用户名: 密码: 验证码:
狼疮模型鼠各脏器TCR Vβ基因的表达及T细胞克隆性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统性红斑狼疮(SLE)是一种累及多系统、多器官的典型的自身免疫性疾病,其主要特点为淋巴细胞功能异常引起多种自身抗体的产生和免疫复合物的沉积。T细胞所参与的免疫应答是SLE机体整个免疫调节的核心。大量证据表明,T淋巴细胞尤其是CD4~+T细胞在SLE的发病中发挥重要作用。MRL/lpr和(NZB×NZW)F1两种狼疮模型小鼠具有多种与人类SLE相似的临床表现和病理生理学特征,因而常被用于研究人类SLE。
     研究发现,CD4~+T细胞广泛浸润在受累组织中;去除CD4~+T细胞或MHCⅡ类分子基因敲除的MRL/lpr小鼠,可出现淋巴结病,但无自身抗体产生,且不出现狼疮肾炎表现;应用抗CD4单克隆抗体可改善两种狼疮模型鼠的发病症状。这些结果均表明CD4~+T细胞在狼疮鼠的发病中具有重要作用。但目前为止,克隆扩增并广泛浸润的致病性CD4~+T细胞克隆尚未被鉴定。SLE疾病中的抗原特异性T细胞的本质也尚不清楚。致病性CD4~+T细胞克隆的检出和鉴定将有利于阐明CD4~+T细胞克隆在SLE抗原特异性免疫反应中的作用,并有助于了解引起SLE发病的自身抗原的特点,从而为特异性免疫调节治疗提供靶点和新途径。本研究以致病性T细胞克隆为研究对象,通过对幼年未发病狼疮鼠和成年发病狼疮鼠的各脏器中浸润的T细胞克隆性的比较,发现广泛浸润的T细胞克隆,并分析其克隆扩增的特点及其细胞来源,进而通过对该细胞克隆TCR Vβ基因的测序,来分析其抗原特异性,从而揭示其在SLE中的致病作用及其所针对的自身抗原的结构特点,为特异性免疫调节治疗提供靶点和新途径。
     采用RT-PCR-SSCP法分析MRL/lpr和(NZB×NZW)F1两种SLE模型小鼠各脏器中TCR Vβ1-19基因亚家族的表达及T细胞的克隆性;对广泛浸润在各脏器中的T细胞克隆的TCR Vβ6 CDR3片段进行DNA测序分析;并联合交叉应用磁珠细胞分离法、流式细胞仪细胞分选法和RT-PCR-SSCP分析法,来确定广泛浸润在各脏器中的T细胞表型。
    
     本研究的主要结果如一F:
     1.成年发病的MRL月pr和伽zBxNzw)Fl狼疮模型鼠中,存在广泛浸润在多脏器中
    的相同的T细胞克隆,以双肾、脑、肺、小肠及淋巴结最为明显,各周龄、各TCR vp亚家
    族中出现相同的T细胞克隆带的数量分别为:22周龄的MRL月Pr小鼠的TcR vpZ、TcR vp6、
    TcR vps.l、TeR vpls的T细胞中分别出现3条相同的克隆带,TeR vpl6中出现2条,兀R
    v印。中出现4条:26周龄的MRL月pr小鼠的TcRv两中出现2条,TCR vp10中出现3条;
    40周龄的伽zBxNzW)FI小鼠的TCRV助和TCRv田中分别出现2条;47周龄的
    伽zB、Nz幼Fl小鼠的TcRv呀中出现1条,TcRv阶中出现3条。而幼年未发病狼疮鼠各
    脏器中虽可见T细胞克隆扩增带,但未见相同的T细胞克隆。
     2.克隆扩增的T细胞呈TcR vp限制性:此广泛浸润的共同的T细胞克隆呈TcR vp
    限制性扩增,即TCR vp基因存在优势取用:MRLllPr发病鼠存在v阳,v陌,v阶.1,v印0,vp16,
    v印8的优势取用,困zBxNz钧Fl发病鼠仅存在v时和vp7基因的优势取用。
     3.克隆扩增广泛浸润的T细胞为cD4+T细胞:c以+T细胞去除的细胞群及cD4+T
    细胞和CDS+T细胞都去除的细胞群中,此共同浸润的T细胞克隆电泳带大多消失,而单纯
    CDS+T细胞去除的细胞群中,此电泳带仍然存在。表明该两种狼疮发病鼠中克隆扩增并广泛
    浸润的T细胞来源于CD4十T细胞。
     4.克隆扩增并广泛浸润的T细胞为CD4+ CD69+T细胞:用队CS方法分选47周龄成
    年发病的困zBxNzw)FI小鼠右侧肾脏中的eo4+en69+T细胞,经Rl;peR·sseP法分析,
    发现CD4+ CD69+T细胞与左侧肾脏及其它脏器的总体T细胞存在相同的克隆扩增带,表明
    此克隆扩增并广泛浸润的T细胞为活化的T细胞表型-一一毛D4十cO69+T细胞。
     5.成年发病狼疮鼠中TcRv郎亚家族CDR3片段编码的氨基酸序列特点:该广泛浸
    润的T细胞克隆的TcRv助cDR3片段,在不同个体的成年发病的狼疮鼠之间,存在相同的
    氨基酸基序:四个个体中都出现‘r即异亮氨酸;三个个体出现‘G’即甘氨酸;四个个体中都出
    现带阴离子电荷的酸性氨基酸,其中三个个体出现‘D’即天门冬氨酸,另外一个个体出现‘E’
    即谷氨酸。提示该广泛浸润的T细胞克隆针对特定的自身抗原。
     6.应用scion Imag。软件分析ssCP胶片上肾脏或脑组织中的各条电泳带的密度分布比
    例。分析所得出的J‘一泛扩增的T细胞克隆在浸润于该组织中的T细胞总体中所占比例,分别
    与实际DNA测序所得的比例相比,结果相近。表明实际的测序结果可靠。
     一2-
    幻
    
