用户名: 密码: 验证码:
铈基氧化物负载Au与Pt催化巴豆醛选择性加氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α,β-不饱和醇具有重要的工业应用价值,主要通过α,β-不饱和醛选择性加氢来制备。然而,α,β-不饱和醛分子中含有共轭的C=C键和C=O键,且C=O的键能大于C=C键,在热力学上不利于C=O的选择性加氢生成α,β-不饱和醇,因此,提高α,β-不饱和醛中C=O的加氢选择性是催化领域中一项挑战性的课题。巴豆醛属于典型的α,β-不饱和醛,其选择性加氢生成巴豆醇具有广泛的代表意义。在巴豆醛选择加氢制备巴豆醇的研究中,负载型Au与Pt催化剂是近几年热点,尤其是Au与Pt负载在具有还原性载体上,可以具有很好的C=O加氢选择性。然而,负载型Au催化剂的热稳定性能有待提高,负载型Pt催化剂上的载体参与反应机理尚不清楚。本文主要以铈基氧化物为载体,采用沉积-沉淀法制备负载型Au与Pt催化剂,应用于巴豆醛选择性加氢反应,考察不同铈基载体对Au催化剂热稳定性能的影响,以及Pt催化剂上载体参与反应的情况。通过XRD、Raman、FT-IR、TEM、BET和CO化学吸附等表征手段,研究载体表面电子环境、载体组成对巴豆醛中共轭的C=O键和C=C键的选择性加氢的影响,揭示C=O键加氢的活性中心,探讨催化剂失活机理。
     1.铈基氧化物载体的制备与表征。采用一种改进的柠檬酸溶胶-凝胶法制备铈基固溶体,其主要过程为:将柠檬酸前躯体先在N_2保护下高温焙烧(碳化),柠檬酸前躯体缓慢的分解为氧化物和无定形碳(原因是缺少O_2),之后在较低温度下除碳得到纳米级铈基氧化物。通过改进的柠檬酸溶胶-凝胶法,我们得到晶粒小于10nm、比表面积高于90 m~2/g的Ce_(0.8)Pr_(0.2)O_Y固溶体,并发现Ce_(0.8)Pr_(0.2)O_Y固溶体形成于N_2气氛高温预处理过程中,随后的空气中低温焙烧几乎没有对Ce_(0.8)Pr_(0.2)O_Y固溶体的本征特性产生影响。在改进的柠檬酸溶胶-凝胶过程中,碳化温度会对铈基固溶体的本征结构等性质产生重要影响。通过对Ce_(0.8)Zr_(0.2)O_2固溶体的研究发现:低碳化温度导致碳化中间体中的Ce-Zr氧化物为无定形或弱晶化,其在随后的除碳过程中发生团聚,只得到低比表面积的大颗粒Ce-Zr氧化物。高温碳化可以提供足够的热力学动力,其促使碳化中间体中的Ce-Zr氧化物发生高度晶化,使得其受随后除碳的影响较小,因而得到的Ce_(0.8)Zr_(0.2)O_2固溶体具有高比表面积和多孔结构。
     2.铈基氧化物负载Au催化巴豆醛选择性加氢。通过对Au/CeO_2催化巴豆醛选择性加氢的研究,我们发现:当采用较低比表面积的CeO_2(70 m~2/g)作为载体时,Au负载量对催化性能有着极为重要的影响。当Au负载量为3%时,Au/CeO_2催化剂在反应稳态时巴豆醛转化率为12%,巴豆醇选择性为58%,远优于相关文献中催化效果。当Au负载量低于3%时,巴豆醛加氢效果显著下降,尤其1%以下Au负载量时,几乎没有催化活性和巴豆醇选择性。当Au负载量高于3%时,催化性能没有明显提高,接近于3%Au/CeO_2催化剂。为了更好提高Au催化剂的热稳定性,我们制备了Au/Ce_(0.8)Zr_(0.2)O_2催化剂,并应用于巴豆醛选择性加氢,发现其在稳态时巴豆醇选择性为62%,优于Au/CeO_2的实验结果,其原因是Ce-Zr复合氧化物中具有较多的氧缺位,促进了C=O吸附加氢,从而提高巴豆醇选择性。另外,Au/Ce_(0.8)Zr_(0.2)O_2催化剂在180℃反应下有较长寿命,使得其具有工业化前景。
     3.铈基氧化物负载Pt催化巴豆醛选择性加氢。我们利用原位技术对Pt/CeO_2催化剂进行一些特殊预处理(如,高温还原后原位低温再氧化),保持Pt粒子大小和形貌不发生变化,只改变CeO_2载体的表面化学环境,考察高价Ce~(4+)和低价Ce~(3+)对巴豆醛加氢的影响,即CeO_2载体参与催化反应机理,得到如下结论:(1)Pt/CeO_2催化剂中低价的Ce~(3+)离子可以向Pt提供电子,有利于C=O键的吸附和加氢,进而提高巴豆醇选择性,而高价态的Ce~(4+)粒子不利于C=O键吸附加氢;(2)低价态的Ce~(3+)离子也会引起催化剂表面积碳,从而导致催化剂失活。作为拓展,我们还考察了Pt/Ce_xSm_(1-x)O_(2-δ)催化剂对巴豆醛加氢的情况:(1)相对于Pt/CeO_2催化剂,Pt/Ce_xSm_(1-x)O_(2-δ)催化剂具有较好的催化活性和巴豆醇选择性;(2)Sm的掺杂量影响Pt的催化性能,其中Pt/Ce_(0.8)Sm_(0.2)O_(2-δ)催化剂具有很好的初始巴豆醛转化率(53.5%)和巴豆醇选择性(76.5%)。(3)高温处理Pt/Ce_(0.8)Sm_(0.2)O_(2-δ)催化剂可以提高巴豆醇选择性,可能原因是形成了较大的Pt粒子,有利于C=O的吸附和加氢。
     4.非铈基氧化物负载Au与Pt催化巴豆醛选择性加氢。作为对照实验,我们考察Au/TiO_2和Pt/Pr_6O_(11)催化巴豆醛选择性加氢情况。不同晶相的TiO_2对Au/TiO_2催化巴豆醛选择性加氢有重要影响:纯锐钛矿晶相比纯金红石相有利于提高巴豆醇选择性;而相对于纯相载体,复合相TiO_2具有最好的Au/TiO_2的催化活性和巴豆醇选择性。首次将Pt/Pr_6O_(11)催化剂应用于巴豆醛选择性加氢反应,发现700℃预还原处理后对巴豆醇的初始选择性达到75%以上。与Pt/CeO_2催化剂相似,高温还原后的Pt/Pr_6O_(11)催化剂中由于存在大量低价态Pr~(3+)离子,在反应过程中为Pt提供电子,有利于C=O的吸附,从而提高巴豆醇选择性。但低价态Pr~(3+)也可能是反应过程中催化剂表面积碳的重要原因,进而导致Pt/Pr_6O_(11)催化剂活性和巴豆醇选择性下降。
α,β-Unsaturated alcohol is of very important industrial values and is produced mainly by selective hydrogenation ofα,β-unsaturated aldehyde.However,the hydrogenation of the C=C bond is thermodynamically preferable over the C=O bond, which leads to undesirable product such as saturated aldehydes.Therefore,it remains a challenge for the researchers in catalysis field to further increase the selectivity forα,β-unsaturated alcohol fromα,β-unsaturated aldehyde.
