用户名: 密码: 验证码:
大量程分布式光纤传感技术研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面板堆石坝的面板表面变形和滑坡体地下深部变形位移监测是其稳定性评价的重要手段,已经在大坝、岩体稳定性预测预报中得到大量应用。但是精度高、稳定性好的形监测技术远远跟不上国家经济建设发展,尤其是随着我国近些年来对水利工程投资的大幅度上升,实时、准确地监测坝体、边坡变形等稳定问题显得十分重要。
     为适应大坝工程监测的需求,选择近年来发展起来的光纤传感监测技术,结合面板堆石坝和边坡监测工程实践,针对目前监测技术的不足,开展基于缠绕的分布式光纤传感技术研究。首先分析了分布式光纤传感变形监测方法的特点,其次建立了缠绕式光纤应变传感器的物理模型,基于光纤传感器监测机理,分析该分布式光纤位移—光损关系,再次提出了一种基于缠绕的分布式光纤应变传感测量装置,开展了该分布式光纤传感器性能试验研究,最后将分布式光纤传感器监测系统应用于工程实际。通过对以上内容的研究,主要取得了以下的成果:
     1)建立了缠绕式光纤应变传感器的物理模型,研究了基于螺旋的分布式光纤传感器监测机理,探索了岩层间距变化、不同岩层倾角对位移—光损耗的关系的影响规律。结果表明:宜采用波长1550nm和1310nm的组合光源监测系统,既能使系统有较小的初始感知位移,又能使系统有较大的测量范围;分布式光纤光损耗的主要影响因素除滑动位移量外,还与岩层间距(夹层厚度)、岩层滑移角度、入射光波长以及光纤类型有关。采用空心橡胶棒,可增长测试路径,扩大位移量程,进一步提高事件点的定位精度。
     2)提出了一种基于缠绕的分布式光纤应变传感测量装置,分析了橡胶管直径、螺旋间距对传感器灵敏度的影响规律。结果表明:在光纤光损耗和变形位移曲线的有效区域内,光纤的变形位移与光损耗基本呈线性关系,在变形位移一定的条件下,直径越大的橡胶管,光纤感知位移变化的灵敏度就越低;螺旋间距越大的光纤,感知位移变化的灵敏度也越低,采用直径为40mmm、螺旋间距为15mm的橡胶管的光纤传感器既能保证有较高灵敏度又能保证有较大的动态测量范围。
     3)将分布式光纤埋设在堆石坝面板,监测其变形,给出了相应监测方法,即首先通过混凝土面板堆石坝有限元分析计算,分析出堆石坝面板位移变形最大区域,最后确定光纤传感器的埋设位置和优化光纤布控方式,可大量节省光纤埋设数量,降低成本。
     4)将基于缠绕的分布式光纤传感器植入黄草坪深部岩体内,与侧斜监测结果对比,结果表明,基于缠绕的分布式光纤传感器与传统测斜仪所反应的位移变形实测数据一致性良好,所研制的传感器性能优越、灵敏度高,稳定可靠。
It is an important means to evaluate the stability of the panel surface of concrete face rock fill dam through monitoring Deformation and landslide deep body underground displacement, which has been widely used in stability prediction of the dam and the rock mass. But the shape measurement technology for high accuracy, good stability is far behind the development of national economy, especially in the part of the water conservancy project investment increased significantly in recent years, so real-time, accurate monitoring of dam, slope deformation stability problem is very important
     In order to meet the demand of dam monitoring, fiber optic sensing technology has been developed in recent years, combined with the concrete face rockfill dam and slope monitoring engineering practice, in view of the current shortage of monitoring techniques, to carry out research on distributed optical fiber sensing technology based on winding. Firstly, the characteristic of deformation monitoring method of distributed optical fiber sensor was analyzed, then a physical model of winding fiber optic strain sensor was established. Based on fiber optic sensor monitoring mechanism, the relation of distributed optical fiber displacement and optical loss was analyzed. again a kind of distributed optical fiber strain sensor is put forward. An experimental study was conducted on the performance of optical fiber sensors distributed. finally the monitoring system of distributed optical fiber sensor was applied to practical engineering. Based on the above studies, the following main results are made:
     (1) A physical model of winding fiber optic strain sensor was established. the monitoring mechanism was studied for the spiral optical fiber sensor. the effect of different strata and strata dip angle on displacement optical loss were explored. The results show that:the combined light source monitoring system at1550nm and1310nm, can make the system initial sensing displacement smaller, also can make the system wide measurement range; the main factors affecting the distributed fiber optical loss in addition to sliding displacement, and spacing (rock interlayer thickness), rock slip angle the wavelength of the incident light, and fiber type. The use of hollow rubber rod, can increase the test path, enlarge the displacement range, and further improve the positioning accuracy of event points.