     本研究的主要结论为:
     1 .MRL八Pr和困zBxNzw)F1两种狼疮模型鼠在sLE发病时,cD4+T细胞被活化、呈
    克隆性扩增,并厂‘泛浸润于多个脏器,表明其在狼疮肾炎和狼疮中枢神经系统损害的发病中
    发挥重要作用。
     2.此广泛浸润的cD4+T细胞克隆来源于cD4十cD69+T细胞,其克隆扩增呈TcR vp
    限制性。
     3.不同的狼疮模型鼠个体,在该特定的cD4+T细胞克隆的TcR vp基因c0R3区中
    存在相同的氨基酸基序,表明其识别某种特定的自身抗原,参与SLE的特异性免疫应答。
     本研究的主要创新点为:选择性地以狼疮模型鼠的致病性T细胞为研究对象,并非研
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of pathogenic autoantibodies and tissue deposition of immune complexes, which result in multiple organ damage. The MRL/lpr and (NZBNZW)F1 mouse that spontaneously develop a lupus syndrome closely resembling human SLE are considered to be excellent models for investigating the pathogenesis of the human disease.
    It has been suggested that T-cell-dependent antigen-specific immune responses play a key role in the pathogenesis of these two strains. Published data have documented the involvement of T cells, especially CD4+ T cells, in lupus in the mouse. This involvement includes: 1) The infiltration of affected tissues with predominantly CD4+ T cells; 2) The development of lymphadenopathy but not autoimmune renal disease or autoantibodies in CD4+ T cell-deficient or MHC class II-deficient lupus mice; 3) Improvement in the disease manifestations following treatment with anti-CD4 mAb. These results suggest that CD4+ T cells play an important role in the development of lupus. Although the participation and importance of CD4+ T cells in lupus mice has been emphasized, the pathogenic CD4+ T cell clonotypes that expanded in different sites of these murine models have not yet been identified and characterized. Also, the nature of antigen-specific T cells in SLE still remains poorly defined. Detection and characterization of t
    he pathogenic T cell clonotypes that expanded in lupus mice may help to illustrate the contribution of CD4+ T cell clones to the antigen-specific immune responses in SLE, give insight into the nature of the T cell Ags involved and provide possible immunoregulatory therapeutic way to SLE as well.
    -1-
    
    
    
    In order to address these questions and to further investigate the pathogenic role of CD4+ T cells clonally expanded in SLE, we compared the T cell clonality in different organs derived from young and nephritic (NZBNZW)F1 as well as MRL/lpr mice using the established RT-PCR-SSCP study in combination with CDR3 sequence analysis of the TCR VP family. Furthermore we use MACS and FACS cell sorting method combined with RT-PCR-SSCP analysis to identify the phenotype of the T cell commonly infiltrating in different organs. To test the accuracy of CDR3 sequence, we also perform the density analysis of T cell clonality based on SSCP image using Scion Image software.
    Our RT-PCR-SSCP study of TCR Vp chain demonstrated that there were some identical T cell clonotypes expanded and accumulated in different organs in aged diseased mice. Most of these identical clonotypes were CD4+ T cells in both of the two strains. In contrast, young lupus mice exhibited little accumulation of common clone in different organs. The TCR VP usage of these identical clonotypes was limited in Vp2, VP6, VfJS.l, vpio, VP16, Vpl8 in MRL/lpr mouse and Vp6, VP? in (NZBNZW)F1 mouse respectively. Furthermore, some conserved amino acid motifs such as I and D were observed in CDR3 loops of TCR Vp from these identical CD4+ clonotypes in (NZBNZW)F1 mice. Likewise, I, G and D or E were also found in MRL/lpr mice. Density analysis of T cell clonality based on SSCP image using Scion Image software revealed the accurate result of CDR3 sequence analysis. The T cell phenotypic analysis showed the existence of the activated CD4+ T cell populations in different organs in aged (NZBNZW)F1 mouse and the FACS sorted CD
    4+CD69+ cells from right kidney of this strain displayed the identical expanded clonotypes with the left kidney and other organs from the same individual.
    These findings suggest that activated and clonally expanded CD4+ T cells commonly accumulated in different tissues in aged murine lupus models, and these CD4+ T cell clonotypes might recognize restricted T cell epitopes on autoantigens and are involved in specific immune responses of SLE, thus playing a pathogenic role in these lupus mice.
引文
1. Rozzo S J, Drake CG, Chiang BL, et al. Evidence for polyclonai T cell activation in routine models of systemic lupus erythematosus. J Immunol. 1994 Aug 1; 153(3): 1340-51.
    2. Giese T, Davidson WF. Evidence for early onset, polyclonal activation of T cell subsets in mice homozygous for lpr. J Immunol. 1992 Nov 1;149(9):3097-106.
    3. Koh DR, Ho A, Rahemtulla A, et al. Murine lupus in MRL/Ipr mice lacking CD4 or CD8 T cells. Eur J Immunol. 1995 Sep;25(9):2558-62.
    4. Jevnikar AM, Grusby M J, Glimcher LH. Prevention of nephritis in major histocompatibility complex class Ⅱ-deficient MRL-Ipr mice. J Exp Med. 1994 Apt 1;179(4): 1137-43.
    5. Merino R, Iwamoto M, Fossati L, et al. Polyclonai B cell activation arises from different mechanisms in lupus-prone (NZB x NZW)F1 and MRL/MpJ-lpr/lpr mice. J Immtmol. 1993 Dec 1;151(11):6509-16.
    6. Jabs DA, Burek CL, Hu Q, et al. Anti-CD4 monoclonal antibody therapy suppresses autoimmune disease in MRL/Mp-lpr/lpr mice. Cell Immunol. 1992 May;141(2):496-507.
    7. O'Sullivan FX, Ray C J, Takeda Y, et al. Long-term anti-CD4 treatment of MRL/Ipr mice ameliorates immunopathology and lymphoproliferation but fails to suppress rheumatoid factor production. Clin Immunol Immunopathol. 1991 Dec;61(3):421-35.
    8. Santoro TJ, Portanova JP, Kotzin BL. The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-lpr/lpr mice. J Exp Med. 1988 May 1;167(5):1713-8.
    9. Wofsy D, Seaman WE. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonai antibody to L3T4. J Exp Med. 1985 Feb 1;161(2):378-91.
    10. Wofsy D, Seaman WE. Reversal of advanced murine lupus in NZB/NZWF1 mice by treatment with monoclonal antibody to L3T4. J Immunol 1987;138:3247-3253.
    11. Merino R, Fossati L, Iwamoto M, et al. Effect of long-term anti-CD4 or anti-CD8 treatment on the development of Ipr CD4- CDS- double negative T cells and of the autoimmune syndrome in MRL-lpr/lpr mice. J Autoimmun. 1995 Feb;8(1):33-45.
    