     Crotonaldehyde is a typitalα,β-unsaturated aldehyde.Recent studies on selective hyrogenation of crotonaldehyde to produce crotyl alcohol have been focused on the employment of supported gold and platinum catalysts.Currently,the thermodynamic stability of supported gold catalysts is still not satisfactory,and the mechanism of supported gold-and platinum-catalyzed hydrogenation requires further clarification.In this dissertation,Au and Pt catalysts supported on Ce-based oxides were prepared via deposition-precipitation method and applied in the selective hydrogenation of crotonaldehyde.Characterizations of the supported catalyst were achieved by XRD, Raman、FT-IR、TG-DTA、SEM、TEM、BET and CO chemical absorption.A series of experiments have been designed and carried out to examine the influence of electronic environment on the catalyst surface and the composition of the supports on the selective hydrogenation of the conjugated C=O and C=C bond,so as to elucidate the active center of the hydrogenation of the C=O bond and the reason for the deactivation of the catalyst. The contents of the dissertation are as follows:
     1.Preparation and characterization of Ce-based oxides.Ce-based solid solutions were prepared by an improved citrate sol-gel method,which mainly involved the following two steps:1)calcination(or carbonization)of the citrate precursor at high temperature under N_2 atmosphere(the step resulted in intermediate mixture of Ce-based oxides and carbon powder due to lack of oxygen);2)removal of the carbon powder at low temperature in air.With the improved citrate sol-gel method,Ce_(0.8)Pr_(0.2)O_Y solid solutions with a cubic fluorine structure and more oxygen vacancies were synthesized, with particle size smaller than 10nm and specific surface area higher than 92.1m~2/g.It can be concluded that the formation of the Ce_(0.8)Pr(0.2)O_Y solid solution occurred in the calcination process at 800℃in N_2 and its textural structure would not be influenced by subsequent removal of carbon powder at low temperature in air.Since carbonization process is a key step for the improved citrate sol-gel method,the carbonization temperature would have a vital effect on the textural structure of Ce-based solid solution. Low carbonization temperature resulted in weak crystallization of the Ce-Zr oxide, which would aggregate into big particles with low surface area in subsequent carbon removal process.While high carbonization temperature could provide sufficient thermodynamic force to afford high degree of crystallization of Ce-Zr oxide,and finally lead to the formation of Ce_(0.8)Zr_(0.2)O_2 solid solution with higher surface area and porous structure.
     2.Selective hydrogenation of crotonaldehyde over Au catalysts supported on Ce-based oxides.For the selective hydrogenation of crotonaldehyde over Au/CeO_2 catalysts,the catalytic properties are not only related to the surface area of CeO_2 support, but also to the gold loadings.Using CeO_2 with lower surface area(70m~2/g)as the support,the gold loading of 3%in Au/CeO_2 catalysts gave satisfactory catalytic results: 12%conversion of crotonaldehyde and 58%selectivity of crotyl alcohol at steady state. When the gold loading is lower than 3%,the catalytic properties of Au/CeO_2 catalysts decreased linearly;while with higher gold loading,the catalytic properties did not increase noticeably.Besides,a series of Au/Ce_xZr_(1-x)O_2 were prepared with an attempt to furher improve the thermodynamic stability of Au catalyst.Studies found that among the Au/Ce_xZr_(1-x)O_2 examined,Au/Ce_(0.8)Zr_(0.2)O_2 catalyst could afford higher selectivity of crotyl alcohol(62%)than Au/CeO_2 in the steady state,The result may be attributed to the presence of more oxygen vacancies in the mixed oxides,which can promote the absorption of C=O bond,thus favoring the production of more crotyl alcohol.In addition,Au/Ce_(0.8)Zr_(0.2)O_2 exhibited longer catalyst life at 180℃,thus showing its promising prospect as a catalyst suitable for industry production.
     3.Selective hydrogenation of crotonaldehyde over Pt catalysts supported on Ce-based oxides.In this chapter,the in situ technique was used to pretreat the Pt/CeO_2 catalysts so that the particle size and morphology of platinum could remain intact but the surface chemical environment of CeO_2 support change.The pretreatment of the catalysts allowed us to investigate the effect of Ce~(4+)or Ce~(3+)on the selective hydrogenation of crotonaldehyde.It was found that Ce~(3+)ions in Pt/CeO_2 catalyst can transfer electrons to Pt particles,thus enhancing the absorption of C=O bond and improving the selectivity of crotyl alcohol.On the other hand,Ce~(3+)ions could also induce the coke deposition on the surface of Pt/CeO_2 catalyst,thus leading to the deactivation of the Pt catalysts.We further explored the hydrogenation of crotonaldehyde over Pt/Ce_xSm_(1-x)O_(2-δ)catalysts,and the main results could be concluded as:1)Pt/Ce_xSm_(1-x)O_(2-δ)catalysts have better catalytic properties than Pt/CeO_2 catalysts;2) the doped quantity of Sm has an important effect on the catalytic properties of Pt catalysts.For example,Pt/Ce_(0.8)Sm_(0.2)O_(2-δ)has the preferable initial conversion of crotonaldehyde(53.5%)and selectivity of crotyl alcohol(76.5%);3)For Pt/Ce_(0.8)Sm_(0.2)O_(2-δ),high temperature pretreatment can increase the selectivity of crotyl alcohol,which could be accounted for by the formation of big particle of platinum that favors the adsorption and hydrogenation of C=O bond.
     4.Selective hydrogenation of crotonaldehyde over Au and Pt catalysts supported on other oxides.As control experiments,Au/TiO_2 and Pt/Pr_6O_(11)catalysts were prepared and applied in the hydrogenation of crotonaldehyde.For the Au/TiO_2 catalysts,different crystal phases of TiO_2 can greatly affect the catalytic properties.The selectivity of crotyl alcohol on pure anatase support is higher than that on pure rutile support.Furthermore, the best catalytic properties of Au catalyst came from the use of mixed crystal phases as the support,where both the catalytic activity and the selectivity of crotyl alcohol were enhanced.For Pt/Pr_6O_(11)catalyst,the initial selectivity of crotyl alcohol can reach 75% provided that the catalyst was subjected to high temperature reduction at 700℃.High temperature reduction can produce plenty of Pr~(3+)ions in Pt/Pr_6O_(11)catalysts.Such Pr~(3+) ions can donate electrons to Pt particles,thus favoring the adsorption of C=O bond and the generation of crotyl alcohol.Analogous to Pt/CeO_2 catalysts,low valent Pr~(3+)ions can induce the coke deposition on the catalyst surface,and subsequently make the Pt/Pr_6O_(11)catalysts exhibit decreased catalytic properties.
引文
[1]Boudart M.Fine-tuning metal clusters[J].Nature,1994,372,320.
    [2]Coloma F.,Sepulveda-Escribano A.,Rodriguez-Reinoso F.Improvement of the selectivity to crotyl alcohol in the gas-phase hydrogenation of crotonaldehyde over platinum/activated carbon catalysts[J].Appl.Catal.A,1995,123(1):L1-L5.