     (2) a kind of distributed optical fiber strain sensing measurement device were put forward. the effect of rubber tube diameter, coil pitch on the sensitivity of the sensor were researched. The results show that:in the optical fiber loss and effective regional deformation displacement curve, displacement and the optical loss of linear relationship between deformation and displacement, in certain conditions, the greater the diameter of the rubber tube, the lower is the optical fiber sensing displacement sensitivity; the more fiber coil pitch more, the lower is the perceived displacement sensitivity, the diameter of40mm, spiral spacing for rubber tube optical fiber sensor15mm can guarantee the high sensitivity and can guarantee the dynamic range is larger.
     (3) The distributed optical fiber were embedded in the concrete face rock fill dam to monitor the deformation. Firstly, through the finite element analysis and calculation of concrete face rock fill dam, the maximum area of the rock fill dam displacement were analyzed. Finally the position of the embedded optical fiber sensors and fiber arrangement optimization method were determined, which can save a large number of embedded optical fiber, reduce costs.
     (4) The distributed optical fiber sensor based winding were implanted in deep rock mass of yellow lawn, and compared with the oblique monitoring results. The results show that:the displacement reaction of distributed optical fiber sensor and the traditional inclinometer deformation data consistency was good at sensor performance. The distributed optical fiber sensor based winding is high sensitivity, stable and reliable.
引文
[1]王惠文主编.光纤传感技术与应用[M].北京;国防工业出版社.2001.
    [2]杨兴,胡建明,戴特力.光纤光栅传感器的原理及应用研究[J].重庆师范大学学报(自然科学版),2009,26(4):101-105.
    [3]Z.-W.Zhu,D.-Y. Liu,Q.-Y. Yuan, B. Liu, J.-C. Liu. A novel distributed optic fiber transduser for landslides momtoring[J]. Optics and Lasers in Engineering,2011,49(7):1019-1024.
    [4]T.-C.Liang, Y.-L. Lin. Ground vibrations detection with fiber optic sensor[J]. Optics Communications,2012,285(9):2363-2367.
    [5]F.Pingue, S. M. Petrazzuoli, F. Obrizzo, U. Tammaro, P. De Martino, G. Zuccaro. Monitoring system of buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy,case)[J]. Measurement,2011,44(9):1628-1644.
    [6]H.-N.Li,D.-S. Li, G-B. Song. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures,2004,26(11):1647-1657.
    [7]F.Bastianini, M. Corradi, A. Borri, A. d. Tommaso. Retrofit and monitoring of an historical building using "Smart" CFRP with embedded fibre optic Brillouin sensors[J]. Construction and Building Materials,2005,19(7):525-535.
    [8]F.Cappa, Y. Guglielmi, S. Gaffet,H. Lan9on, L Lamarque. Use of in situ fiber optic sensors to characterize highly heterogeneous elastic displacement fields in fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(4); 647-654.
    [9]A.E. Scheideer. A review of recent work on mass movements on slopes and on rock falls[J], Earth-Science Reviews,1984,21(4):225-249.
    [10]MENDEZ A. Application of Embedded OPtiacl Fiber Snesors in Reinforced Concerte Buildings and Sructures[M]. SPIE.1989:60-67.
    [11]HAROTY H. A Distributed Temperature Based on Liquid-core Optical Fibers[M]. IEEE. Light-wave Technology.1983:498-509.
    [12]MEASURES R M ALAVIE T, MAASKANT R ET AL. Mutiplesed Bragg Grating Laser Sensors for Civil Engineering[M]. SPIE.1993:21-29.
    [13]GUSMEROLI V MARTINELLI M, BARBERIS. Thermal Expansion Measurements of A Concrete Sructure by Embedded Fiber-optic on Effective Excample of Simultaneous Strain-temperature Dtection[M]. Second European Conforence on Smart Strucrures and Materials, Glasgow Scotland.1994.