    
    12. Gilkeson GS, Spurney R, Coffman TM, et al. Effect of anti-CD4 antibody treatment on inflammatory arthritis in MRL-lpr/lpr mice. Clin Immunol Immunopathol.1992 Aug;64(2): 166-72.
    13. Sekigawa I, Ishida Y, Hirose S, et al. Cellular basis of in vitro anti-DNA antibody production: evidence for T cell dependence of IgG-class anti-DNA antibody synthesis in the (NZB X NZW)F1 hybrid. J Immunol. 1986 Feb 15;136(4):1247-52.
    14. Sekigawa I, Okada T, Noguchi K, et al. Class-specific regulation of anti-DNA antibody synthesis and the age-associated changes in (NZB x NZW)F1 hybrid mice. J Immunol. 1987 May 1;138(9):2890-5.
    15. Chesnutt MS, Finck BK, Killeen N, et al. Enhanced lymphoproliferation and diminished autoimmunity in CD4-deficient MRL/lpr mice. Clin Immunol Immunopathol, 1998 Apr,87(1):23-32.
    16. Wofsy D, Ledbetter JA, Hendler PL, et al. Treatment of murine lupus with monoclonal anti-T cell antibody. J Immunol. 1985 Feb;134(2):852-7.
    17. Peng SL, Madaio MP, Hughes DP, et al. Murine lupus in the absence of alpha beta T cells. J Immunol. 1996 May 15;156(10):4041-9.
    18. Shlomchik M J, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol. 2001 Nov;1(2):147-53.
    19. Datta SK, Patel H, Berry D. Induction of a cationic shift in IgG anti-DNA antoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis.J Exp Med. 1987 May 1;165(5):1252-68.
    20. Rajagopalan S, Zordan T, Tsokos GC, et al. Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4-8- T helper cell lines that express the gamma delta T-cell antigen receptor. Proc Natl Acad S1i U S A. 1990 Sep;87(18):7020-4.
    21. Burlingame RW, Rubin RL, Balderas RS, et al. Genesis and evolution of antichromatin autoantibodies in routine lupus implicates T-dependent immunization with self antigen.J Clin Invest. 1993 Apr;,91(4): 1687-96.
    
    
    22. Mihara M, Ohsugi Y, Salto K, et al. Immunologic abnormality in NZB/NZW F1 mice. Thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals. J Immunol. 1988 Jul 1;141(1):85-90.
    23. Molina JF, Citera G, Rosier D, et al. Coexistence of human immunodeficiency virus infection and systemic lupus erythematosus. J Rheumatol. 1995 Feb;22(2):347-50.
    24. Morimoto C, Reinherz EL, Schlossman SF, et al. Alteration in T cell subsets in active systemic lupus erythematosus. J Clin Invest 1980;66:1171-1174.
    25. Tsokos GC, Balow JE. Phenotypes of T lymphocytes in systemic lupus erythematosus: decreased cytotoxic/suppressor subpopulation is associated with deficient allogenic cytotoxic responses rather than with concanavalin A-induced suppressor cells. Clin Immunol Immunopathol 1983;26:267-276.
    26. Mclnerney MF, Clough JD, Senitzer D, et al. Two distinct subsets of patients with systemic lupus erythematosus. Clin Immunol Immunopathol 1988;49:116-132.
    27. Smolen JS, Chused TM, Leiserson WM, et al. Heterogeneity of immunoregulatory T-cell subsets in systemic lupus erythematosus. Am J Med 1982;72:783-790.
    28. Horwitz DA, Tang FL, Stimmler MM, et al. Decreased T cell response to anti-CD2 in systemic lupus erythematosus and reversal by anti-CD28: evidence for impaired T cell-accessory cell interaction. Arthritis Rheum 1997;40:822-833.
    29. Yamada A, Cohen PL, Winfield JB. Subset specificity of anti-lympocyte antibodies insystemic lupus erythematosus. Preferential reactivity with cells bearing the T4 and autologouserythrocyte receptor phenotypes. Arthritis Rheum 1985;28:262-270.
    30. Mimura T, Fernsten P, Jarjour W, et al. Autoantibodies specific for different isoforms of CD45 in systemic lupus erythematosus. J Exp Med 1990;172:653-656.
    31. Murashima A, Takasaki Y, Ohgaki M, et al. Activated peripheral blood mononuclear cells detected by murine monoclonal antibodies to proliferating cell nuclear antigen in active lupus patients. J Clin Immunol 1990;10:28-37.
    32. Courtney PA, Crockard AD, Williamson K, et al. Lymphocyte apoptosis in systemic lupus
    
