用户名: 密码: 验证码:
Nogo-66受体作为阿尔茨海默病药物治疗新靶标的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究Nogo-66受体(Nogo-66 receptor, NgR)能否作为药物治疗阿尔茨海默病(Alzheimer's disease, AD)的潜在靶标。此靶标是否具备促进皮质神经元突起再生和抑制β淀粉样蛋白(amyloid P-protein, Aβ)生成的双重作用。同时寻找具备促进皮质神经元突起再生和抑制Aβ生成双重作用的AD治疗药物。方法
     (1)体外无血清培养新生大鼠皮质神经元,采用神经元特异性烯醇化酶(neuron-specificenolase, NSE)和微管相关蛋白2(microtubule-associated protein2,MAP2)免疫化学染色法进行神经元鉴定;(2)采用不同细胞密度和不同浓度的B27培养大鼠皮质神经元,观察其对皮质神经元生长的影响;(3)体外培养大鼠皮质神经元,加入不同浓度的Nogo-66活性片段——Nogo-P4,用MTT法检测不同浓度的Nogo-P4 (3.5μM、7μM、14μM)对皮质神经元的毒性作用,通过细胞形态学观察,突起生长状况的定量分析,观察Nogo-P4对皮质神经元突起生长的影响,应用ELISA (enzyme-linked immunoadsordent assay)法测定细胞分泌的Aβ42含量,观察Nogo-P4对皮质神经元Aβ42分泌的影响;(4)体外培养大鼠皮质神经元,分别加入Nogo-66受体阻断剂NEP1-40、受体下游信号分子ROCK (rho-associated coiled coil-containing protein kinase)的抑制剂Y-27632和PKC (protein kinase C, PKC)抑制剂GO6976,采用上述指标,研究Nogo-P4影响皮质神经元突起生长和Aβ42分泌的机制;(5)采用Nogo-P4制作细胞模型并进行药物筛选,从中药单体中寻找有效化合物。
     结果
     (1)经两种不同的神经元特异性标志物(NSE和MAP-2)鉴定,确定所培养的细胞绝大多数为神经元;(2)合适的细胞密度(1200个/mm2)和合适的B27浓度(2%B27)有利于皮质神经元的生长,神经突起生长较长;(3)不同浓度的Nogo-P4对皮质神经元的存活率没有影响,不具有细胞毒作用。不同浓度的Nogo-P4能减少有突起细胞数量,明显降低神经元的平均突起长度,抑制皮质神经元突起的再生,同时还能增加培养基中的Aβ42含量,促进皮质神经元分泌Aβ42,并具有量效关系;(4)Nogo-66受体拮抗剂NEP1-40、PKC抑制剂GO6976和ROCK抑制剂Y-27632对正常皮质神经元的突起生长和Aβ42的分泌无影响,对Nogo-P4引起的皮质神经元突起再生抑制均有拮抗作用,能增加有突起细胞数量和神经元平均突起长度,对Nogo-P4引起的Aβ42生成有不同的影响。NEP1-40能促进皮质神经元突起再生,但不能减少Aβ42的生成。GO6976能促进皮质神经元突起再生,同时增加Aβ42的生成。Y-27632不仅能促进皮质神经元突起再生,同时也能减少Aβ42的生成;(5)经过药物筛选,找到一个有效单体SQ,能拮抗Nogo-P4增加有突起细胞数量和神经元平均突起长度,促进神经元突起的再生。但SQ不能减少皮质神经元分泌Aβ42。结论
     (1) Nogo-P4能抑制大鼠皮质神经元的突起再生,同时促进大鼠皮质神经元分泌Aβ42; (2)Nogo-P4抑制皮质神经元突起再生是通过Nogo-66受体及下游信号分子ROCK和PKC的激活所引起。其促进Aβ42的分泌与其受体下游信号分子ROCK的激活有关;(3) Nogo-66受体可以作为促进皮质神经元突起再生的靶标,不能作为抑制Aβ42生成的靶标,可以作为AD治疗的靶标,但不是最佳靶标。PKC可以作为促进皮质神经元突起再生的靶标,同时又是促进Aβ42生成的靶标,综合考虑,PKC不宜作为AD治疗的靶标。ROCK可以作为促进皮质神经元突起再生和抑制Aβ42生成双重作用的靶标,是药物治疗AD的一个理想靶标,针对此靶标的AD治疗药物将更加有效;(4)中药单体SQ能促进皮质神经元突起再生,但不能抑制Aβ42的生成,其可能的作用靶标是Nogo-66受体。
Objectives
     To find out whether Nogo-66 receptor has a dual role in the inhibition of amyloid P protein (A) generation and promotion of regeneration neurite, whether it can be a potential target for drug therapy of Alzheimer's disease (AD). To search AD therapy drugs which have a dual role in inhibition of Aβproduction and promotion of neurite regeneration.
