell. 1995,7(3):295
    73. Hattori T, Terada T, Hamasuna S.Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1.Plant J. 1995,7(6):913
    74. Taylor J E, Renwick K F, Webb A A, McAinsh M R, Furini A, Bartels D, Quatrano R S, Mareotte W R Jr, Hetherington A M.ABA-regulated promoter activity in stomatal guard cells.Plant J. 1995,7(1): 129
    
    
    75. Nelson D, Salamini F, Barrels D.Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J. 1994,5(4):451
    76. Michel D, Salamini F, Barrels D, Dale P, Baga M, Szalay A.Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J. 1993,4(1):29
    77. Raventos D, Skriver K, Schlein M, Karnahl K, Rogers S W, Rogers J C, Mundy J.HRT, a novel zinc finger, transcriptional repressor from barley. J Biol Chem. 1998,273(36):23313
    78. Rogers J C, Rogers S W. Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes.Plant Cell. 1992,4(11): 1443
    79. Cordes S, Deikman J, Margossian L J, Fischer R L.Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. Plant Cell. 1989,1( I0): 10250
    80. Yamamoto S, Suzuki K, Shinshi H. Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells.Plant J. 1999,20(5):571
    81. Sessa G, Meller Y, Fluhr R.A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene. PlantMol Biol. 1995,28(1):145
    82. Clark S E, Lamppa G K.Determinants for cleavage of the chlorophy11 a/b binding protein precursor: a requirement for a basic residue that is not universal for chloroplast imported proteins.J Cell Biol. 1991,114(4):681
    83. Cacchione S, Saving M, Tufillaro A.Different superstructural features of the light responsive elements of the pea genes rbcS-3A and rbcS-3.6.FEBS Lett. 1991,289(2):244
    84. Gilmartin P M, Chua N H.Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell. 1990,2(5):447
    85. Tada Y, Sakamoto M, Matsuoka M, Fujimura T. Expression of a monocot LHCP promoter in transgenic rice.EMBO J. 1991,10(7):1803
    86. Fukuda Y. Interaction of tobacco nuclear protein with an elicitor-responsive element in the promoter of a basic class I chitinase gene.Plant Mol Biol. 1997,34(1):81
    87. Fukuda Y, Shinshi H.Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene.Plant Mol Biol. 1994,24(3):485
    88. Korfhage U, Trezzini G F, Meier I, Hahlbrock K, Somssich I E.Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene.Plant Cell. 1994,6(5):695
    
    
    89. Datla R, Anderson JW, Selvaraj G.Plant promoters for transgene expression. Biotechnology Annual Review, 1997,3:269
    90. Zhou X J ,Fan Y L.The endosperm-specific expression of a rice prolamin chimaeric gene in transgnenic tobacco plants. Tran sgenic Research, 1993,2:141
    91.赵军,范云六.水稻种子醇溶蛋白4a基因受串联复合启动子调控.中国科学(C辑),1996,26:156-163
    92.张世平,范云六,张春义,Claude Fauquet.水稻醇溶蛋白4a基因启动子在转基因水稻中的特异性表达。农业生物技术学报,1999,7(3):3
    93. Miao G H, Verma D P. Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants.Plant Cell. 1993,5(7):781
    94. Kloeckener-Gruissem B, Vogel J M, Freeling M.The TATA box promoter region of maize Adh1 affects its organ-specific expression.EMBO J. 1992,11(1):157
    95. Gordon J W, Scangos G A, Plotkin D J, et al. Genetic transformation of muose embryo by microinjection of purified DNA. Proc Natl Acad Sci USA,1980, 77: 7380
    96. almiter R D, Brinster R E,Hammer M E, et al. Dramatic growth of mice that develop from eggs microinjected with a metallothionein-growth hormone fusion gene, Nature. 1982, 300:611
    97. Lsola L M, Gordon L W. Transgenlic animal: A new era in developmental Biology and Medicine,In: First NL.Transgenic Animals. USA: Reed Publishing Inc. 1988, 3
    98. Wakayama T et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998,394:369
    99. Schnieke A K, et al. Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Science, 1997,278(19):2130
    100. Arakawa T, Langridge W H R. Plants are not just passive creatures. Nature Med, 1998,4:550
    101. Austin S, Bingham E T, Koegel R G et al. An overview of a feasibility study for the production of industrial enzymes in transgenic Alfalfa. Ann NY Acad Sci, 199:234
    102. Chong D K X, Roberts W, Arakawa T et al. Expression of the human milk protein a-casein in transgenic potato plants. Transgenic Res, 1997,6:289
    103. Cramer C L, Weissenborn D L, Oishi K K et al. Bioproduction of human enzymes in transgenic tobacco. Ann NY Acad Sci, 1996, 792(2):62
    104. Goddijn O J M, Pen J. Plant as bioreactors. Trends in biotechnology, 1995, 13:379
    105. Pen J, Verwoerd T C. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/technology, 1993, 11: 811
    