    erythematosus: relationships with Fas expression, serum soluble Fas and disease activity. Lupus 1999;8(7):508-513.
    33. Pemiok A, Wedekind F, Herrmann M, et al. High levels of circulating early apoptic peripheral blood mononuclcar cells in systemic lupus erythematosus. Lupus 1998;7(2):113-118.
    34. Horwitz DA, Wang H, Gray JD. Cytokine gene profile in circulating blood mononuclear cells from patients with systemic lupus erythematosus: increased interleukin-2 but not interleukin-4 mRNA. Lupus 1994;3:423-428.
    35. Raziuddin S, Nut MA, Al Wabel AA. Increased circulating HLA-DR~+ CD4~+ T cells in systemic lupus erythematosus: alterations associated with prednisolonc therapy. Scand J Immunol 1990;31:139-145.
    36. Heilig B, Fiehn C, Brockhaus, et al. Evaluation of soluble tumor necrosis factor(TNF) receptors and TNF receptor antibodies in patients with systemic lupus erythematosus, progressive systemic sclerosis, and mixed connective tissue disease. J Clin Immunol 1993;13:321-328.
    37. Kato K, Santana-Sahagun E, Rassenti LZ, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest 1999;104:947-955.
    38. Theocharis S, Sfikakis PP, Lipnick RN, et al. Characterization of in vivo mutated T cell clones from patients with systemic lupus erythematosus. Clin Immunol Immunopathol 1995;74:135-142.
    39. Lorenz HM, Grunke M, Hieronymus T, et al. In vitro apoptosis and expression of apoptosis-related molecules in lymphocytes from patients with systemic lupus erythematosus and other autoimmune diseases. Arthritis Rheum 1997;40:306-317.
    40. Wu J, Zhou T, Zhang J, et al. Correction of accelerated autoimmune disease by early replacement of the mutated Ipr gone with the normal Fas apoptosis gene in the T cells of transgenic MRL-lpr/lpr mice. Proc Natl Acad Sci USA 1994;91:2344-2348.
    41. Knipping E, Krammer PH, Onel KB, et al. Levels of soluble Fas/APO-1/CD95 in systemic lupus erythematosus and juvenile rheumatoid arthritis. Arthritis Rheum 1995;38:1735-1737.
    42. Lenardo M, Chan KM, Hornung F, et al. Mature T lymphocyte apoptosis—immune
    
    regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol1999;17:221-253.
    43. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995;268:1347-1349.
    44. Bijl M, van Lopik T, Limburg PC, et al. Do elevated levels of serum-soluble fas contribute to the persistence of activated lymphocytes in systemic lupus erythematosus.J Autoimmun 1998; 11 (5):457-463.
    45. Brunner T, Mogil R J, Laface D, et al. Cell-autonomous Fas(CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995;373:441-444.
    46. Rnthstein TL, Wang JKM, Panka DJ, et al. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 1995;374:163-165.
    47. Devi BS, Van Noordin S, Kransz T, et al. Peripheral blood lymphocytes inSLE——hyperexpression of CD154 on T and B lymphocytes and increased number of double negative T cells J Autoimmun 1998;11(5):471-475.
    48. Sieling PA, Porcelli SA, Duong BT, et al. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CDIc. J Immunol 2000; 165(9):5338-5344.
    49. Funauchi M, Yu H, Sugiyama M, et al. Increased interleukin-4 production by NK T cells in systemic lupus erythematosus. Clin Immunol 1999;92:197-202.
    50. Oishi Y, Iwamoto I.[Role of TCR V alpha 24J alpha Q+ T cells in autoimmune diseases]. Nippon Rinsho 1997;55(6): 1425-1430.
    51. Riccieri V, Spadaro A, Parisi G, et al. Down-regulation of natural killer cells and of gamma/deta T cells in systemic lupus erythematosus. Does it correlate to autoimmunity and to laboratory indices of disease activity? Lupus 2000;9(5):333-337.
    52. Hanninen A, Harrison LC. Gamma delta T cells as mediators of mucosal tolerance: the autoimmune diabetes model.Immunol Rev 2000;173:109-119.
    53. Horwitz DA, Garrett MA. Lymphocyte reactivity to mitogens in subjects with systemic lupus erythematosus, rheumatoid arthritis and scleroderma. Clin Exp Immunol 1977;27:92-99.
    
    
    54. Rosenthal CJ, Franklin EC. Depression of cellular-mediated immunity in systemic lupus erythematosus. Relation to disease activity. Arthritis Rheum 1975;18:207-217.
    55. Richardson BC, Strahler JR, Pivirotto TS, et al. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum 1992;35:647-662.
    56. Tsokos GC, Kovacs B, Sfikakis PP, et al. Defective antigen-presenting cell function in patients with systemic lupus erythematosus: role of the B7-1(CDS0) costimulatory molecule. Arthritis Rheum 1996;39:600-609.
    57. Liossis SN, Ding XZ, Dennis GJ, et al. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus: deficient expression of the T cell receptor zeta chain. J Clin Invest 1998;101:1448-1457.
    58. Brundula V, Rivas LJ, Biasini AM, et al. Diminished levels of T cell receptor chain in peripheral blood T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 1999;42:1908-1916.
    59. Portales-Perez D, Gonzalez-Amaro R, Abud-Mendoza C, et al. Abnormalities in CD69 expression, cytosolic pH and Ca2+ during activation of lymphocytes from patients with systemic lupus erythematosus. Lupus. 1997;6(1):48-56.
    60. Mishra N, Khan IU, Tsokos GC, et al. Association of deficient type Ⅱprotein kinase A activity with aberrant nuclear translocation of the R Ⅱβsubunit in systemic lupus erythematosus T lymphocytes. J Immunol 2000; 165:2830-2840.
    61. Laxminarayana D, Kammer GM. mRNA mutations of type Ⅰprotein kinase A regulatory subunit alpha in T lymphocytes of a subject with systemic lupus erythematosus.Int Immunol 2000;12:1521-1529.
    62. Blasini AM, Alonzo E, Chacon R, et al. Abnormal pattern of tyrosine phosphorylation in unstimulated peripheral blood T lymphocytes from patients with systemic lupus erythematosus. Lupus 1998;7:515-523.
    63. Wong HK, Kammer GM, Dennis G, et al. Abnormal NF-B activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein
    