    [3]Boutonnet Kizling M.,Bigey C.,Touroude R.Novel method of catalyst preparation for selective hydrogenation of unsaturated aldehydes[J].Appl.Catal.A,1996,135(1):L13-L17.
    [4]黄朋勉,刘自力,郑淼等.巴豆醛选择性加氢制巴豆醇催化剂的研究进展[J].工业催化,2003,11(6):27-30.
    [5]裴燕,方敬,胡华荣等.Zn对非晶态Co-B催化剂巴豆醛选择加氢性能的影响[J].化学学报,2005,63(4):289-294.
    [6]杨树武,徐江,辛勤.α-β不饱和醛中C=C和C=O键选择加氢的研究进展[J].分子催化,1998,12(2):152-159.
    [7]Pei Y.,Guo P.J.,Qiao M.H.,et al.The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde[J].J.Catal.,2007,248(2):303-310.
    [8]Pei Y.,Hu H.R.,Fang J.,et al.Liquid phase hydrogenation of crotonaldehyde over Sn-promoted amorphous Co-B catalysts[J].J.Mol.Catal.A,2004,211(1-2):243 -249.
    [9]Kijenski J.,Winiarek P..Selective hydrogenation of α,β-unsamrated aldehydes over Pt catalysts deposited on monolayer supports[J].Appl.Catal.A,2000 193(1-2):1-4.
    [10]Gallezot P.,Richard D.Selective hydrogenation of α,β-unsaturated aldehydes[J].Catal.Rev.Sci.Eng.,1998,40(1-2):81-126.
    [11]Michalska Z.M.,Ostaszewski B.,Zientarska J.Novel polymer-supported platinum catalyst for selective hydrogenation of crotonaldehyde[J].J.Mol.Catal.A,2002,185(1-2):279-283.
    [12]Chambers A.,Jackson S.D.,Stirling D.,et al.Selective hydrogenation of cinnamaldehyde over supported copper Catalysts[J].J.Catal.,1997,168(2):301-314.
    [13]Reddy B.M.,Kumar G.M.,Ganesh I.,et al.Vapour phase hydrogenation of cinnamaldehyde over silica supported transition metal-based bimetallic catalysts[J].J.Mol.Catal.A,2006,247(1-2):80-87.
    [14]Koo-amornpattana W., Winterbottom J.M. Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde [J]. Catal. Today, 2001, 66 (2-4): 277-287.
    [15]Mohr C, Claus P. Hydrogenation properties of supported nanosized gold particles [J]. Sci. Progress, 2001, 84 (4): 311-334.
    [16]Wu J.C.S., Chen W.C. A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde [J]. Appl. Catal. A, 2005,289 (2): 179-185.
    [17]Delbecq F., Sautet P. Competitive C=C and C=O adsorption of α-β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: A theoretical approach [J]. J. Catal., 1995,152 (2): 217-236.
    [18]Delbecq R, Sautet P. A density functional study of adsorption structures of unsaturated aldehydes on Pt(111): A key factor for hydrogenation selectivity [J]. J. Catal., 2002, 211 (2): 398-406.
    [19]Coq B., Figueras R, Moreau C., et al. Hydrogenation of substituted acrolein over alumina supported ruthenium catalysts [J]. Catal Lett., 1993, 22 (3): 189-195.
    [20]Hubaut R., Daage M., Bonnelle J.P. Selective hydrogenation on copper chromite catalysts IV. Hydrogenation selectivity for a, p-unsaturated aldehydes and ketones [J]. Appl. Catal., 1986, 22 (2): 231-241.
    [21] Serrano-Ruiz J.C., Lopez-Cudero A., Solla-Gullon J., et al. Hydrogenation of α,β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon [J]. J. Catal., 2008, 253 (1): 159-166.
    [22]Noller H., Lin W.M. Activity and selectivity of Ni=Cu/Al_2O_3 catalysts for hydrogenation of crotonaldehyde and mechanism of hydrogenation [J]. J. Catal., 1984, 85(1): 25-30.
    [23]Consonni M, Jokic D., Murzin D.Y., et al. High Performances of Pt/ZnO Catalysts in Selective Hydrogenation of Crotonaldehyde [J]. J. Catal., 1999, 188 (1): 165-175.
    [24]Margitfalvi J.L., Borbath I., Tompos A., et al. Preparation of new type of Sn-Pt/SiO_2 catalysts for carbonyl activation [J]. Appl. Catal. A, 2002, 229 (1-2): 35-49.
    [25]Rodrigues E.L., Bueno J.M.C. Co/SiO_2 catalysts for selective hydrogenation of crotonaldehyde: III. promoting effect of zinc [J]. Appl. Catal. A, 2004, 257 (2): 201-211.
    [26] Reyes P., Aguirre M.C., Melian-Cabrera I., et al. Interfacial properties of an Ir/TiO_2 system and Their Relevance in Crotonaldehyde Hydrogenation [J] J. Catal. 2002, 208: 229-237.
    [27]Liberkova K.,Touroude R..Performance of Pt/SnO_2 catalyst in the gas phase hydrogenation of crotonaldehyde[J].J.Mol.Catal.A,2002,180(1-2):221-230.
    [28]Englisch M.,Jentys A.,Lercher J.A.Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO_2 and Pt/TiO_2[J].J.Catal.,1997,166(1):25-35.
    [29]Reyes P.,Aguirre M.C.,Fierro J.L.G.,et al.Hydrogenation of crotonaldehyde on Rh-Sn/SiO_2 catalysts prepared by reaction of tetrabutyltin on prereduced Rh/SiO_2precursors[J].J.Mol.Catal.A,2002,184(1-2):431-441.
    [30]Claus P.,Hofrneister H.Electron microscopy and catalytic study of silver catalysts:structure sensitivity of the hydrogenation of crotonaldehyde[J].J.Phys.Chem.B,1999,103:2766-2775.
    [31]Zanella R.,Louis C.,Giorgio S.,et al.Crotonaldehyde hydrogenation by gold supported on TiO_2:structure sensitivity and mechanism[J].J.Catal,2004,223:328-339.
    [32]Campo B.,Volpe M.,Ivanova S.,et al.Selective hydrogenation of crotonaldehyde onAu/HSA-CeO_2 catalysts[J].J.Carol.,2006,242(1):162-171.
    [33]Aumo J.,Lilja J.,M(a|¨)ki-Arvela P.,et al.Hydrogenation of Citral Over a Polymer Fibre Catalyst[J].Carol.Lett.,2002,84(3-4):219.
    [34]Lashdaf M.,Krause A.O.I.,Lindblad M.,et al.Behaviour of palladium and ruthenium catalysts on alumina and silica prepared by gas and liquid phase deposition in cinnamaldehyde hydrogenation[J].Appl.Catal.A,2003,241:65-75.
    [35]M(a|¨)ki-Arvela P.,Hajek J.,Salmi T.,et al.Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J].Appl.Catal.A,2005,292:1-49.
    [36]Rodrigues E.L.,Bueno J.M.C.Co/SiO_2 catalysts for selective hydrogenation of crotonaldehyde Ⅱ:Influence of the Co surface structure on selectivity[J].Appl.Catal.A,2002,232:147-158.