    [14]黄尚廉,梁大巍,刘龚.分布式光纤温度传感器系统的研究[J].仪器仪表学报,1991,(04).
    [15]蒋剑,郭法旺.分布式测温光纤在光照大坝碾压混凝土中的应用探讨[J].水力发电,2008,(03):55-58.
    [16]秦一涛,刘剑鸣,夏旭鹏等.分布式光纤温度监测系统在长调水电站的应用实践[J].大坝与安全,2004,(01):45-48.
    [17]肖衡林,蔡德所,范瑛.分布式光纤温度传感技术用于面板堆石坝面板渗漏监测[J].水电自动化与大坝监测,2006,(06):53-56+60.
    [18]MENDEZ A MORSE, TF, REINHART L J, ET AL. Measurement of The Internal Strain in Concret Elements Using Embedded Fiber Sensors[M]. SPIE.1993:362-369.
    [19]WANSER K H VOSS K H. Crack Detection Using Multimode Fiber Optical Time Domain Reflectometry [M]. SPIE.1994:43-52.
    [20]CHRISTOPHER K YL NIELL E, NOAH O, ET AL. A Noval Distributed Optical Crack Sensor for Concrete Structures [M]. Engineering Fracture Mechanics.2000:133-148.
    [21]LIU H YANG Z H. Distributed Optical Fiber Sensing of Cracks in Concrete [M]. SPIE.1998: 291-298.
    [22]刘浩吾.混凝土重力坝裂缝观测的光纤传感网络[J].水利学报,1999,10:61-64.
    [23]薛梦驰.光纤弯曲损耗的研究与测试[J].电信科学,2009,(07):57-62.
    [24]蔡德所.光纤传感技术在大坝工程中的应用[M].北京;中国水利水电出版社.
    [25]J. CRANE R M, MECANDER A B, GAGOIK. Fiber optics for A Damage Assessment System for Fiber Reinforced Plastic Composite Structures[J]. Proc Quant Nodestr Eval. 1992,1992(28)(1419-1430).
    [26]H KIM S. Monitoring of Beam Deflection Subjected to Bbending Load Uusing Brillouin Distributed Optical Fiber Sensors[J]. Proceedings of SPIE-The International Society for Optical Engineering,2001,4328:63-69.
    [27]邹丹丹.基于光纤宏观弯曲损耗的射流压力参量测量技术研究[D].南京理工大学,2008.
    [28]邢雪宁,张治辉,陈婷.光纤的弯曲损耗和微弯损耗及其利用[J].中国有线电视,2004,(23):24-26.
    [29]闫生存,孙役,李振作.光纤陀螺系统在水布垭工程中的应用[J].水力发电,2007,33(8):66-67.
    [30]王雪珍,卞保民,纪运景,李振华.单模光纤弯曲损耗理论模型的修正.光子学报,2006,35(6):819-823.
    [31]田大超,黄彬,马军山.光纤微弯损耗效应及其在检测与自控技术中的应用[J].大连铁道学院学报,1995,(01).
    [32]贺光裕,姜久兴,刘鹏.多模光纤弯曲损耗的理论分析.哈尔滨理工大学学报,1997,2(5):91-96.
    [33]罗志会,王舟.OTDR宏弯曲损耗测试的分析与应用[J].光通信技术,2009,(12):55-57.
    [34]宋万石.董箐水电站光纤陀螺监测面板挠度新技术及其运行轨道安装[J].贵州水力发电,2009,23(5):72-74.
    [35]蔡德所,李昌彩,卫炎等.三维光纤陀螺系统分布式测量思安江面板堆石坝挠度[J].水力发电学报,2006,25(4):79-82.
    [36]王惠文主编.光纤传感技术与应用[M].北京;国防工业出版社.2001.
    [37]S.Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger,E. Thiele, H. Metschies, B. Gebreselassie, J. C. Munich. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring[J]. BEEE Sensors Journal,2009,9(11):1330-1338.
    [38]国兵,隋青美,韦斌.基于布里渊散射的分布式光纤传感器的发展[J].信息技术与信息化,2009,(3):56-58.
    [39]黄波,周荫清,谭立英,马晶.温度及应力变化对光纤光栅布喃Ⅰ格波长的影响[J].光纤与电缆及其应用技术,2001,(3):23-25.