    expression. J Immunol 1999; 163:1682-1689.
    64. Solomou EE, Juang Y-T, Gourley M, et al. Molecular basis of deficient IL-2 production in T cells from patients with SLE: cAMP reponsive element modulator(CREM) binds to the-180 site of the IL-2 promoter instead of cAMP responsive element binding protein(CREB). Arthritis Rheum 2000;43:S38.
    65. Yi Y, McNerney M, Datta SK. Regulatory defects in cbl and mitogen-activated protein kinase(extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells. J Immunol 2000; 165(11):6627-6634.
    66. Bell DA. Cell-mediated immunity in systemic lupus erythematosus: observations on in vitro cell-mediated immune responses in relationship to number of potentially reactive T cells, disease activity, and treatment. Clin Immunol Immunopathol 1978;9:301-317.
    67. Suciu-Foca N, Herter FP, Buda JA, et al. Comparison of lymphocyte reactivity in patients with cancer, systemic lupus erythematosus and renal ailografls. Oncology 1975;31(3-4):125-132.
    68. Brozek CM, Hoffman CL, Savage SM et al. Systemic lupus erythematosus sera inhibit antigen presentation by macrophages to T cells. Clin Immunol Immunopathol 1988;46:299-313.
    69. Caret TE, O'Sullivan FX, Gold LI, et al. Intracellular demonstration of active TGFbetal in B cells and plasma cells of autoimmune mice. IgG-bound TGFbetal suppresses neutrophil function and host defense against Staphylococcus aureus infection. J Clin Invest 1996;98(11):2496-2506.
    70. Houssiau FA, Lefebvre C, Vanden Berghe M, et al. Serum interleukin 10 titers insystemic lupus erythematosus reflect disease activity. Lupus 1995;4:393-395.
    71. Park, Y.B., S. K. Lee, D.S.Kim, et al. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Ciin Exp Rheumatol 1998;16:283.
    72. Mosmann TR. Properties and functions of interleukin-10. Adv Immunol 1994;56:1-26.
    73. Zhinan Yin, Gul Bahtiyar, Na Zhang, et al. IL-10 regulates murine lupus. J Immunol 2002; 169:2148-2155.
    74. Llorente, L. Y. Richand-Patin, C. Garcia-Padilla, et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum. 2000;43:1790.
    
    
    75. Warrington R J, Rutherford WJ. Normal mitogen-induced suppression of the interleukin-6(IL-6) response and its deficiency in systemic lupus erythematosus. J Ciin Immunol 1990;10:52-60.
    76. Tsokos GC, Smith PL, Christian BC, et al. Interleukin-2 restores the depressed allogeneic cell-mediated lympholysis and natural killer cell activity in patients with systemic lupus erythematosus. Ciin Immunol Immunopathol 1985;34:379-386.
    77. Stohl W. Impaired generation of polyclonai T cell-mediated cytolytic activity despite normal polyclonal T cell proliferation in systemic lupus erythematosus. Clin Immunol Immunopathol 1992;63:163-172.
    78. Stohl W, Elliott JE, Hamilton AS, et al. Impaired recovery and cytolytic function of CD56~+ T and non-T cells in systemic lupus erythematosus following in vitro polyclonal T cell stimulation: studies in unselected patients and monozygotic disease-discordant twins. Arthritis Rheum 1996;39:1840-1851.
    79. Stohl W, Elliott JE, Li L, et al. Impaired nonrestricted cytolytic activity in systemic lupus erythematosus: involvement of a pathway independent of Fas, tumor necrosis factor, andextracellular ATP that is associated with little detectable perforin. Arthritis Rheum 1997;40(6):1130-1137.
    80. Stohl W, Hamilton AS, Deapen DM, et al. Impaired cytotoxic T lymphocyte activity in systemic lupus erythematosus following in vitro polyclonal T cell stimulation: a contributory role for non-T cells. Lupus 1999;8:293-299.
    81. Tan P, Pang G, Wilson JD. Immunoglobulin production in vitro by peripheral blood lymphocytes in systemic lupus erythematosus: helper T cell defect and B cell hyperreactivity. Clin Exp Immunol 1981;44:548-554.
    82. Delfraissy JF, Second P, House S, et al. Depressed primary in vitro antibody response in untreated systemic lupus erythematosus. J Clin Invest 1980;11:141-142.
    83. Koshy M, Berger D, Crow MK. Increased expression of CD40 iigand on systemic lupus erythematosus lymphocytes. J Clin Invest 1996;98:826-837.
    84. Desai-Mehta A, Lu L, Ramsey-Goldman R, et al. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest
    