    
    106. Penarrubia L, Kim R, Giovannoni J, Kim SH. Production of the sweet protein monellin in transgenic plants. Bio/technology, 1992, 10(5):561
    107. Jensen J S, Marcker K A. Nodule-specific expression of a chimeric soybean leghaemogloblin gene in transgenic lotus corniculatus. Nature, 1986, 321:669
    108. Kay R, Chan A, Daly M, McPhersom J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 1987, 236:1299
    109. Wandelt CI, Kaibb W. The expression of an ovalbumin and a seed protein gene in the levels of transgenic plants. In: Hermann RG & Larleins BA ed. Plant Molecular Biology 1990. New York:Plenum Press, 1991.153
    110. Comai L, Moran P, Maslyar D. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Molecular Biology, 1990, 15:373
    111. Gatz C, Lenk I. Promoters that respond to chemical inducers. Trends in Plant Science. 1998, 3:352
    112. Ainley W M, Key J L. Development of a heat shock inducible expression cassette for plant: Characterization of parameters for its use in transient expression assays. Plant Molecular Biology, 1990, 14:949
    113. Jentsch S, Bachmair A. Principles of protein turnover: Possible manipulations. In: Protein Engineering: a Practical Approach. Oxford: IRL Press, 1992. 221
    114. Denecke J, Bottermann J, Deblaere R. Protein secretion in plant cells can occur via the default pathway, plant Cell, 1990, 2:51
    115. Herbers K, Wilke I, Sonnewald U. A thermostable xylanase from Clostridium thermocellum Expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio/technology, 1995, 13(1):63
    116. Moloney M M, Holbrook L A. Subcellular targeting and purification of recombinant proteins in plant production systems. Biotechnology and Genetic Engineering Reviews, 1997, 14:312
    117. Muno S, Pelham H R B. A C-terminal signal prevents secretion of luminal ER proteins. Cell, 1987, 48(13):899
    118. Sijmons P C, Dekker B M M, Sehrammeijer B et al. Production of correctly processed human serum albumin in transgenic plants. Bio/technology, 1990, 8:217
    119. Kumagai M H, Turpen T H, WeinZettl N et al. Rapid, high-level expression of biologically active a-trichosanthin in transfected plants by an RNA viral vector. Prco Natl Acad Sci USA, 1993, 90:427
    
    
    120. Wandelt C I, Khan M R I, Craig S et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J, 1992, 2:181
    121. Polrier Y, Nawrath C, Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in Bacterial and Plants. Bio/technology, 1995, 13(2):142
    122. Miele L. Plants as bioreactors for biopharmaceuticals: regulatory considerations. Trends in Biotechnology, 1997, 15:45
    123. Mayerhofer R, Koncle M et al. T-DNA integration: A mode of illegitimate recombination in plants. EMBO J, 10(3):697-704
    124. Horsch RB. A simple and methods for transfering genes into plants. Science, 1985, 227:1229
    125. Stachel SE, Messens E et al. Identification of the signal molecules producles produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985, 318(19): 624
    126. Sheikholeslam S, Weeks D. Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol. 1987, 8:291
    127. David J, James H. Acetosyringone and osmoprotetants like betaine or proline synergistically enhance Agobacterium-mediated transformation of apple, plant Cell Reports, 1993,12:559
    128. Ian Godwin. The effects of acetosyringone an pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Reports, 1991, 9:671
    129. French R,Janda M et al. Bacterial gene inserted in an engineered RNA virus:efficient expression in monocotyledonous plant cell. Science, 1986,231:1294
    130. Scholthf H B,Morris T J et al.The capsid protein gene of tomato bushy stunt virus is dispensible for systemic movement and can replaced for localized expression of foreign genes.Mol Plant -Microbe Interact, 1993,6:309
    131. Tkamatsu N,Ishicawa M et al.expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA.EMBO J, 1987,6:307
    132. Jupin I,Guilley H et al. Two proteins encoded by beet necrotic yellow vein virus RNA3 influence syptom phenotype on leaves.EMBO J, 1992,11:479
    133. Joshi R L,Joshi V et al.BSMV genome mediated expression of foreign gene in dicot and monocot plant cells.EMBO J, 1990,9:2663
    
    
    134. Chapman S,Hill G et al. Potato virus X as a vector for gene expression in plants.Plant J, 1992,2:549
    135. Martins C R F, Johnson J A et al. Sonchus yellow net rhabdovirus nuclear viroplasms contain polymerase associated proteins.Journal of Virology, 1998,72:5669
    136. Ruiz M T, Voinnet O et al. Initiation and maintenance of virus induced gene silencing. Plant Cell, 1998,10:937
    137. Dawson W O et al.A tobacco mosaic virus hybrid expresses and loses an added gene. Virology, 1989,172:285
    138. Donson J,Kearney C M et al. Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Prco Natl Acad Sci USA,1991,88:7204
    139. Kumagai M H,Turpen T H et al. Rapid high level expression of biologically active α-trichosanthin in transfected plants by an RNA viral vector. Proc Natl Acad Sci USA, 1992,90:427
    140. Baulcombe D C,Chapman S et al. Jellyfish green fluorescent protein as a reporter for virus infections.Plant J, 1995,7:1045
    141. Sugiyama Y, Hamamoto H et al. Systemic production of foreign peptides on the partical surface of tobacco mosaic virus. FEBS Lett, 1995,359:247
    142. Lomonossoff G P. Plant viruses and pharmacenticals.Agro Food Ind Hi Tech, 1995,6:7
    143. McLain L,Porta C et al. Human immunodeficiency virus type 1 neutralizing antibodiese raised to a glycoprotein 41 peptide expressed on the surface of a plant virus.AIDS Res Hum Retroviruses, 1995,11:327
    144. Fu R-Z(傅荣昭), Shun Y-R (孙勇如), Jia S-R (贾士荣) . Handbook of plant heredity transformation. Beijing, Chinese science and technology press. 1994. 143. (in Chinese)
    145. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed New York: Cold Spring Harbor Laboratory press, 1989.
    146. Itzhaki H,Maxson J M,Woodson W R.An ethylene-responsive enhence element is involved in the senescence-related expression of the carnation glutathione-S-transferase(GST1) gene. Prco Natl Acad Sci USA,1994,91:8925
    147.傅湘辉。巴西橡胶树死皮相关基因Hbf的克隆及表达。华南热带农业大学硕士论文,2001
    148.彭世清。巴西橡胶树43KD橡胶粒子膜蛋白cDNA的克隆及表达。华南热带农业大学博土论文,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700