    [37]Nitta Y.,Ueno K.,Imanaka T.Selective hydrogenation of α,β-unsaturated aldehydes on cobalt-silica catalysts obtained from cobalt chrysotile[J].Appl.Catal.,1989,56(1):9-22.
    [38]Chambers A.,Jackson S.D.,Stirling D.,et al.Selective hydrogenation of cinnamaldehyde over supported copper catalysts[J].J.Catal.,1997,168:301-314.
    [39]Ferhat Z.,Deraoult A.,Barrault J.,et al.Hydrogenation of cinnamaldehyde in liquid phase in the presence of copper supported catalysts[J].React.Kinet.Catal.Lett,2002,76:249-258.
    [40]Claus P.Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds[J].Topics Catal.,1998,5:51-62.
    [41]Claus P., Kraak P., Schobel R. Selective hydrogenation of α,β-unsaturated aldehydes to allylic alcohols over supported monometallic and bimetallic Ag catalysts [J]. Stud Surf. Sci. Catal., 1997,108: 281-288.
    [42]Bachiller-Baeza B., Rodriguez I., Guerrero-Ruiz A. Influence of Mg and Ce addition to ruthenium based catalysts used in the selective hydrogenation of α,β-unsaturated aldehydes [J]. Appl. Catal. A, 2001, 205: 227-237.
    [43]Maki-Arvela P., Tiainen L.P., Kalantar A. Liquid phase hydrogenation of citral: suppression of side reactions [J]. Appl. Catal. A, 2002, 237: 181-200.
    [44]Reyes P., Pecchi G., Fierro J.L.G. Surface Structures of Rh-Cu sol-gel catalysts and performance for crotonaldehyde hydrogenation [J]. Langmuir, 2001, 17(2): 522-527.
    [45]Haruta M., Yamada N., Kobayashi T., et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J. Catal., 1989,115 (2): 301-309.
    [46] Sanchez R.M.T., Ueda A., Tanaka K., et al. Selective oxidation of CO in hydrogen over gold supported on manganese oxides [J]. J Catal., 1997,168: 125-127
    [47]Bethke G.K., Kung H.H. Selective CO oxidation in a hydrogen rich stream over Au/γ-Al_2O_3 catalysts [J]. Appl Catal. A., 2000,194: 43-53.
    [48]Baratto C., Sberveglieri G., Comini E. Gold catalysted porous silicon for NO_X sensing [J]. Sens. Actuators B, 2000, 68: 74-80.
    [49]Ueda A., Oshima T., Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides [J]. Appl. Catal B, 1997,12: 81-93.
    [50]Kalvachev Y.A., Hayashi T., Tsubota S. Vapor phase selective oxidation of aliphatic hydrocarbons over gold deposited on mesoporous titanium silicates in the co-presence of oxygen and hydrogen [J]. J Catal., 1999,186: 228-233.
    [51] Hayashi T., Tanaka K., Haruta M. Selective vapor phase epoxidation of propylene over Au/TiO_2 catalysts in the presence of oxygen and hydrogen [J]. J Catal., 1998, 178: 566-575.
    [52] Jia J.F., Haraki K., Kondo J.N., et al. Selective hydrogenation of acetylene over Au/Al_2O_3 catalyst [J]. J Phys. Chem. B, 2000,104: 11153-11156.
    [53]Okumura M., Akita T., Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal. Today, 2002, 74: 265-269.
    [54]Denkwitz Y., Schumacher B., Kucerova G., Behm R.J. Activity, stability, and deactivation behavior of supported Au/TiO_2 catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures [J]. J. Catal., 2009, 267(1): 78-88.
    [55]Avgouropoulos G., Manzoli M., Boccuzzi F., et al. Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction [J]. J. Catal., 2008, 256(2): 237-247.
    [56] Wang L.C., Huang X.S., Liu, Q. Liu Y.M., Cao Y., et al. Gold nanoparticlesdeposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation [J]. J. Catal., 2008, 259(1): 66-74.
    [57]Aprile C., Corma A., Domine M.E., Garcia H., Mitchell C. A cascade aerobic epoxidation of alkenes over Au/CeO_2 and Ti-mesoporous material by "in situ" formed peroxides [J]. J. Catal., 2009, 264(1): 44-53.
    [58]M. Li, Z. Wu, Z. Ma, V. Schwartz, S. Dai, et al. CO oxidation on Au/FePO_4 catalyst: Reaction pathways and nature of Au sites [J]. J. Catal., 2009, 266(1): 98-105.
    [59] Wang H., Zhu H., Qin Z., Liang F., Wang G., Wang J. Deactivation of a Au/CeO_2-Co_3O_4 catalyst during CO preferential oxidation in H_2-rich stream [J]. J. Catal., 2009, 264(2): 154-162.
    [60]Jia J.F., Haraki K., Kondo J.N., Domen K., Tamaru K. Selective hydrogenation of acetylene over Au/Al_2O_3 catalyst [J]. J Phys. Chem. B, 2000,104: 11153-11156.
    [61]Choudhary T.V., Sivadinarayana C., Datye A.K., Kumar D., Goodman D.W. Acetylene hydrogenation on Au-Based catalysts [J]. Catal. Lett., 2003, 86: 1.
    [62]Azizi Y., Petit C., Pitchon V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO_2 catalyst [J]. J. Catal., 2008, 256(2): 338-344.
    [63]Okumura M., Akita T., Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal Today, 2002, 74: 265-269.
    [64]Zhang X., Shi H., Xu B.Q. Catalysis by gold: isolated surface Au~(3+) Ions are active sites in the hydrogenation of 1,3-Butadiene over Au/ZrO_2 catalysts [J]. Angew. Chem., Int. Ed., 2005, 44: 7132-7135.
    [65]Zhang X., Shi H., Xu B.Q. Comparative study of Au/ZrO_2 catalysts in CO oxidation and 1,3-Butadiene hydrogenation [J]. Catal Today, 2007,122: 330.
    [66]Hugon A., Delannoy L., Louis C. Supported gold catalysts for the reaction of selective hydrogenation [J]. Gold Bull, 2008, 41(2): 127-138.
    [67]Claus P., Hofmeister H., Mohr C. Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol [J]. Gold Bull., 2004, 37: 181-186.
    [68]Mohr C.,Hofmeister H.,Radnik J.,Claus P.Identification of active sites in gold-catalyzed hydrogenation of acrolein[J].J Am.Chem.Soc.,2003,125:1905.
    [69]Wang C.M.,Fan K.N.,Liu Z.P.Oxide-supported single gold catalyst for selective hydrogenation of acrolein predicted from first principles[J].J.Catal.,2009,266(2):343-350.
    [70]He X.,Chen Z.X.and Kang G.J.Theoretical Study of the Role of Indium on the Selectivity of Acrolein Hydrogenation to Propenol on Gold Surfaces[J].J.Phys.Chem.C,2009,113(28):12325-12330.
    [71]Li Y.,Zhu P.F.,Zhou R.X.Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts[J].Appl.Surf Sci.,2008,254(9):2609-2614.