    1996;97:2063-2073.
    85. Goldman M, Druet P, Gleichmann E. T_H2 cells in systemic autoimmunity: insights from allogeneic diseases and chemically-induced autoimmunity. Immunol Today 1991;12:223-7.
    86. Funauchi M, lkoma S, Enomoto H, et al. Decreased Th1-like and increased Th2-like cells in systemic lupus erythematosus. Scand J Rheumatol 1998;27:219-24.
    87. Masato Yamada, Hideo Yagita, Hideko Inoue, et al. Selective accumulation of CDR4+ T lymphocytes into renal tissue of patients with lupus nephritis. Arthritis Rheum2002;46(3):735-740.
    88. Takahashi S, Fossati L, Iwamoto M, et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 1996;97:1597-604.
    89. Haas C, Ryffel B, Hit ML. IFN-γis essential for the development of autoimmune glomerulonephritis in MRL/lpr mice. J Immunol 1997;158:5484-91.
    90. Peng SL, Moslehi J, Craft J. Roles of interferon-γ, and interleukin-4 in routine lupus. J Clin Invest 1997;99:1936-46.
    91. Balomenos D, Rumold R, Theofilopoulos AN. Interferon-γis required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest 1998;101:364-71.
    92. Schwarting A, Tesch G, Kinoshita K, et al. IL-12 drives IFN-γ-dependent autoimmune kidney disease in MRL-FasIpr mice. J Immunol 1999; 163:6884-91.
    93. J.E Viallard, J.L. Pellegrin, V. Ranchin, et al. Th1(IL-2, interferon-gamma(IFN-γ)) and Th2(IL10, IL-4) cytokine production by peripheral blood mononuclear celIs(PBMC) from patients with systemic lupus erythematosus(SLE). Clin Exp Immunol 1999;115:189-195.
    94. Akahoshi M, Nakashima H, Tanaka Y, et al. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum 1999;42:1644-8.
    95. Kohsuke Masutani, Mitsuteru Akahoshi, Kazuhiko Tsuruya, et al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum 2001;44(9):2097-2106.
    96. Uhm WS, Na K, Song GW, Jung SS, et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology 2003 Aug;42(8):935-8.
    
    
    97. Lu L, Kaliyaperumal A, Boumpas DT, et al. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest. 1999 Aug;104(3):345-55.
    98. Voll RE, Roth EA, Girkontaite I, et al. Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. Arthritis Rheum 1997;40(12):2162-2171.
    99. Abdou NI, Sagawa A, Passual E, et al. Suppressor T cell abnormality in idiopathic systemic lupus erythematosus. Clin Immunol Immunopathol 1976;6:192-199.
    100. Takeuchi T, Abe T, Koide J, et al. Cellular mechanism of DNA-specific antibody synthesis by lymphocytes from systemic lupus erythematosus patients. Arthritis Rheum 1984;27:766-773.
    101. Shevach EA. Regulatory T cells in autoimmunity. Annu Rev Immunol Today 2000; 18:423.
    102. Ohtsuka K, Gray JD, Stimmler MM, et al. Decreased production of TGF-β by lymphocytes from patients systemic lupus erythematosus. J Immunol 1998;60:2539-2545.
    103. Gray-McGuire C, Moser KL, Gaffney PM, et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2. Am J Hum Genet 2000;67(6): 1460-1469.
    104. Mehrian R, Quismorio FP Jr, Strassmann G, et al. Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to systemic lupus erythematosus. Arthritis Rheum 1998;41 (4):596-602.
    105. Taylor PR, Carugati A, Fadok VA, et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 2000;192(3):359-366.
    106. Jacob CO, Fronek Z, Lewis GD, et al. Heritable major histocompatibility complex classⅡ-associated differences in production of tumor necrosis factor: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci USA 1990;87:1233-1237.
    107. Lawley W, Doherty A, Denniss S, et al. Rapid lupus autoantigen relocalization and reactive oxygen species accumulation following ultraviolet irradiation of human keratinocytes. Rheumatology (Oxf) 2000;39(3):253-261.
    108. Nishioka WK, Welsh RM. Susceptibility to cytotoxic T lymphocyte-induced apoptosis is a
    
    function of the proliferative status of the target.J Exp Med 1994;179:769-774.
    109. Amoura Z, Piette JC, Chabre H, et al. Circulating plasma levels of nucleosomes in patients with systemic lupus erythematosus: correlation with serum antinucleosome antibody titers and absence of clear association with disease activity. Arthritis Rheum 1997;40:2217-2225.
    110. Friedman SM, Posnett DN, Tumang JR, et al. A potential role for microbial superantigens in the pathogenesis of systemic autoimmune disease. Arthritis Rheum 1991;34:468-480.
    111. Kurts C, Carbone FR, Krummel MF, et al. Signalling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature 1999;398(6725):341-344.
    112. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune disease by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11(2):141-151.
    113. Balomenos D, Martin-Caballero J, Garcia MI, et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med 2000;6(2):171-176.
    114. Horwitz DA, Gray JD, Ohtsuka K. Role of NK cells and TGF-beta in the regulation of T-cell-dependent antibody production in health and autoimmune disease. Microbes Infect 1999;1:1305-11.
    115. Yamagiwa S, Gray JD, Hashimoto S, et al. A Role for TGF-beta in the generation and expansion of CD4~+CD25~+ regulatory T cells from human peripheral blood.J Immunol 2001; 166(12):7282-7289.
    116. Pals ST, Gleichmann H, Gleichmann E. Allosuppressor and allohelper T cells in acute and chronic graft-vs-host disease. V.F1 mice with secondary chronic GVHD contain Fl-reactive allohelper but no allosuppressor T cells. J Exp Med 1984;159:508-523.
    117. Huck S, Deveaud E, Namane A, et al. Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis.FASEB J 1999;13:1415-1422.
    118. Okudaira K, Searles RP, Goodwin JS, et al. Antibodies in the sere of patients with systemic lupus erythematosus that block the binding of monoclonal anfi-la to Ia-positive targets also inhibit the autologous mixed lymphocyte response. J Immunol 1982;129:582-586.
    