    [40]倪玉婷,率辰刚,葛春风,武星.基于OTDR的分布式光纤传感器原理及其应用.光纤与光缆及其应用技术,2006,(1):1-4
    [41]D. Marcuse. Bend Loss of Slab and Fiber Mode Computed with Diffraction Theory. IEEE Journal of QE,1993,29(12):2957-2961
    [42]Jenuhomme Luc B. Single-mode Fiber Optics. 周洋溢.桂林:广西师范大学出版 社,1988:38-45
    [43]H.Kwon,S. Kim, S. Yeom,B, Kang,K. Kim, T. Kim, H. Jang, J. Kim, S. Kang. Analysis of nonlinear fitting methods for distributed measurement of temperature and strain over 36km optical fiber based on spontaneous Brillouin backscattering[J]. Optics Communications,2013, 294:59-63.
    [44]刘晓溅.基于OTDR的分布式光纤裂缝传感器特性研究[D].大连理工大学,2005.
    [45]廖延彪.光纤光学[M].北京;清华大学出版社.2001.
    [46]S.Nan, Q. Gao. Application of Distributed Optical Fiber Sensor Technology Based on BOTDR in Similar Model Test of Backfill Mining[J]. Procedia Earth and Planetaiy Science,2011,2: 34-39.
    [47]H.Kwon,S. Kim, S. Yeom,B, Kang,K. Kim, T. Kim, H. Jang, J. Kim, S. Kang. Analysis of nonlinear fitting methods for distributed measurement of temperature and strain over 36km optical fiber based on spontaneous Brillouin backscattering[J]. Optics Communications,2013, 294:59-63.
    [48]万旭东.提高光纤背向散射法测量精度的方法研究[D].哈尔滨工程大学,2006.
    [49]K.Brown,A. W. Brown, B. G. Colpitis. Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor[J]. Optical Fiber Technology,2005,11(2):131-145.
    [50]Y.Ding,B. Shi,D. Zhang, Data processing in BOTDR distributed strain measurement based on pattern recognition[J]. Optik-International Journal for Light and Electron Optics,2010, 121(24):2234-2239.
    [51]R.Ravet, L. Zou, X. Bao,L. Chen, R. F. Huang, H. A. Khoo. Detection of buckling in steel pipeline and column by the disfaibuted Brillouin sensor[J]. Optical Fiber Technology,2006, 12(4):305-311.
    [52]Y.Lu, C Li,X. Zhang, S. Yam. Determination of thermal residual strain in cabled optical fiber with high spatial resolution by Brillouin optical time-domain reflectometry[J]. Optics and Lasers in Engineering,2011,49(9-10):1111-1117.
    [53]A.Klar,R. Linker. Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometiy[J]. Tunnelling and Underground Space Technology,2010, 25(5):575-586.
    [54]H.Ohno,H. Naruse, M. Kihara, A. Shimada. Industrial Applications of the BOTDR Optical Fiber Strain Sensor[J]. Optical Fiber Technology,2001,7(1):45-64.
    [55]倪玉婷,吕辰刚,葛春风等.基于OTDR的分布式光纤传感器原理及其应用[J].光纤与电缆及其应用技术,2006,(01):1-4.
    [56]J.Gao,B. Shi, W. Zhang, H. Zhu. Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor[J]. Measurement,2006,39(5):420-428.
    [57]KERSEY A D DAVIS M A ET AL. Fiber grating sensors[J]. Light-wave Technical,1997, 15(8).
    [58]S.Z. Yan,L. S. Chyan. Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline moiiitoring[J]. Optical Fiber Technology,2010,16(2):100-109.
    [59]H.Mohamad, K. Soga, P. J. Bennett, R. J. Mair, C. S. Lim. Monitoring Twin Tunnel Interaction Using Distributed Optical Fiber Strain Measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(8):957-967.
    [60]MOREY W W BALL G A, SINGH H. Applieations of fiber grating sensors[M]. SPIE.1996: 26-39.
    [61]刘晓溅.基于OTDR的分布式光纤裂缝传感器特性研究[D].大连理工大学,2005.
    [62]倪玉婷等.基于OTDR的分布式光纤传感器原理及其应用[J]光纤与电缆及其应用技术,2006
    [63]柴敬.岩体变形与破坏光纤传感测试基础研究[D].西安科技大学,2003
    [64]王宝军,施斌.边坡变形的分布式光纤监测试验研究及实践[J].防灾减灾工程学报,2010,30(1):28-34.