     Methods
     (1)The neurons from cerebral cortex of newborn rat were cultured in B27-supplemented Neurobasal, a serum-free medium combination, and identified by using NSE and MAP2 immunocytochemical staining.(2)The rat cortical neurons were cultured in different cell densities and different concentrations of B27,to observe its effect on neuron growth.(3)The rat cortical neurons were cultured with various concenstration (3.5μM,7μM,14μM) of Nogo-P4 (Nogo-66 receptor agonist).The cell viability of neuron was determined by the MTT method.To observe the effect of Nogo-P4 on the neurite growth, the convert phase microscope was used to analyse the number of cell with neurites, as well as the average length of neurite. To observe the effect of Nogo-P4 on AP42 secretion of cortical neurons, enzyme-linked immunoadsordent assay (ELISA) was carried out to analyze AP42 production. (4) The mechanism of Nogo-P4 on cortical neurite regeneration and Aβ42 secretion were studied by adding Nogo-66 receptor blocker NEP1-40 and receptor downstream signaling molecule ROCK inhibitor Y-27632 and PKC inhibitor GO6976.(5)We search the effective compounds from traditional Chinese medicine by using Nogo-P4 treated cell model for drug screening.
     Results
     (1)Most of the neurons were stained to be positive with two different neuron-specific markers NSE and MAP-2 immunocytochemical, suggesting the majority of cultured cells were neurons.(2)Appropriate cell density (1,200 cells/mm2) and appropriate concentration of B27 (2%B27) were beneficial on the growth of neurons.(3) The MTT assay showed that Nogo-P4 at different concentrations didn't have any toxic effect on cortical neuron survival. Different concentraion of Nogo-P4 could reduce the number of cell with neurite and the average length of neurite.Moreover,Nogo-P4 significantly increased the production of Aβ42.(4)Nogo-66 receptor antagonists could promote neuronal regeneration, but could not reduce the generation of AP42.Use of PKC inhibitors could promote neuronal regeneration, and increased A042 generation.Use of ROCK inhibitors could not only promote neuron regeneration, but also reduce the generation of AP42.(5)Through drug screening, an effective compound SQ was found. SQ could antagonize Nogo-P4 to increase the number of cell with neurites and the average length of neurite. SQ did not reduce neuronal secretion of Aβ42.
     Conclusion
     (1) Nogo-P4 inhibits neurite regeneration of rat cortical neurons, while Nogo-P4 promotes Aβ42 secretion of rat cortical neurons.(2)Nogo-P4 inhibits neurite regeneration by directly activating Nogo-66 receptor and downstream signaling molecules ROCK and PKC.The Nogo-P4 promotes the Aβ42 secretion by directly activating downstream signaling molecules ROCK.(3)Nogo-66 receptor can be used as target promoting neurite regeneration, but not as a target for inhibition of Aβ42 generation, it can be used as target for AD drug therapy, but is not the best target. PKC can be used as target promoting neurite regeneration, but also to promote Aβ42 generation.So PKC is not appropriate to use as a target for AD drug therapy. ROCK is a target which can truly inhibit AP42 production and promote neurite regeneration, is an ideal drug target for AD therapy. Drugs targeting ROCK will be more effective. (4)SQ, the compound from traditional Chinese medicine, can promote neurite regeneration, but can not reduce AP42 production.The pharmacological target of SQ possibly is Nogo-66 receptor.
引文
[1]Petersen, RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, and Kokmen E. Mild cognitive impairment:clinical characterization and outcome[J]. Arch Neurol,1999,56(3):303-308.
    [2]Perl, DP. Neuropathology of Alzheimer's Disease[J]. Mount Sinai Journal of Medicine,2010,77(1):32-42.
    [3]Dickson, DW. The pathogenesis of senile plaques[J]. J Neuropathol Exp Neurol,1997,56(4):321-339.
    [4]Glenner, GG and Wong CW. Alzheimer's disease:initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J]. Biochem Biophys Res Commun,1984,120(3):885-890.
    [5]Selkoe, DJ, Abraham CR, Podlisny MB, and Duffy LK. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer's disease[J]. J Neurochem,1986,46(6):1820-1834.
    [6]Yamaguchi, H, Hirai S, Morimatsu M, Shoji M, and Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain[J]. Acta Neuropathol,1989,77(3):314-319.
    [7]Morris, JC, Storandt M, McKeel DW, Jr., Rubin EH, Price JL, Grant EA, and Berg L. Cerebral amyloid deposition and diffuse plaques in "normal" aging: Evidence for presymptomatic and very mild Alzheimer's disease[J]. Neurology, 1996,46(3):707-719.
    [8]Braak, H and Braak E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol,1991,82(4):239-259.
    [9]Thomas, T, Thomas G, McLendon C, Sutton T, and Mullan M. beta-Amyloid-mediated vasoactivity and vascular endothelial damage[J]. Nature,1996,380(6570):168-171.
    [10]Yen, SH, Dickson DW, Crowe A, Butler M, and Shelanski ML. Alzheimer's neurofibrillary tangles contain unique epitopes and epitopes in common with the heat-stable microtubule associated proteins tau and MAP2[J]. Am J Pathol, 1987,126(1):81-91.
    [11]Grundke-Iqbal, I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, and Binder LI. Abnormal phosphorylation of the micro tubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology[J]. Proc Natl Acad Sci U S A,1986, 83(13):4913-4917.
    [12]Selkoe, DJ. Alzheimer's disease:Genes, proteins, and therapy[J]. Physiological Reviews,2001,81(2):741-766.
    [13]West, MJ, Coleman PD, Flood DG, and Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease[J]. Lancet,1994,344(8925):769-772.
    [14]Kordower, JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, and Mufson EJ. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment[J]. Ann Neurol,2001,49(2):202-213.
    [15]Davies, CA, Mann DM, Sumpter PQ, and Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease[J]. J Neurol Sci,1987, 78(2):151-164.
    [16]Masliah, E and Terry R. The role of synaptic proteins in the pathogenesis of disorders of the central nervous system[J]. Brain Pathol,1993,3(1):77-85.