    [72]You K.J.,Chang C.T.,Liaw B.J.,Huang C.T.,Chen Y.Z.Selective hydrogenation of α,β-unsaturated aldehydes over Au/Mg_xAlO hydrotalcite catalysts[J].Appl.Catal.A,2009,361(1):.65-71.
    [73]Milone C.,Crisafulli C.,Ingoglia R.,Schipilliti L.,Galvagno S.A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts[J].Catal Today,2007,122:341.
    [74]Milone C.,Trapani M.C.,Galvagno S.Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO_2 catalysts[J].Appl Catal A,2008,337(2):163-167.
    [75]Lenz J.,Campo B.C.,Alvarez M.,Volpe M.A.Liquid phase hydrogenation of α,β-unsaturated aldehydes over gold supported on iron oxides[J].J.Catal.,2009,267(1):50-56.
    [76]Campo B.C.,Ivanova S.,Gigola C.,Petit C.,Volpe M.A.Crotonaldehyde hydrogenation on supported gold catalysts[J].Catal.Today,2008,133-135:661-666.
    [77]Hayashi T.,Tanaka K.,Haruta M.Selective vapor-phase epoxidation of propylene over Au/TiO_2 catalysts in the presence of oxygen and hydrogen[J].J.Catal.,1998,178:566-575.
    [78]Qi C.,Okumura M.,Akita T.,et al.Vapor-phase epoxidation of propylene using H_2/O_2 mixture over gold catalysts supported on non-porous and mesoporous titania-silica:effect of preparation conditions and pretreatments prior to reaction[J].Appl.Catal.A,2004,263:19-26.
    [79]Uphade B.S.,Yamada Y.,Akita T.,et al.Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H_2 and O_2 over Au/Ti-MCM-41[J].Appl.Catal.A,2001,215:137-148.
    [80]Sinha A.K.,Seelan S.,Akita T.,et al.Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes[J].Appl.Catal.A,2003,240:243-252.
    [81]Yap N.,Anderes R.P.,Delgass W.N.Reactivity and stability of Au in and on TS-1for epoxidation of propylene with H_2 and O_2[J].J.Catal.,2004,226:156-170.
    [82]Stangland E.E.,Taylor B.,Andres R.P,et al.Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H_2/O_2:effects of support,neutralizing agent,and pretreatment[J].J Phys.Chem.B,2005,109:2321-2330.
    [83]Sacaliuc-Parvulescu E.,Friedrich,H.Palkovits R.,Weckhuysen B.M.,Nijhuis T.A.Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene[J].J.Catal.,2008,259(1):43-53.
    [84]Yind H.,Qin L.S.,Liu J.F.,et al.Gold nanoparticles deposited on mesoporous alumina for epoxidation of styrene:Effects of the surface basicity of the supports [J].J Mol.Catal.A,2005,240(1-2):40-48.
    [85]徐新,罗国华,赵如松.高活性负载型纳米金催化剂的制备及应用进展[J].石油化工,2005,34(9):898-902.
    [86]郝郑平,安立敦,王弘立.负载型金催化剂的制备、催化性能及应用前景[J].分子催化,1996,10(3):235-240.
    [87]Horvath D.,Toth L.,Guczi L.Gold nanoparticles:effect of treatment on structure and catalytic activity of Au/Fe_2O_3 catalyst prepared by co-precipitation[J].Catal.Lett.,2000,67(2-4):117-128.
    [88]Lu J.Q,Zhang X.M,Bravo-Suarez J.J.,et al.Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H_2 and O_2:effect of Au particle size[J].J.Catal.,2007,250(2):350-359.
    [89]Avgouropoulos G.,Manzoli M.,Boccuzzi F.,et al.Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction[J].J.Catal.,2008,256(2):237-247.
    [90]Wang L.C.,He L.,Liu Y.M.,Cao Y.,et al.Effect of pretreatment atmosphere on CO oxidation over α-Mn_2O_3 supported gold catalysts[J].J.Catal.,2009,264(2):145-153.
    [91]Schubert M.M.,Hackenberg S.,Van Veen A.C.,CO oxidation over supported gold catalysts-"Inert" and "Active" support materials and their role for the oxygen supply during reaction[J].J.Catal.,2001,197(1):113-122.
    [92]王东辉 郝郑平 程代云 等.金催化剂的研究进展及其在环保催化中的应用 [J].自然科学进展,2002,12(8):794.799.
    [93]Mavrikakis M.,Stoltze P.,Nφrskov J.K.Making gold less noble[J].Catal.Lett.,2000,64(2-4):101-106.
    [94]Grunwaldt J.D,Baiker A.Gold/Titania interfaces and their role in carbon monoxide oxidation[J].J.Phys.Chem.B,1999,103(6):1002-1012.
    [95]Ramos-Fernandez E.V.,Samaranch B.,Horns N.et al.Pt/Ta_2O_5-ZrO_2 catalysts for vapour phase selective hydrogenation of crotonaldehyde[J].Appl.Catal.A,2008,349(1):165-169.
    [96]Galloway E.,Armbr(u|¨)ster M.,Kovnir K.,Tikhov M.S.,Lambert R.M.Bromine-promoted PtZn is very effective for the chemoselective hydrogenation of crotonaldehyde[J].J.Catal.,2009,261(1):60-65.
    [97]Laref S.,Delbecq F.,Loffreda D.Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt(111)[J].J.Catal.,2009,265(1):35-42.
    [98]M.Steffan,F.Klasovsky,J.Arras,et al.Carbon-Carbon Double Bond versus Carbonyl Group Hydrogenation:Controlling the Intramolecular Selectivity with Polyaniline-Supported Platinum Catalysts[J].Adv.Synth.Catal.,2008,350(9):1337-1348.
    [99]Abid M.,Ehret G.,Touroude R.Pt/CeO_2 catalysts:correlation between nanostructural properties and catalytic behaviour in selective hydrogenation of crotonaldehyde[J].Appl.Catal.A:Gen,2001,217(1):219-229.
    [100]Abid M.,Paul-Boncour V.,Touroude R.Pt/CeO_2 catalysts in crotonaldehyde hydrogenation:selectivity,metal particle size and SMSI states[J].Appl.Catal.A,2006,297(1):48-59.
    [101]Oleg S.,Alexeev G.,Graham W.,et al.γ-Al_2O_3-supported Pt catalysts with extremely high dispersions resulting from Pt-W interactions[J].J.Catal.,2000,190:157-172.
    [102]Giroir-Fendler A.,Richard D.,Gallezot P.Chemioselectivity in the catalytic hydrogenation of cinnamaldehyde.Effect of metal particle morphology[J].Catal.Lett.,1990,5(2):175-182.
    [103]Minot C.,Gallezot P..Competitive hydrogenation of benzene and toluene:Theoretical study of their adsorption on ruthenium,rhodium,and palladium[J].J.Catal.,1990,123(2):341-348.
    [104]Pradier C.M.,Birchem T.,Berthier Y.,et al.Hydrogenation of 3-methyl-butenal on Pt(110);comparison with Pt(111)[J].Catal.Lett.,1994,29(3-4):371-378.
    [105] Birchem T., Pradier C.M., Berthier Y., et al. Reactivity of 3-Methyl- crotonaldehyde on Pt(111) [J]. J. Catal., 1994,146 (2): 503-510.