    
    119. Helimann DB, Petri M, Whiting-O'Keefe Q. Fatal infections in systemic lupus erythematosus: the role of opportunistic organisms. Medicine(Baltimore) 1987;66:341-348.
    120. Frank MM, Hamburger MI, Lawley T J, et al, Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N Engi J Med 1979;300:518-523.
    121. Robery FA, Jones KD, Steinberg AD. C-reactive protein mediates the solubilization of nuclear DNA by complement in vitro. J Exp Med 1985;161:1344-1356.
    122. Picketing MC, Batto M, Taylor PR, et al. Syst(NZB×NZW)emic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000;76:227-324.
    123. Du Clos TW, Zlock LT, Hicks PS, et al. Decreased autoantibody levels and enhanced survival of (NZB×NZW)F1 mice treated with C-reactive protein. Clin Immunol Immunopathol1994;70:22-27.
    124. Mohan C, Shi Y, Laman JD, et al.Interaction between CD40 and its ligand gp39 in the development of mutine lupus nephritis. J Immunol 1995;154:1470-1480.
    125. Liu Z, Tugulea S, Cortesini R, et al. Inhibition of CD40 signaling pathway in antigen presenting cells by T suppressor cells. Hum Immunol 1999;60:568-574.
    126. Jacob CO, McDevitt HO. Tumour necrosis factor-alpha in murine autoimmune"lupus"nephritis. Nature 1988;331(6154):356-358.
    127. Charles PJ, Smeenk RJ, De Jong J, et al. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials.Arthritis Rheum 2000;43(11):2383-2390.
    128. Dau PC, Callahan J, Parker R, et al. Immunologic effects of plasmapheresis synchronized with pulse cyclophosphamide in systemic lupus erythematosus(case report).J Rheumatoi 1991;18:270-276.
    129. Llorente L, Richaud-Patin Y, Garcia-Padilla C, et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 2000;43:1790-1800.
    130. Traynor AE, Schroeder J, Rosa RM, et al. Treatment of severe systemic lupus erythematosus
    
    with high-dose chemotherapy and haemopoietic stem-cell transplantation: a phase Ⅰstudy. Lancet 2000;356:701-707.
    131. Okubo M, Yamamoto K, Kato T, et al. Detection and epitope analysis of autoantigen-reactive T cells to the Ul-small nuclear ribonucleoprotein A protein in autoimmune disease patients. J Immunol. 1993 Jul 15;151(2):1108-15.
    132. Dumortier H, Monneaux F, Jahn-Schmid B, et al. B and T cell responses to the spliceosomal heterogeneous nuclear ribonucleoproteins A2 and B1 in normal and lupus mice. J Immunol. 2000 Aug 15;165(4):2297-305.
    133. Talken BL, Holyst MM, Lee DR, et al. T cell receptor beta-chain third complementarity-determining region gene usage is highly restricted among Sm-B autoantigen-specific human T cell clones derived from patients with connective tissue disease. Arthritis Rheum. 1999 Apr;42(4):703-9.
    134. Kuwana M, Medsger TA Jr, Wright TM. T cell proliferative response induced by DNA topoisomerase I in patients with systemic sclerosis and healthy donors. J Clin Invest. 1995 Jul;96(1):586-96.
    135. Johannes Donauer, Michael Wochner, Esther Witte, et al. Autoreactive human T cell lines recognizing ribosomal protein L7. Int Immunol 1999;11(2):125-132.
    136. Crow MK, DelGiudice-Asch G, Zehetbauer JB, et al. Autoantigen-specific T cell proliferation induced by the ribosomal P2 protein in patients with systemic lupus erythematosus. J Clin Invest 1994;94:345-352.
    137. Ohtstuka K, Gray JD, Stimmler MM, et al. Defects in lymphocyte production of transforming growth factor.β1 do not correlate with disease activity or severity. Lupus 1999;8:90-94.
    138. Shivakumar S, Tsokos GC, Datta SK. T cell receptor alpha/beta expressing double-negative (CD4-/CDS-)and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis.J Immunol. 1989 Jul1;143(1): 103-12.
    139. Mohan C, Adams S, Stanik V, Datta SK. Nuclvosome: a major immunogen for pathogenic
    
    autoantibody-inducing T cells of lupus. J Exp Meal. 1993 May 1; 177(5): 1367-81.
    140. Adams S, Leblanc P, Datta SK. Junctional region sequences of T-cell receptor beta-chain genes expressed by pathogenic anti-DNA autoantibody-inducing helper T cells from lupus mice: possible selection by cationic autoantigens. Proc Natl Acad Sci U S A. 1991 Dec15;88(24):11271-5.
    141. Mao C, Osman GE, Adams S, et al. T cell receptor alpha-chain repertoire of pathogenic autoantibody.inducing T cells in lupus mice. J Immunol 1994;152:1462-1470.
    142. Singh RR, Kumar V, Evling FM, et al.T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine systemic lupus erythematosus. J Exp Med 1995;181:2017-2027.
    143. Alexander EL, McNicholl J, Watson RM, et al. The immunogenetic relationship between anti-Ro(SS-A)/La(SS-B) antibody positive Sjogren's/lupus erythematosus overlap syndrome and the neonatal lupus syndrome. J Invest Dermatol 1989;93:751-756.
    144. Crispin JC, Martinez A, de Pablo P, et al. Participation of the CD69 antigen in the T-cell activation process of patients with systemic lupus erythematosus. Scand J Immunol. 1998 Aug;48(2):196-200.
    145.李富荣,叶志中,戴勇等 活动期SLE患者T、B淋巴细胞CD69表达的动态观察 上海免疫学杂志 2002:22(5):346-328。
    146.李富荣,叶志中,戴勇等 系统性红斑狼疮患者淋巴细胞CD69表达及细胞因子水平研究中国免疫学杂志 2002;18.510。
    147. Ishikawa S, Akakura S, Abe M, et al. A subset of CD4+ T cells expressing early activation antigen CD69 in murine lupus: possible abnormal regulatory role for cytokine imbalance. J Immunol. 1998 Aug 1;161(3):1267-73.
    148. Tsubata T, Wu J, Honjo T. B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature 1993;364:645-648.
    149. Lederman S, Yellin MJ, Cleary AM, et al. T-BAM/CD40-L on helper T lymphocytesaugments lymphokine-induced B cell from programmed cell death. J Immunol1994;152:2163-2171.
    