    [17]Grutzendler, J, Helmin K, Tsai J, and Gan WB. Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer's disease[J]. Ann N Y Acad Sci,2007,1097:30-39.
    [18]Selkoe, DJ. Alzheimer's disease is a synaptic failure[J]. Science,2002, 298(5594):789-791.
    [19]Eikelenboom, P, Veerhuis R, Familian A, Hoozemans JJ, van Gool WA, and Rozemuller AJ. Neuroinflammation in plaque and vascular beta-amyloid disorders:clinical and therapeutic implications[J]. Neurodegener Dis,2008, 5(3-4):190-193.
    [20]Veerhuis, R, Van Breemen MJ, Hoozemans JM, Morbin M, Ouladhadj J, Tagliavini F, and Eikelenboom P. Amyloid beta plaque-associated proteins C1q
    and SAP enhance the Abetal-42 peptide-induced cytokine secretion by adult human microglia in vitro[J]. Acta Neuropathol,2003,105(2):135-144.
    [21]Delacourte, A. General and dramatic glial reaction in Alzheimer brains[J]. Neurology,1990,40(1):33-37.
    [22]Duyckaerts, C, Delatour B, and Potier MC. Classification and basic pathology of Alzheimer disease[J]. Acta Neuropathol,2009,118(1):5-36.
    [23]Masliah, E, Mallory M, Hansen L, Alford M, Albright T, DeTeresa R, Terry R, Baudier J, and Saitoh T. Patterns of aberrant sprouting in Alzheimer's disease[J]. Neuron,1991,6(5):729-739.
    [24]Jin, K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, and Greenberg DA. Increased hippocampal neurogenesis in Alzheimer's disease[J]. Proc Natl Acad Sci U S A,2004,101(1):343-347.
    [25]Goate, A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, and et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease[J]. Nature,1991,349(6311):704-706.
    [26]Clark, RF and Goate AM. Molecular genetics of Alzheimer's disease[J]. Arch Neurol,1993,50(11):1164-1172.
    [27]罗焕敏,宿宝贵,张冀民.突变型早老素与Alzheimer病[J].中华老年医学杂志,2000,19(05):391-393.
    [28]Kukull, WA and Bowen JD. Dementia epidemiology[J]. Med Clin North Am, 2002,86(3):573-590.
    [29]Whitehouse, PJ. Cholinergic therapy in dementia[J]. Acta Neurol Scand Suppl, 1993,149:42-45.
    [30]Sola, C, Mengod G, Probst A, and Palacios JM. Differential regional and cellular distribution of beta-amyloid precursor protein messenger RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse[J]. Neuroscience,1993,53(1):267-295.
    [31]Loffler, J and Huber G. Beta-amyloid precursor protein isoforms in various rat brain regions and during brain development[J]. J Neurochem,1992,59(4):
    1316-1324.
    [32]Koo, EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, and Price DL. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport[J]. Proc Natl Acad Sci U S A,1990,87(4):1561-1565.
    [33]Reinhard, C, Hebert SS, and De Strooper B. The amyloid-beta precursor protein:integrating structure with biological function[J]. Embo J,2005,24(23): 3996-4006.
    [34]Gralle, M, Botelho MM, de Oliveira CL, Torriani I, and Ferreira ST. Solution studies and structural model of the extracellular domain of the human amyloid precursor protein[J]. Biophys J,2002,83(6):3513-3524.
    [35]Rossjohn, J, Cappai R, Feil SC, Henry A, McKinstry WJ, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, and Parker MW. Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein[J]. Nat Struct Biol,1999,6(4):327-331.
    [36]Small, DH, Nurcombe V, Reed G, Clarris H, Moir R, Beyreuther K, and Masters CL. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth[J]. J Neurosci,1994,14(4):2117-2127.
    [37]Barnham, KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS, Beyreuther K, Masters CL, Parker MW, and Cappai R. Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis[J]. J Biol Chem,2003,278(19):17401-17407.
    [38]Soba, P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Lower A, Langer A, Merdes G, Paro R, Masters CL, Muller U, Kins S, and Beyreuther K. Homo-and heterodimerization of APP family members promotes intercellular adhesion[J]. Embo J,2005,24(20):3624-3634.
    [39]Morgan, C, Colombres M, Nunez MT, and Inestrosa NC. Structure and function of amyloid in Alzheimer's disease[J]. Prog Neurobiol,2004,74(6):
    323-349.
    [40]Russo, C, Venezia V, Repetto E, Nizzari M, Violani E, Carlo P, and Schettini G. The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications[J]. Brain Res Brain Res Rev,2005, 48(2):257-264.
    [41]von Rotz, RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, and Konietzko U. The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor[J]. J Cell Sci, 2004,117(Pt 19):4435-4448.
    [42]Magara, F, Muller U, Li ZW, Lipp HP, Weissmann C, Stagljar M, and Wolfer DP. Genetic background changes the pattern of forebrain commissure defects in transgenic mice underexpressing the beta-amyloid-precursor protein[J]. Proc Natl Acad Sci U S A,1999,96(8):4656-4661.
    [43]Dawson, GR, Seabrook GR, Zheng H, Smith DW, Graham S, O'Dowd G, Bowery BJ, Boyce S, Trumbauer ME, Chen HY, Van der Ploeg LH, and Sirinathsinghji DJ. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein[J]. Neuroscience,1999,90(1):1-13.