    [106] Ammari F., Lamotte J., Touroude R. An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde [J]. J. Catal. 2004, 221: 32-42.
    [107] Poondi D., Vannice M.A. The influence of MSI (metal-support interactions) on phenylacetaldehyde hydrogenation over Pt cayalysts [J]. J. Mol. Catal. A: Chem. 1997,124: 79-89.
    [108] Claus P., Heterogeneously catalysed hydrogenation using gold catalysts [J]. Appl. Catal. A, 2005, 291(1-2), 222-229.
    [109] Griinert W., Bruckner A., Hofmeister H., et al. Structural properties of Ag/TiO_2 catalysts for acrolein hydrogenation [J]. J. Phys. Chem. B, 2004, 108: 5709-5717.
    [110] Campo B., Petit C., Volpe M.A. Hydrogenation of crotonaldehyde on different Au/CeO_2 catalysts [J]. J.Catal., 2008, 254(1): 71-78.
    [111] Abid M., Ammari F., Liberkova K., Touroude R., et al. Selective hydrogenation of unsaturated aldehydes into unsaturated alcohols: Role of metal-support interactions in platinum catalysts [J]. Stud. Sur. Sci. Catal., 2003,145: 267-270.
    [112] Abid M. and Touroude R. Pt/CeO_2 catalysts in selective hydrogenation of crotonaldehyde: high performance of chlorine-free catalysts [J]. Catal. Lett., 2004, 69(3-4): 139-144.
    [113] Shan W.J., Feng Z.C., Li Z.L., Zhang J., Shen W.J., Li C. Oxidative steam reforming of methanol on Ce_(0.9)Cu_(0.1)O_Y catalysts prepared by deposition- precipitation, coprecipitation, and complexation-combustion methods [J]. J. Catal., 2004,228:206-217.
    [114] Khaodee W., Tangchupong N., Jongsomjit B., Praserthdam P., Assabumrungrat S. A study on isosynthesis via CO hydrogenation over ZrO_2-CeO_2 mixed oxide catalysts [J]. Catal. Commun., 2009,10(5): 494-501.
    [115] Li X., Ni C., Chen F., Lu X., Chen Z. Mesoporous mesocrystal Ce_(1-x)Zr_xO_2 with enhanced catalytic property for CO conversion [J]. J. Solid State Chem., 2009, 182(8): 2185-2190.
    [116] Patra C.R., Mastai Y., Gedanken A. Microwave-assisted synthesis of submicrometer GaO(OH) and Ga_2O_3 rods [J]. J. Nanopart. Res. 2004, 6: 509-518.
    [117] Fabien O., Benoit L., Anne-Cecile R. Methanation of carbon dioxide over nickel-based Ce_(0.72)Zr_(0.28)O2 mixed oxide catalysts prepared by sol-gel method [J]. Appl.Catal.A,2009,369(1-2):90-96.
    [118]Judes J.,Kamaraj V.Sol-gel preparation and characterization of ceria stabilized zirconia minispheres[J].J.Sol-Gel Sci.Technol.,2009,49(2):159-165.
    [119]Barison S.,Battagliarin M.,Cavallin T.,et al.High conductivity and chemical stability of BaCe_(1-x-y)Zr_xY_yO_(3-6) proton conductors prepared by a sol-gel method[J].J.Mate.Chem.,2008,18(42):5120-5128.
    [120]Zhao M.,Shen M.,Wen X.,Wang J.Ce-Zr-Sr ternary mixed oxides structural characteristics and oxygen storage capacity[J].J.Alloys Compd,2008,457(1-2):578-586.
    [121]Fuentes R.O.,Woollins J.D.,Baker R.T.Temperature effects on structural properties in the synthesis of nanocrystalline Zr_(0.5)Ce_(0.5)O_2 solid solution:A study by XRD and HRTEM[J].J.Alloys Compd,2009,doi:10.1016/j.j allcom.2009.10.249.
    [122]Avgouropoulos G.,Ioannides T.,Matralis H.Influence of the preparation method on the performance of CuO-CeO_2 catalysts for the selective oxidation of CO[J].Appl.Catal.B,2005,56:87-93.
    [123]Fu Y.P.,Lin C.H.,Hsu C.H.Preparation of ultrafine CeO_2 powders by microwave-induced combustion and precipitation.J.Alloys Compd,2005,391:110-114.
    [124]Chen L.M.,Sun X.M.,Liu Y.N.,Li Y.D.Preparation and characterization of porous MgO and NiO/MgO nanocomposites[J].Appl.Catal.A,2004,265:123-128.
    [125]G.-Q.Xie,Luo M.-F.,He M.,Fang P.,et al.An improved method for preparation of Ce_(0.8)Pr_(0.2)O_Y solid solutions with nanoparticles smaller than 10 nm[J].J.Nanopart.Res.,2007,9:471-478.
    [1]Avgouropoulos G.,Ioannides T.Selective CO oxidation over CuO-CeO_2 catalysts prepared via the urea-nitrate combustion method[J].Appl.Catal.A,2003,244:155-167.
    [2]Shan W.J.,Feng Z.C.,Li Z.L.,et al.Oxidative steam reforming of methanol on Ce_(0.9)Cu_(0.1)O_Y catalysts prepared by deposition-precipitation,coprecipitation,and complexation - combustion methods[J].J.Catal.,2004,228:206-217.
    [3]Li L.P,Li G.S.,Che Y.L.,et al.Valence characteristics and structural stabilities of the electrolyte solid solutions Ce_(1-x)RE_xO_(2-δ)(RE = Eu,Tb) by high temperature and high pressure[J].Chem.Mater.,2000,12:2567-2574.
    [4]Zha S.W.,Xia C.R.,Meng G.Y.Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J].J.Power Sources,2003,115:44-48.
    [5]McBride J.R.,Hass K.C.,Poindexter B.D.et al.Raman and x-ray studies of Ce_(1-x)RE_xO_(2-y),where RE = La,Pr,Nd,Eu,Gd,and Tb[J].J.Appl.Phys.,1994,76:2435-2441.
    [6]Hirano M.,Hirai,K.Effect of hydrolysis conditions on the direct formation of nanoparticles of Ceria-Zirconia solid solutions from acidic aqueous solutions[J].J.Nanopart.Res.,2003,5:147-156.
    [7]Ikryannikova L.N.,Markaryan G.L.,Kharlanov A.N.et al.Electron- accepting surface properties of ceria-(praseodymia)-zirconia solids modified by Y~(3+) or La~(3+)studied by paramagnetic probe method[J].Appl.Surf.Sci.,2003,207:100-114.
    [8]Sinev M.Y.,Graham G.W.,Haack L.P.,Shelef M.Kinetic and structural studies of oxygen availability of the mixed oxides Pr_(1-x) M_xO_y(M = Ce,Zr)[J].JMater.Res.,1996,11:1960-1971.
    [9]Rojas T.C.,Ocana M.Uniform nanoparticles of Pr(Ⅲ)/Ceria solid solutions prepared by homogeneous precipitation[J].Scripta Mater.,2002,46:655-660.
    [10]Ji Y.,Liu J.,He T.M.,Wang J.X.,Su W.H.The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte[J].J Alloy Compd.,2005,389:317-322.