    
    150. Garrone P, Neidhardt E-M, Garcia E, Galibert Lm et al. Fas ligation induces apoptosis of CD40-activated human B lymphocytes.J Exp Med 1995;182:1265-1273.
    151. Schattner EJ, Elkon KB, Yoo D-H, et al. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J Exp Med 1995;182:1557-1565.
    152. Vakkalanka RK, Woo C, Kirou KA, et al. Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus. Arthritis Rheum 1999;42:871-881.
    153. Early GS, Zhao W, Bums CM. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black x New Zealand white mice. Response correlates with the absence of an anti-antibody response. J Immunol. 1996 Oct1;157(7):3159-64.
    154. Dalkh DI, Finck BK, Linsley PS, et al. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol. 1997 Oct 1;159(7):3104-8.
    155. Kalled SL, Cutler AH, Datta SK, et al. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function.J Immunol.1998 Mar 1; 160(5):2158-65.
    156. Schiffer L, Sinha J, Wang X, et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol. 2003 Jul1;171(1):489-97.
    157. Singer PA, Theofilopouios AN. T-cell receptor V beta repertoire expression in murine models of SLE. Immunol Rev. 1990 Dec;118:103-27.
    158. Hirose S, Tokushige K, Kinoshita K, et al. Contribution of the gene linked to the T cell receptor beta chain gene complex of NZW mice to the autoimmunity of (NZB×NZW)F1 mice. Eur J Immunol. 1991 Mar;21(3):823-6.
    159. Sutmuller, Baelde, Ouellette, et al. T-cell receptor Vβ gene expression in experimental lupus nephritis. Immunology 1998;95(1):18
    
    
    160. Hedeyuki Murata, Ryutaro Matsumura, Akio Koyama, et al. T cell receptor repertoire of T cells in the kidneys of patients with lupus nephritis. Arthritis Rheum 2002;46(8):2141-2147.
    161. Massengill SF, Goodenow MM, Sleasman JW. SLE nephritis is associated with an oligoclonal expansion of intrarenal T cells. Am J Kidney Dis 1998;31:418-26.
    162. Yamamoto K, Masuko K, Takahashi S, et al. Accumulation of distinct T cell clonotypes in human solid tumors. J Immunol. 1995 Feb 15;154(4):1804-9.
    163. Yamamoto K, Masuko-Hongo K, Tanaka A, et al. Establishment and application of a novel T cell clonality analysis using single-strand conformation polymorphism of T cell receptor messenger signals. Hum Immunol. 1996 Jun-Jul;48(1-2):23-31.
    164. Yamamoto K, Sakoda H, Nakajima T, et al. Accumulation of multiple T cell clonotypes in the synovial lesions of patients with rheumatoid arthritis revealed by a novel clonality analysis. Int Immunol. 1992 Nov;4(11): 1219-23.
    165. Masuko K, Kato S, Hagihara M, et al. Stable clonal expansion of T cells induced by bone marrow transplantation. Blood. 1996 Jan 15;87(2):789-99.
    166. lkeda Y, Masuko K, Nakai Y, et al. High frequencies of identical T cell clonotypes in synovial tissues of rheumatoid arthritis patients suggest the occurrence of common antigen-driven immune responses. Arthritis Rheum. 1996 Mar;39(3):446-53.
    167. Mato T, Masuko K, Misaki Y, et al. Correlation of clonal T cell expansion with disease activity in systemic lupus erythematosus, Int Immunol. 1997 Apt;9(4):547-54.
    168. Cebrian M, Yague E, Rincon M, et al. Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J Exp Med, 1988 Nov1; 168(5): 1621-37.
    169. Koshy M, Berger D, Crow MK. Increased expression of CD40 ligand on systemic lupus erythematusus lymphocytes. J Clin Invest. 1996 Aug 1;98(3):826-37.
    170. Desai-Mehta A, Lu L, Ramsey-Goldman R, et al. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest. 1996 May 1;97(9):2063-73.
    171. Devi BS, Van Noordin S, Krausz T, et al. Peripheral blood lymphocytes in SLE--
    
    hyperexpression of CD154 on T and B lymphocytes and increased number of double negative T cells. J Autoimmun. 1998 Oct;11(5):471-5.
    172. Mohan C, Shi Y, Laman JD, et al. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol. 1995 Feb 1;154(3): 1470-80.
    173. Susan L. Kalled, Anne H. Cutler, Linda C. Burkly. Apoptosis and altered dendritic cell homeostasis in lupus nephritis are limited by anti-CD154 treatment. J Immunol 2001;167:1740-1747.
    174. Vogelweid CM, Johnson GC, Beach-Williford CL, et al. Inflammatory central nervous system disease in lupus-prone MRL/lpr mice: comparative histologic and immunohistochemical findings. J Neuroimmunol. 1991 Dec;35(1-3):89-99.
    175. Hess DC, Taormina M, Thompson J, et al. Cognitive and neurologic deficits in the MRL/Ipr mouse: a clinicopathologic study. J Rheumatol. 1993 Apr;20(4):610-7.
    176. O'Sullivan FX, Vogelweid CM, Besch-Williford CL, et al. Differential effects of CD4+ T cell depletion on inflammatory central nervous system disease, arthritis and sialadenitis in MRL/Ipr mice. J Autoimmun. 1995 Apt; 8(2): 163-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700