    [44]Seabrook, GR, Smith DW, Bowery BJ, Easter A, Reynolds T, Fitzjohn SM, Morton RA, Zheng H, Dawson GR, Sirinathsinghji DJ, Davies CH, Collingridge GL, and Hill RG. Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein[J]. Neuropharmacology,1999,38(3):349-359.
    [45]Harper, SJ, Bilsland JG, Shearman MS, Zheng H, Van der Ploeg L, and Sirinathsinghji DJ. Mouse cortical neurones lacking APP show normal neurite outgrowth and survival responses in vitro[J]. Neuroreport,1998,9(13): 3053-3058.
    [46]White, AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, and Cappai R. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice[J]. Brain Res,
    1999,842(2):439-444.
    [47]LeBlanc, AC, Kovacs DM, Chen HY, Villare F, Tykocinski M, Autilio-Gambetti L, and Gambetti P. Role of amyloid precursor protein (APP): study with antisense transfection of human neuroblastoma cells[J]. J Neurosci Res,1992,31(4):635-645.
    [48]Allinquant, B, Hantraye P, Mailleux P, Moya K, Bouillot C, and Prochiantz A. Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro[J]. J Cell Biol,1995,128(5):919-927.
    [49]Coulson, EJ, Barrett GL, Storey E, Bartlett PF, Beyreuther K, and Masters CL. Down-regulation of the amyloid protein precursor of Alzheimer's disease by antisense oligonucleotides reduces neuronal adhesion to specific substrata[J]. Brain Res,1997,770(1-2):72-80.
    [50]Majocha, RE, Agrawal S, Tang JY, Humke EW, and Marotta CA. Modulation of the PC 12 cell response to nerve growth factor by antisense oligonucleotide to amyloid precursor protein[J]. Cell Mol Neurobiol,1994,14(5):425-437.
    [51]Caille, I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, and Prochiantz A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone[J]. Development,2004,131(9): 2173-2181.
    [52]Doyle, E, Bruce MT, Breen KC, Smith DC, Anderton B, and Regan CM. Intraventricular infusions of antibodies to amyloid-beta-protein precursor impair the acquisition of a passive avoidance response in the rat[J]. Neurosci Lett,1990,115(1):97-102.
    [53]Herard, AS, Besret L, Dubois A, Dauguet J, Delzescaux T, Hantraye P, Bonvento G,and Moya KL. siRNA targeted against amyloid precursor protein impairs synaptic activity in vivo[J]. Neurobiol Aging,2006,27(12): 1740-1750.
    [54]肖飞,罗焕敏.靶向β和γ分泌酶治疗阿尔茨海默病的研究进展[J].国外医学.药学分册,2002,29(05):272-278.
    [55]Whitson, JS, Selkoe DJ, and Cotman CW. Amyloid beta protein enhances the
    survival of hippocampal neurons in vitro[J]. Science,1989,243(4897): 1488-1490.
    [56]Whitson, JS, Glabe CG, Shintani E, Abcar A, and Cotman CW. Beta-amyloid protein promotes neuritic branching in hippocampal cultures[J]. Neurosci Lett, 1990,110(3):319-324.
    [57]Etcheberrigaray, R, Ito E, Kim CS, and Alkon DL. Soluble beta-amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels[J]. Science,1994,264(5156):276-279.
    [58]Kamenetz, F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, and Malinow R. APP processing and synaptic function[J]. Neuron,2003, 37(6):925-937.
    [59]Pike, CJ, Walencewicz AJ, Glabe CG, and Cotman CW. Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures[J]. Eur J Pharmacol,1991,207(4):367-368.
    [60]Pike, CJ, Walencewicz AJ, Glabe CG, and Cotman CW. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity[J]. Brain Res,1991,563(1-2):311-314.
    [61]Olson, RE, Copeland RA, and Seiffert D. Progress towards testing the amyloid hypothesis:inhibitors of APP processing[J]. Curr Opin Drug Discov Devel, 2001,4(4):390-401.
    [62]Hardy, JA and Higgins GA. Alzheimer's disease:the amyloid cascade hypothesis[J]. Science,1992,256(5054):184-185.
    [63]Masliah, E, Sisk A, Mallory M, Mucke L, Schenk D, and Games D. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease[J]. J Neurosci, 1996,16(18):5795-5811.
    [64]Terry, RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, and Katzman R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment [J]. Ann Neurol, 1991,30(4):572-580.
    [65]Mucke, L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, and McConlogue L. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice:synaptotoxicity without plaque formation[J]. J Neurosci,2000, 20(11):4050-4058.
    [66]Barten, DM, Guss VL, Corsa JA, Loo A, Hansel SB, Zheng M, Munoz B, Srinivasan K, Wang B, Robertson BJ, Polson CT, Wang J, Roberts SB, Hendrick JP, Anderson JJ, Loy JK, Denton R, Verdoorn TA, Smith DW, and Felsenstein KM. Dynamics of {beta}-amyloid reductions in brain, cerebrospinal fluid, and plasma of {beta}-amyloid precursor protein transgenic mice treated with a {gamma}-secretase inhibitor[J]. J Pharmacol Exp Ther, 2005,312(2):635-643.
    [67]Lambert, MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, and Klein WL. Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins[J]. Proc Natl Acad Sci U S A,1998,95(11):6448-6453.
    [68]Walsh, DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, and Teplow DB. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates[J]. J Biol Chem, 1999,274(36):25945-25952.