    [11]Takatori K.,Tani T.,Watanabe N.,Kamiya N.Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method[J].J.Nanopart.Res.,1999,1:197-204.
    [12]Wang H.C.,Lu C.H.Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique[J].Mater.Res.Bull.,2002,37:783-792.
    [13]Patra C.R.,Mastai Y.,Gedanken A.Microwave- assisted synthesis of submicrometer GaO(OH) and Ga_2O_3 rods[J].J.Nanopart.Res.,2004,6:509-518.
    [14]Marinsek M.,Zupan K.,Maeek J.Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis[J].J.Power Sources,2002,106:178-188.
    [15]Avgouropoulos G.,Ioannides T.,Matralis H.Influence of the preparation method on the performance of CuO-CeO_2 catalysts for the selective oxidation of CO[J].Appl.Catal.B,2005,56:87-93.
    [16]Fu Y.P.,Lin C.H.,Hsu C.H.Preparation of ultrafine CeO_2 powders by microwave-induced combustion and precipitation[J].J.Alloys Compd.,2005,391:110-114.
    [17]Chen L.M.,Sun X.M.,Liu Y.N.,Li Y.D.Preparation and characterization of porous MgO and NiO/MgO nanocomposites[J].Appl.Catal.A,2004,265:123-128.
    [18]Zhang F.,Chan S.W.,Spanier J.E.,Apak E.,Jin Q.Cerium oxide nanoparticles:size-selective formation and structure analysis[J].Appl.Phys.Lett.,2002,80:127-129.
    [19]Wu L.J.,Wiesmann H.J.,Moodenbaugh A.R.,et al.Oxidation state and lattice expansion of CeO_(2-x) nanoparticles as a function of particle size[J].Phys.Rev.B,2004,69:125415.
    [20]Ftikos C.,Nauer M.,Steele B.C.H.Electrical conductivity and thermal expansion of ceria doped with Pr,Nb and Sn[J].J.Eur.Ceram.Soc.,1993,12:267-270.
    [21]Yan Z.L,Luo M.F.,Xie G.Q.,et al.XRD and Raman characterizations of Ce_xP_(1-x)O_(2-d) mixed oxides[J].Chin.J.Inorg.Chem.,2005,21:425-428.
    [22]Wang S.B.,Lu G.Q.A comprehensive study on carbon dioxide reforming of methane over Ni/α-Al_2O_3 catalysts[J].Ind.Eng.Chem.Res.,1999,38:2615-2625.
    [23]Luo M.-F.,Yan Z.-L.,Jin L.-Y.,He M.Raman spectroscopic study on the structure in the surface and the bulk shell of Ce_xPr_(1-x)O_(2-δ)mixed oxides[J].J.Phys.Chem.B,2006,110:13068-13071.
    [24]Xie G.-Q.,Luo M.-F.,He M.,et al.An improved method for preparation of Ce_(0.8)Pr_(0.2)O_Y solid solutions with nanoparticles smaller than 10 nm[J].J.Nanopart.Res.,2007,9:471-478.
    [25]Lamas D.G.,Lascalea G.E.,Juarez R.E.,et al.Metastable forms of the tetragonal phase in compositionally homogeneous,nanocrystalline zirconia-ceria powders synthesised by gel-combustion[J].J.Mater.Chem.,2003,13:904-910.
    [26]Tsantilis S.,Pratsinis S.E.Soft- and hard-agglomerate aerosols made at high temperatures[J].Langmuir,2004,20:5933-5939.
    [1]Haruta M.,Yamada N.,Kobayashi T.,Iijima S.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J].J.Catal.,1989,115:301-309.
    [2]Jia J.F.,Haraki K.,Kondo J.N.,et al.Selective Hydrogenation of Acetylene over Au/Al_2O_3 Catalyst[J].J.Phys.Chem.B,2000,104:11153-11156.
    [3]Choudhary T.V.,Sivadinarayana C.,Datye A.K.,et al.Acetylene Hydrogenation on Au-Based Catalysts[J].Catal.Lett.,2003,86:1-8.
    [4]Okumura M.,Akita T.,Haruta M.Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts[J].Catal.Today,2002,74:265-269.
    [5]Zhang X.,Shi H.,Xu B.Q.Catalysis by Gold:Isolated Surface Au~(3+) Ions are Active Sites in the Hydrogenation of 1,3-Butadiene over Au/ZrO_2 Catalysts[J].Angew.Chem.,Int.Ed.,2005,44:7132-7135.
    [6]Zhang X.,Shi H.,Xu B.Q.Comparative Study of Au/ZrO_2 Catalysts in CO Oxidation and 1,3-Butadiene Hydrogenation[J].Catal.Today,2007,122:330-337.
    [7]Hugon A.,Delannoy L.,Louis C.Supported gold catalysts for the reaction of selective hydrogenation[J].Gold Bull.,2008,41(2):127-138.
    [8]Boudart M.Fine-tuning metal clusters[J].Nature,1994,372,320.
    [9]Claus P.,Hofmeister H.,Mohr C.Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol[J].Gold Bull.,2004,37:181-186.
    [10]Mohr C.,Hofmeister H.,Radnik J.,Claus P.Identification of active sites in gold-catalyzed hydrogenation of acrolein[J].J.Am.Chem.Soc.,2003,125:1905.
    [11]Milone C.,Tropeano M.L.,Gulino G.,et al.Selective liquid phase hydrogenation of citral on Au/Fe_2O_3 catalysts[J].Chem Commun,2002,(8):868-869.
    [12]Milone C.,Crisafulli C.,Ingoglia R.,Schipilliti L.,Galvagno S.A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts[J].Catal Today,2007,122:341.
    [13]Milone C.,Trapani M.C.,Galvagno S.Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO_2 catalysts[J].Appl Catal A,2008,337(2):163-167.
    [14]Campo B.,Volpe M.A.,Ivanova S.,Touroude R.Selective hydrogenation of crotonaldehyde on Au/HSA-CeO_2 catalysts[J].J.Catal.,2006,242(1):162-171.
    [15]Campo B.,Petit C.,Volpe,M.A.Hydrogenation of crotonaldehyde on different Au/CeO_2 catalysts[J].J.Catal.,2008,254(1):71-78.
    [16]Monte R.D.,Kaspar J.Nanostrucmred CeO_2-ZrO_2 mixed oxides[J].J.Mater.Chem.,2005,15:633-648.
    [17]Boaro M.,Leitenburg C.D.,Dolcetti G.,Trovarelli A.The dynamics of oxygen storage in ceria-zirconia model catalysts measured by co oxidation under stationary and cycling feedstream compositions[J].J.Catal.,2000,193:338-347.
    [18]Zanella R.,Louis C.,Giorgio S.,et al.Crotonaldehyde hydrogenation by gold supported on TiO_2:structure sensitivity and mechanism[J].J.Catal.,2004,223:328-339.
    [19]Haruta M.Size- and support-dependency in the catalysis of gold[J].Catal.Today,1997,36(1):153-166.
    [20]McBride J.R.,Hass K.C.,Poindexter B.D.et al.Raman and x-ray studies of Ce_(1-x)RE_xO_(2-y),where RE = La,Pr,Nd,Eu,Gd,and Tb[J].J.Appl.Phys.,1994,76:2435-2441.