    [65]黎昵.分布式光纤温度传感监测数据处理技术及应用研究[D].河海大学,2008
    [66]M.V. Ramesh. Design, development, and deployment of a wireless sensor network for detection oflandslides[J]. Ad Hoc Networks,2012, In press.
    [67]S.Matsuura, S. Asano, T. Okamoto. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide[J]. Engineering Geology,2008,101(1-2): 49-59.
    [68]C.Squarzoni, C. Delacourt, R Allemand. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps)[J]. Engineering Geology,2005,79(3-4):215-229.
    [69]J.A. Gili,J. Corominas, J. Rius. Using Global Positioning System techniques in landslide monitoring[J]. Engineering Geology,2000,55(3); 167-192.
    [70][17]J.L. Moss. Using tiie Global Positioning System to monitor dynamic ground deformation networks on potentially active landslides[J]. International Journal of Applied Earth Observation and Geoinformation,2000,2(1):24-32.
    [71]R.Mantovani, R. Soeters, C. J. Van Westen. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology,1996,15(3-4); 213-225.
    [72]L.M. Feci, M. Berrocoso, R. Paez, A. Femandez-Ros,A. de Gil.1ESID:Automatic system for monitoring ground deformation on the Deception Island volcano (Antarctica)[J]. Computers and Geosciences,2012,48:126-133.
    [73]M. Peyret,Y. Djamour, M. Rizza, J. F. Ritz, J, E. Hurtrez,M. A. Goudarzi, H. Nankali, J. Chery, K. Le Dortz, F. Uri. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry[J]. Engineering Geology,2008,100(34):131-141.
    [74]J.R Malet, O. Maquaire, E. Calais. The use of Global Positioning System techniques for the continuous monitoring of landslides:application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology,2002,43(1-2):33-54.
    [75]毕卫红.光纤应变传感器的研究现状与发展.激光与光电子学进展,1999,408(12):1-8.
    [76]许兆文,武志刚,高伟清.基于光纤微弯的缠绕式管道变形传感器.传感技术学报,2002,3(1):34-37
    [77]金秀梅,杜彦良,孙宝臣.预应力筋准分布光纤传感测试方法研究.石家庄铁道学院学报,2006,19(1):18-22.
    [78]易江林,余达祥,程小金,朱泉水.微弯光纤传感器位移灵敏度研究.传感器技术,2004,23(8):18-19.
    [79]Y. Zhang, D. J. Feng and Z. G. Liu. High-sensitivity Pressure Sensor Using aShielded Polymer-coated Fiber Bragg Grating. Photonics Technology Letter,2001,13(6):618-619.
    [80]何爱勇,程华.光纤传感技术在结构工程检测中的应用.传感技术学报,2002,(3):211-214
    [81]刘德煜.用于应变测量的光纤传感器.桥梁建设,2003,(2):70-77.
    [82]丁睿,吴永红,刘浩吾.分布式光纤传感技术在结构裂缝检测中的应用.四川水力发电,2003,22(1):70-72.
    [83]黄志芳,应用于油田开发的光纤传感技术[J]工程地球物理学,2006,3(6):473-477.
    [84]何玉钧,基于自发布里渊散射的分布式光纤传感技术的研究[D]华北电力大学2001
    [85]魏芳,分布式光纤传感器灵敏度试验研究[D].西北水电,2011.
    [86]蒋卿,分布式光纤传感网络在边坡变形监测中的应用[J].安徽水利水电职业技术学院学报.2008,8(1):13-15.
    [87]徐泽平,面板堆石坝数值分析的本构模型研究[J].中国水利学会混凝土面板堆石坝专业委员会第二届第三次会议.2005.
    [88]汪红宇,基于有限元和多元有理样条理论的面板坝测点优化布置研究[D].大连理工大学.2006.
    [89]刘军,混凝土面板堆石坝面板变形特性研究[D].西北农林科技大学,2008.
    [90]郭磊,严寒地区碾压混凝土重力坝设纵缝温控仿真分析[D].西安理工大学,2008.
    [91]刘彪,土与地下结构变状态接触面的力学特性研究[D].西安交通大学,2008.
    [92]沈杰,土与地下结构变状态接触面的力学特性研究[D].同济大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700