    [69]Gong, Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, and Klein WL. Alzheimer's disease-affected brain:presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss[J]. Proc Natl Acad Sci U S A,2003,100(18):10417-10422.
    [70]Hardy, J and Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science,2002,297(5580): 353-356.
    [71]Lacor, PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, and Klein WL. Synaptic
    targeting by Alzheimer's-related amyloid beta oligomers[J]. J Neurosci,2004, 24(45):10191-10200.
    [72]Walsh, DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, and Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo[J]. Nature,2002, 416(6880):535-539.
    [73]Cleary, JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, and Ashe KH. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function[J]. Nat Neurosci,2005,8(1):79-84.
    [74]Townsend, M, Shankar GM, Mehta T, Walsh DM, and Selkoe DJ. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers[J]. J Physiol,2006,572(Pt 2):477-492.
    [75]Shankar, GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, and Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J]. Nat Med, 2008,14(8):837-842.
    [76]Selkoe, DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior[J]. Behav Brain Res,2008,192(1):106-113.
    [77]Nimmrich, V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, and Bruehl C. Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents[J]. J Neurosci,2008,28(4):788-797.
    [78]Resende, R, Ferreiro E, Pereira C, and Resende de Oliveira C. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death[J]. Neuroscience,2008,155(3):725-737.
    [79]Johnson, GV and Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction[J]. J Cell Sci,2004,117(Pt 24):5721-5729.
    [80]Rosenberg, KJ, Ross JL, Feinstein HE, Feinstein SC, and Israelachvili J. Complementary dimerization of microtubule-associated tau protein: Implications for microtubule bundling and tau-mediated pathogenesis[J]. Proc Natl Acad Sci U S A,2008,105(21):7445-7450.
    [81]Mohandas, E, Rajmohan V, and Raghunath B. Neurobiology of Alzheimer's disease[J]. Indian J Psychiatry,2009,51(1):55-61.
    [82]Goedert, M and Jakes R. Mutations causing neurodegenerative tauopathies[J]. Biochim Biophys Acta,2005,1739(2-3):240-250.
    [83]Babu, JR, Geetha T, and Wooten MW. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation[J]. J Neurochem,2005, 94(1):192-203.
    [84]Brown, MR, Bondada V, Keller JN, Thorpe J, and Geddes JW. Proteasome or calpain inhibition does not alter cellular tau levels in neuroblastoma cells or primary neurons[J]. J Alzheimers Dis,2005,7(1):15-24.
    [85]Zipp, F and Aktas O. The brain as a target of inflammation:common pathways link inflammatory and neurodegenerative diseases[J]. Trends Neurosci,2006, 29(9):518-527.
    [86]Eikelenboom, P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, and Hoozemans JJ. The significance of neuroinflammation in understanding Alzheimer's disease[J]. J Neural Transm,2006,113(11):1685-1695.
    [87]Salminen, A, Ojala J, Kauppinen A, Kaarniranta K, and Suuronen T. Inflammation in Alzheimer's disease:Amyloid-[beta] oligomers trigger innate immunity defence via pattern recognition receptors[J]. Progress in Neurobiology,2009,87(3):181-194.
    [88]Gorlovoy, P, Larionov S, Pham TT, and Neumann H. Accumulation of tau induced in neurites by microglial proinflammatory mediators[J]. Faseb J,2009, 23(8):2502-2513.
    [89]Perry, G and Smith MA. Is oxidative damage central to the pathogenesis of Alzheimer disease?[J]. Acta Neurol Belg,1998,98(2):175-179.
    [90]Yan, SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, and Schmidt AM.
    RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease[J]. Nature,1996,382(6593):685-691.
    [91]Yamamoto, A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, and Kitamoto T. Iron (Ⅲ) induces aggregation of hyperphosphorylated tau and its reduction to iron (Ⅱ) reverses the aggregation:implications in the formation of neurofibrillary tangles of Alzheimer's disease[J]. J Neurochem,2002,82(5): 1137-1147.
    [92]Exley, C. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of Abeta_{42} in senile plaque cores in Alzheimer's disease[J]. J Alzheimers Dis,2006,10(2-3):173-177.
    [93]Kamal, A, Almenar-Queralt A, LeBlanc JF, Roberts EA, and Goldstein LS. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase. and presenilin-1 requires APP[J]. Nature,2001,414(6864): 643-648.
    [94]Stokin, GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, and Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's'disease[J]. Science,2005,307(5713):1282-1288.
    [95]肖飞,罗焕敏.淀粉样前体蛋白结构和功能的研究进展[J].中国老年学杂志,2009,29(23):3144-3147.
    [96]O'Brien, JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, Bowler JV, Ballard C, DeCarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, and DeKosky ST. Vascular cognitive impairment [J]. Lancet Neurol,2003,2(2): 89-98.
    [97]Deane, R and Zlokovic BV. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease[J]. Curr Alzheimer Res,2007,4(2):191-197.
    [98]#12
    [99]龚国清,徐黻本.小鼠衰老模型的研究[J].中国药科大学学报,1991,22(2):101-103.
    [100]Torres, EM, Perry TA, Blockland A, Wilkinson LS, Wiley RG, Lappi DA, and Dunnet SB. Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system[J]. Neuroscience,1994,63(1):95-122.