    [1] Englisch M., Jentys A., Lercher J.A. Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO_2 and Pt/TiO_2 [J]. J. Catal., 1997,166(1): 25.
    [2] Vannice M.A., Sen B. Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum [J]. J. Catal., 1989,115(1): 65.
    [3] Claus P., Schimpf S., Schodel R., Kraak P., Morke W. Honicke D. Hydrogenation of crotonaldehyde on Pt/TiO_2 catalysts: Influence of the phase composition of titania on activity and intramolecular selectivity [J]. Appl. Catal. A, 1997,165(1-2): 429.
    [4] Abid M, Paul-Boncour V., Touroude R. Pt/CeO_2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states [J]. Appl. Catal A, 2006, 297(1): 48.
    [5] Concepcion P., Corma A., Silvestre-Albero J., Franco V., Chane-Ching J.Y. Chemoselective hydrogenation catalysts: Pt on mesostructured CeO_2 nanoparticles embedded within ultrathin layers of SiO_2 binder [J]. J. Am. Chem. Soc., 2004, 126(17), 5523.
    [6] Monte R.D., Kaspar J. On the role of oxygen storage in three-way catalysis [J]. Top. Catal., 2004, 28:47-57.
    [7] Ozawa M., Kimura M., Isogai A. The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts [J]. J. Alloy. Compd., 1993, 193: 73-75.
    [8] Liotta L.F., Macaluso A., Longo A., Pantaleo G., Martorana A., Deganello G. Effects of redox treatments on the structural composition of a ceria-zirconia oxide for application in the three-way catalysis [J]. Appl. Catal A, 2003, 240: 295-307.
    [9] Monte R.D., Fornasiero P., Kaspar J., et al. Stabilisation of nanostructured Ce_(0.2)Zr_(0.8)O_2 solid solution by impregnation on Al_2O_3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts [J]. Chem. Commun., 2000, 2167-2168.
    [1] Zanella R., Louis C., Giorgio S., Touroude R. Crotonaldehyde hydrogenation by gold supported on TiO_2: structure sensitivity and mechanism [J]. J. Catal., 2004, 223: 328-339.
    [2] Li M.J., Feng Z.C., Xiong G., Ying P.L., Xin Q., Li C. J Phys Chem B, 2001, 105: 8107
    
    [3] Li C., Li M.J. J Raman Spectrosc, 2002, 33: 301
    
    [4] Zhang J., Li M.J., Feng Z.C., Chen J., Li C. J Phys Chem B, 2006,110: 927
    [5] Sinha A.K., Sedan S., Tsubota S., Haruta M. Top Catal., 2004, 29: 95
    [6] Hammer B., Norskov K. Nature, 1995, 376: 238
    
    [7] Zhang J., Xu Q., Feng Z.C., Li M.J., Li C. Angew Chem, Int Ed, 2008, 47: 1766
    [8] Claus P., Schimpf S., Schodel R., Kraak P., Morke W. Honicke D. Hydrogenation of crotonaldehyde on Pt/TiO_2 catalysts: Influence of the phase composition of titania on activity and intramolecular selectivity [J]. Appl. Catal. A, 1997,165(1-2): 429.
    [9] Su W.G., Zhang J., Feng Z.C., Chen T., Ying P.L., Li C. J Phys Chem C. 2008, 112: 7710
    [10] Campo B., Volpe M., Ivanova S., Touroude R. Selective hydrogenation of crotonaldehyde on Au/HSA-CeO_2 catalysts [J]. J Catal., 2006, 242(1): 162.
    
    [11] Dandekar A, Vannice M A. J Catal., 1999,183: 344
    
    [12] Consonni M., Jokic D., Yu Murzin D., Touroude R. M. High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde [J]. J. Catal., 1999, 188(1): 165.
    [13] Ammari F., Lamotte J., Touroude R. An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde [J]. J. Catal., 2004, 221(1): 32.
    [14] Liberkov K. Touroude R. Performance of Pt/SnO_2 catalyst in the gas phase hydrogenation of crotonaldehyde [J]. J. Mol Catal. A, 2002, 180(1-2): 221.
    [15]Gebauer-Henke E.,Grams J.,Szubiakiewicz E.,Farbotko J.,Touroude R.,Rynkowski J.Pt/Ga_2O_3 catalysts of selective hydrogenation of crotonaldehyde[J].J.Catal.,2007,250(2):195.
    [16]Ramos-Fernadez E.V.,Samaranch B.,Rarnirez de la Piscina P.,et al.Pt/Ta_2O_5-ZrO_2 catalysts for vapour phase selective hydrogenation of crotonaldehyde[J].Appl.Catal.A,2008,349(1-2):165-169.
    [17]闫宗兰,罗孟飞,谢冠群,黄炜,谢云龙.ce_xPr_(1-x)O_(2-δ)复合氧化物的XRD和Raman表征[J].无机化学学报,2005,21(3):425.
    [18]Pu Z.-Y,Lu J.-Q,Luo M.-F,Xie Y.-L.Study of oxygen vacancies in Ce_(0.9)Pr_(0.1)O_(2-δ)solid solution by in situ x-ray diffraction and in situ raman spectroscopy[J].J.Phys.Chem.C,2007,111(50):18695.
    [19]谢冠群,刘西敬,陶丽萍,鲁继青,罗孟飞,李小年.不同晶相TiO_2负载Au催化剂用于巴豆醛选择性加氢[J].催化学报,2009,30(6):543.
    [20]Englisch M.,Jentys A.,Lercher J.A.Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO_2 and Pt/TiO_2[J].J.Catal.,1997,166(1):25.
    [21]Abid M.,Paul-Boncour V.,Touroude R.Pt/CeO_2 catalysts in crotonaldehyde hydrogenation:Selectivity,metal particle size and SMSI states[J].Appl.Catal.A,2006,297(1):48.
    [22]Huang P.X.,Wu F.,Zhu B.L.,Li G.R.,et al.Praseodymium Hydroxide and Oxide Nanorods and Au/Pr_6O_(11) Nanorod Catalysts for CO Oxidation[J].J.Phys.Chem.B 2006,110(4):1614.
    [23]Concepcion P.,Corma A.,Silvestre-Albero J.,Franco V.,Chane-Ching J.Y.Chemoselective hydrogenation catalysts:Pt on mesostructured CeO_2 nanoparticles embedded within ultrathin layers of SiO_2 binder[J].J.Am.Chem.Soc.,2004,126(17),5523.
    [24]Borchert H.;Frolova Y.V.;Kaichev V.V.;et al.Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium[J].J Phys.Chem.B,2005,109(12):5728.
    [25]Bi,Q.-Y.;Qian,L.;Xing,L.-Q.;Tao,L.-P.;Zhou,Q.;Lu,J.-Q.;Luo,M.-F.Vapor phase hydrofluorination of acetylene to vinyl fluoride over La_2O_3-Al_2O_3 catalysts [J]. J Fluorine Chem., 2009,130(6): 528.
    
    [26] Campo B., Volpe M., Ivanova S., Touroude R. Selective hydrogenation of crotonaldehyde on Au/HSA-CeO_2 catalysts [J].J Catal., 2006, 242(1): 162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700