    [101]Dunnett, SB, Everitt BJ, and Robbins TW. The basal forebrain-cortical cholinergic system:interpreting the functional consequences of excitotoxic lesions[J]. Trends Neurosci,1991,14(11):494-501.
    [102]Price, DL, Tanzi RE, Borchelt DR, and Sisodia SS. Alzheimer's disease: genetic studies and transgenic models[J]. Annu Rev Genet,1998,32:461-493.
    [103]Borchelt, DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, and Sisodia SS. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins[J]. Neuron,1997,19(4):939-945.
    [104]Holcomb, L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O'Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, and Duff K. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes[J]. Nat Med,1998,4(1):97-100.
    [105]Kelly, PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, Abramowski D, Wiederhold KH, Sturchler-Pierrat C, Jucker M, Bergmann R, Staufenbiel M, and Sommer B. Progressive age-related impairment of cognitive behavior in APP23 transgenic mice[J]. Neurobiol Aging,2003,24(2): 365-378.
    [106]Irizarry, MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, and Hyman BT. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse[J]. J Neurosci,1997,17(18):7053-7059.
    [107]Gotz, J, Deters N, Doldissen A, Bokhari L, Ke Y, Wiesner A, Schonrock N, and Ittner LM. A decade of tau transgenic animal models and beyond[J]. Brain Pathol,2007,17(1):91-103.
    [108]钱亦华,杨杰,任惠民,胡海涛,张樟进.痴呆模型鼠背海马结构内淀粉样蛋白沉积的免疫细胞化学研究[J].西安医科大学学报,1997,18(3):304-307.
    [109]罗焕敏,肖飞.D-半乳糖和三氯化铝诱导小鼠产生类阿尔茨海默病变[J].中国药理学与毒理学杂志,2004,18(1):22-26.
    [110]Arendt, T, Holzer M, Fruth R, Bruckner MK, and Gartner U. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A[J]. Neuroscience,1995,69(3):691-698.
    [111]de la Torre, JC. Critically attained threshold of cerebral hypoperfusion:can it cause Alzheimer's disease?[J]. Ann N Y Acad Sci,2000,903:424-436.
    [112]Ferri, CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C,Menezes PR, Rimmer E, and Scazufca M. Global prevalence of dementia:a Delphi consensus study[J]. Lancet,2005,366(9503):2112-2117.
    [113]Association, As.2009 Alzheimer's disease facts and figures[J]. Alzheimers ement,2009,5(3):234-270.
    [114]Shah, RS, Lee H-G, Xiongwei Z, Perry G, Smith MA, and Castellani RJ. Current approaches in the treatment of Alzheimer's disease[J]. Biomedicine & Pharmacotherapy,2008,62(4):199-207.
    [115]Lin, X, Koelsch G, Wu S, Downs D, Dashti A, and Tang J. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein[J]. Proc Natl Acad Sci U S A,2000,97(4):1456-1460.
    [116]Yan, R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, and Gurney ME. Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity[J]. Nature,1999,402(6761): 533-537.
    [117]Vassar, R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, and Citron M. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. Science, 1999,286(5440):735-741.
    [118]Sinha, S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, and John V. Purification and cloning of amyloid precursor protein beta-secretase from human brain[J]. Nature,1999,402(6761):537-540.
    [119]Hussain, I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, and Christie G. Identification of a novel aspartic protease (Asp 2) as beta-secretase[J]. Mol Cell Neurosci,1999,14(6):419-427.
    [120]Asai, M, Hattori C, Iwata N, Saido TC, Sasagawa N, Szabo B, Hashimoto Y, Maruyama K, Tanuma S, Kiso Y, and Ishiura S. The novel beta-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice[J]. J Neurochem,2006,96(2): 533-540.
    [121]Kimberly, WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, and Selkoe DJ. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2[J]. Proc Natl Acad Sci U S A,2003,100(11): 6382-6387.
    [122]De Strooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex[J]. Neuron,2003,38(1):9-12.
    [123]刘薇,余锐,吴家华,罗焕敏.五味子乙素抑制M146L细胞Aβ42生成的机制研究[J].药学学报,2006,41(12):1136-1140.
    [124]El Mouedden, M, Vandermeeren M, Meert T, and Mercken M. Reduction of Abeta levels in the Sprague Dawley rat after oral administration of the functional gamma-secretase inhibitor, DAPT:a novel non-transgenic model for
    Abeta production inhibitors[J]. Curr Pharm Des,2006,12(6):671-676.
    [125]Siemers, ER, Quinn JF, Kaye J, Farlow MR, Porsteinsson A, Tariot P, Zoulnouni P, Galvin JE, Holtzman DM, Knopman DS, Satterwhite J, Gonzales C, Dean RA, and May PC. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease [J]. Neurology,2006, 66(4):602-604.
    [126]Buxbaum, JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, and Black RA. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor[J]. J Biol Chem,1998,273(43): 27765-27767.
    [127]Yang, F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, and Cole GM. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo[J]. J Biol Chem,2005,280(7):5892-5901.
    [128]Neugroschl, J and Sano M. Current Treatment and Recent Clinical Research in Alzheimer's Disease[J]. Mount Sinai Journal of Medicine,2010,77(1):3-16.
    [129]Aisen, PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, and Garceau D. A Phase Ⅱ study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease[J]. Neurology,2006,67(10):1757-1763.
    [130]Bayer, AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, and Donoghue S. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD[J]. Neurology,2005,64(1): 94-101.
    [131]von Bernhardi, R. Immunotherapy in Alzheimer's disease:where do we stand? Where should we go?[J]. J Alzheimers Dis,2010,19(2):405-421.
    [132]Querfurth, HW and LaFerla FM. Mechanisms of Disease Alzheimer's Disease[J]. New England Journal of Medicine,2010,362(4):329-344.
    [133]Hellstrom-Lindahl, E, Ravid R, and Nordberg A. Age-dependent decline of neprilysin in Alzheimer's disease and normal brain:inverse correlation with A beta levels[J]. Neurobiol Aging,2008,29(2):210-221.
    [134]Matsuoka, Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF, Feng L, Lecanu L, Walker BR, Planel E, Arancio O, Gozes I, and Aisen PS. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer's disease[J]. J Pharmacol Exp Ther,2008,325(1):146-153.
    [135]Atamna, H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, and Ames BN. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways[J]. Faseb J,2008,22(3):703-712.
    [136]朱大明,宋照雷,孙奋勇,杨媛,段锐,林剑,洪岸.碱性成纤维细胞生长因子对β-淀粉样蛋白诱导Pc12细胞凋亡的抑制作用[J].中国病理生理杂志,2002(04):374-377.
    [137]张晓冬,李万亥,枉前,黄矛,周丽华,谈冶雄.人参皂甙Rg_1,Re对p-淀粉样蛋白诱导原代培养海马及皮质神经元损伤的保护作用[J].第二军医大学学报,2000(10):941-943.
    [138]Sul, D, Kim HS, Lee D, Joo SS, Hwang KW, and Park SY. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation[J]. Life Sci,2009,84(9-10):257-262.
    [139]肖飞,翁文,罗焕敏.五味子醇甲对p-淀粉样蛋白损伤PC12细胞的预保护及治疗作用[J].中药材,2010,33(3):397-401.
    [140]Wilcock, GK, Black SE, Hendrix SB, Zavitz KH, Swabb EA, and Laughlin MA. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer's disease:a randomised phase II trial[J]. Lancet Neurol,2008,7(6):483-493.
    [141]Cummings, JL, Doody R, and Clark C. Disease-modifying therapies for Alzheimer disease:challenges to early intervention[J]. Neurology,2007, 69(16):1622-1634.
    [142]Stackman, RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, and Quinn JF. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment[J]. Exp Neurol, 2003,184(1):510-520.
    [143]Schneider, LS, DeKosky ST, Farlow MR, Tariot PN, Hoerr R, and Kieser M. A randomized, double-blind, placebo-controlled trial of two doses of Ginkgo biloba extract in dementia of the Alzheimer's type[J]. Curr Alzheimer Res, 2005,2(5):541-551.
    [144]Petersen, RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, and Thal LJ. Vitamin E and donepezil for the treatment of mild cognitive impairment[J]. N Engl J Med,2005,352(23):2379-2388.
    [145]Tariot, PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, and Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil:a randomized controlled trial[J]. Jama,2004, 291(3):317-324.
    [146]Twiss, JL, Chang JH, and Schanen NC. Pathophysiological mechanisms for actions of the neurotrophins[J]. Brain Pathol,2006,16(4):320-332.
    [147]Olson, L. NGF and the treatment of Alzheimer's disease[J]. Exp Neurol,1993, 124(1):5-15.
    [148]Rockenstein, E, Adame A, Mante M, Moessler H, Windisch M,and Masliah E. The neuroprotective effects of Cerebrolysin in a transgenic model of Alzheimer's disease are associated with improved behavioral performance[J]. J Neural Transm,2003,110(11):1313-1327.
    [149]Alvarez, XA, Cacabelos R, Laredo M, Couceiro V, Sampedro C, Varela M, Corzo L, Fernandez-Novoa L, Vargas M, Aleixandre M, Linares C, Granizo E, Muresanu D, and Moessler H. A 24-week, double-blind, placebo-controlled study of three dosages of Cerebrolysin in patients with mild to moderate Alzheimer's disease[J]. Eur J Neurol,2006,13(1):43-54.
    [150]Pearson, KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, and de Cabo R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span[J]. Cell Metab,2008,8(2):157-168.
    [151]Wang, J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS, Talcott ST, and Pasinetti GM. Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer's disease[J]. Faseb J,2006,20(13):2313-2320.
    [152]Karuppagounder, SS, Pinto JT, Xu H, Chen HL, Beal MF, and Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease[J]. Neurochem Int,2009,54(2): 111-118.
    [153]Fassbender, K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, and Hartmann T. Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo[J]. Proc Natl Acad Sci U S A,2001,98(10):5856-5861.
    [154]Sano, M. S5-01-05:Multi-center, randomized, double-blind, placebo-controlled trial of Simvastatin to slow the progression of Alzheimer's disease[J]. Alzheimer's and Dementia,2008,4(4, Supplement 1):T200-T200.
    [155]Zhou, B, Teramukai S, and Fukushima M. Prevention and treatment of dementia or Alzheimer's disease by statins:a meta-analysis[J]. Dement Geriatr Cogn Disord,2007,23(3):194-201.
    [156]van de Rest, O, Geleijnse JM, Kok FJ, van Staveren WA, Dullemeijer C, Olderikkert MG, Beekman AT, and de Groot CP. Effect of fish oil on cognitive performance in older subjects:a randomized, controlled trial[J]. Neurology, 2008,71(6):430-438.
    [157]Caroni, P and Schwab ME. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading [J]. J Cell Biol,1988,106(4):1281-1288.
    [158]Prinjha, R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michlovich D, Simmons DL, and Walsh FS. Neurobiology-Inhibitor of neurite outgrowth
    in humans[J]. Nature,2000,403(6768):383-384.
    [159]GrandPre, T, Nakamura F, Vartanian T, and Strittmatter SM. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein[J]. Nature,2000, 403(6768):439-444.
    [160]Chen, MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, and Schwab ME. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature,2000, 403(6768):434-439.
    [161]Wang, KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, and He Z. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth[J]. Nature,2002,417(6892):941-944.
    [162]Liu, BP, Fournier A, GrandPre T, and Strittmatter SM. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor[J]. Science,2002, 297(5584):1190-1193.
    [163]Yiu, G and He ZG. Glial inhibition of CNS axon regeneration[J]. Nature Reviews Neuroscience,2006,7(8):617-627.
    [164]Mi, S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, and Pepinsky RB. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex[J]. Nat Neurosci, 2004,7(3):221-228.
    [165]Wang, KC, Kim JA, Sivasankaran R, Segal R, and He ZG. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp[J]. Nature, 2002,420(6911):74-78.
    [166]Shao, Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G, Levesque M, Sah D, McCoy JM, Murray B, Jung V, Pepinsky RB, and Mi S. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration[J]. Neuron,2005,45(3):353-359.
    [167]GrandPre, T, Li S, and Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration[J]. Nature,2002,417(6888):547-551.
    [168]Lee, JK, Kim JE, Sivula M, and Strittmatter SM. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity[J]. J Neurosci,2004, 24(27):6209-6217.
    [169]Kim, JE, Liu BP, Park JH, and Strittmatter SM. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury[J]. Neuron,2004,44(3):439-451.
    [170]Gil, V, Nicolas O, Mingorance A, Urena JM, Tang BL, Hirata T, Saez-Valero J, Ferrer I, Soriano E, and del Rio JA. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease [J]. J Neuropathol Exp Neurol,2006,65(5):433-444.
    [171]Zhu, HY, Guo HF, Hou HL, Liu YJ, Sheng SL, and Zhou JN. Increased expression of the Nogo receptor in the hippocampus and its relation to the neuropathology in Alzheimer's disease[J]. Hum Pathol,2007,38(3):426-434.
    [172]Park, JH, Widi GA, Gimbel DA, Harel NY, Lee DHS, and Strittmatter SM. Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer's transgenic mice[J]. Journal of Neuroscience,2006, 26(51):13279-13286.
    [173]Park, JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W, Lee DH, and Strittmatter SM. Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition[J]. J Neurosci,2006,26(5): 1386-1395.
    [174]Niederost, B, Oertle T, Fritsche J, McKinney RA, and Bandtlow CE. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Racl[J]. J Neurosci,2002,22(23): 10368-10376.
    [175]Sivasankaran, R, Pei J, Wang KC, Zhang YP, Shields CB, Xu XM, and He Z. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration[J]. Nat Neurosci,2004,7(3):261-268.
    [176]Brewer, GJ, Torricelli JR, Evege EK, and Price PJ. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination[J]. J Neurosci Res,1993,35(5):567-576.
    [177]Tang, BL and Liou YC. Novel modulators of amyloid-beta precursor protein processing[J]. J Neurochem,2007,100(2):314-323.
    [178]Murayama, KS, Kametani F, Saito S, Kume H, Akiyama H, and Araki W. Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid beta-protein[J]. Eur J Neurosci,2006,24(5):1237-1244.
    [179]Lourenco, FC, Galvan V, Fombonne J, Corset V, Llambi F, Muller U, Bredesen DE, and Mehlen P. Netrin-1 interacts with amyloid precursor protein and regulates amyloid-beta production[J]. Cell Death Differ,2009,16(5):655-663.
    [180]Park, JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li WW, Lee DHS, and Strittmatter SM. Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition[J]. Journal of Neuroscience, 2006,26(5):1386-1395.
    [181]Yiu, G and He Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci,2006,7(8):617-627.
    [182]Domeniconi, M, Zampieri N, Spencer T, Hilaire M, Mellado W, Chao MV, and Filbin MT. MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth[J]. Neuron,2005,46(6): 849-855.
    [183]Koprivica, V, Cho KS, Park JB, Yiu G, Atwal J, Gore B, Kim JA, Lin E, Tessier-Lavigne M, Chen DF, and He Z. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans[J]. Science,2005,310(5745):106-110.
    [184]Schwab, JM, Tuli SK, and Failli V. The Nogo receptor complex:confining molecules to molecular mechanisms[J]. Trends Mol Med,2006,12(7): 293-297.
    [185]Zhou, Y, Su Y, Li BL, Liu F, Ryder JW, Wu X, Gonzalez-DeWhitt PA, Gelfanova V, Hale JE, May PC, Paul SM, and Ni BH. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic A beta(42) by inhibiting Rho[J]. Science,2003,302(5648):1215-1217.
    [186]Pedrini, S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, and Gandy S. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK[J]. Plos Medicine,2005,2(1):69-78.
    [187]Yang, HQ, Ba MW, Ren RJ, Zhang YH, Ma JF, Pan J, Lu GQ, and Chen SD. Mitogen activated protein kinase and protein kinase C activation mediate promotion of sAPPalpha secretion by deprenyl[J]. Neurochem Int,2007,50(1): 74-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700