用户名: 密码: 验证码:
线性工程路基岩溶土洞(塌陷)灾害防治综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶土洞(塌陷)是岩溶区线性工程路基施工中的主要地质灾害,本文通过对广西桂林-阳朔高速公路、广州地铁2#延长段、广西贵港西气东输二线工程及辽宁鞍山哈尔滨-大连铁路客运专线等四个典型线性工程路基岩溶土洞(塌陷)的详细剖析,从形成演化机理试验研究、探测技术研究、监测预警技术研究和处置方法等四个方面,初步建立了较为有效的线性工程岩溶土洞(塌陷)灾害防治体系:
     一、岩溶土洞的机理研究方面
     通过四个典型区岩溶土洞的剖析和实验分析,揭示在岩溶土洞的形成演化过程中,地下水的渗透变形破坏、崩解效应起了重要作用,但在一定条件下,地下水对土体的溶滤作用不可忽视。
     从勘探结果来看,土洞主要存在于两种土层结构模式中:有含水层的多元结构土层、无含水层的单一结构土层。多元结构土层中的土洞主要在基岩面附近。单一结构土层土洞主要发育在包气带内,这是土洞向上扩展的结果。
     二、岩溶土洞(塌陷)的探测技术方面
     通过高密度电法、浅层地震和地质雷达的现场对比试验,结果表明:具有连续测量特点的地质雷达是探测岩溶土洞的最佳方法。
     三、岩溶土洞(塌陷)的监测预警方面
     本次工作对同轴电缆时域反射(TDR)技术监测土洞的可行性和可靠性进行试验研究,表明具有分布式特点的TDR技术在线性工程岩溶土洞的空间定位方面具有极大的优势,能够有效确定土洞的空间位置,定位精度可达1.0m。
     既是传输介质又是传感器的同轴电缆的埋设直接影响TDR监测预报岩溶土洞的效果,通过实体工程,对比了三种埋设方法,结果表明,在线性工程施工条件下,梁式胶结同轴电缆方式可以满足要求。
     为了实现岩溶土洞形成演化过程的现场监测预报,本次研究在桂林-阳朔高速公路K14+550~K14+650长约100m路段建成了岩溶土洞(塌陷)监测预警站,首次采用综合监测方法,对岩溶土洞的动力条件(包括大气降雨、岩溶地下水动态)进行实时监测,监测土洞异常的TDR测量频率为每月1次,最后,通过地质雷达扫描,对异常进行复核。
     四、岩溶土洞的处置方面
     目前,岩溶土洞(塌陷)的处理多数采用开挖-换填法、注浆法。本次研究表明,在岩溶地下水位承压的条件下,局部开挖-换填法很容易在周围的土-石界面诱发更多的土洞,因此,应采用注浆方法填塞土洞,提高抗塌能力。此外,地质雷达扫描可有效地检测岩溶土洞(塌陷)注浆处理效果。
Subsurface soil-voids and sinkhole collapses are main geological hazards during linear engineering construction in the karst regions. In this research, four constructing linear engineering sites, the Guilin-Yangshuo Highway, Guangxi Province, the Extension Section of 2nd Line Subway in Guangzhou, Guangdong Province, the Guiguang Section of the 2nd West-East Gas Pipeline, Guangxi Province, and the Anshan Section of the Express Railway from Harbin to Dalian, Liaoning Province, have been selected as typical sites. Through comprehensive analysis of the results of soil-void formation mechanism test, geophysical and drilling exploration, sinkhole monitoring and treatment, a primary system of soil-void prevention and treatment has been established.
     1. The mechanism of soil-void formation
     For mechanism analysis of soil-void formation, laboratory tests of undisturbed soil samples, including seepage deformation test, modified pinhole test, slaking test, and chemical composition test have been taken. The results show soil seepage failure and disintegration induced by groundwater flow play an important part in the process of soil-void formation, and lixiviation should not be neglected in some condition.
     The exploration indicates soil-voids usually exist in two modes of soil structure, multi-layer with shallow aquifer and single-layer without shallow aquifer. In the multi-layers mode, most soil-voids locates nearby bedrock surface where is under groundwater table, and in the single layer mode, soil-voids are generally at the unsaturated zone, it should be the result of soil-cave development upward.
     2. Exploration of subsurface soil voids
     In order to select a suitable geophysical method to detect locations of subsurface soil-voids (potential sinkholes), Ground Penetrating Radar (GPR), Multi-electrode Electric Resistivity, and Shallow Seismic Reflection were used for survey in the research sites. Comparison of the three geophysical methods indicates that GPR can detect subsurface soil voids in a more effective and timely manner.
     3. Monitoring of soil-voids (sinkholes) formation
     Through the feasibility and reliability tests of Time Domain Reflectometry (TDR) monitoring soil-voids, it is proved that the TDR is effective to monitoring soil-voids and potential sinkholes along linear engineering, because of unique features such as distributed measurement, long distance range, high resolution, cost-effective and remote monitoring. The precise of soil-void location defined by TDR is about one meter.
     The coaxial cable is both the transmission line and sensor, so coaxial cable installation will influence the validity of soil-void monitoring and forecasting. The tests of three different installation methods indicate that the coaxial cable beamy covered by cement-sands is the suitable way for soil-void monitoring under the linear engineering construction.
     The station of long-term monitoring and forecasting of soil-void and potential sinkhole was established at Guilin-Yangshuo highway on Dec. 21, 2006. From the milestone K14+550 to K14+650, five parallel lines of coaxial cables, with a 3 meters space between, were installed on the subgrade. Additionally, a piezometer datalogger and a rain gauge were installed to measured groundwater pressure in karst opening and precipitation, and GPR was used to scan along the same lines to confirm the abnormity of TDR.
     4. Treatment of soil-voids (potential sinkhole)
     Excavation backfill and grouting are widely used to treat the soil-voids and sinkholes. This research indicates that excavation will create new soil-voids around the interface of soil and backfill block-stone if groundwater was confined, because the block-stone exists space and makes seepage deformation easily happen in circumjacent soil. So filling the soil-void with grout is a better way to treat soil-voids and potential sinkholes. For the very good reflection in the GPR image, GPR can also be used to verify grouting quality.
引文
[1]袁道先.岩溶学词典.北京:地质出版社, 1988
    [2]康彦仁,项式均,等.中国南方岩溶塌陷.南宁:广西科学技术出版社, 1990
    [3] George Sowers, Building and Sinkholes: Design and Construction of Foundations in Karst Terrain. ASCE, 1996.
    [4] Vladimir Tolmachev, Olga Maximova, and Tatiana Mamonova. Some new approaches to assessment of collapse risks in covered karts, In: Barry F. Beck, eds. Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2005, Geotechnical Special Publication, No. 144:66-71
    [5]雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法.中国地质灾害与防治学报, 1998, 9(3):1~6.
    [6]蒋小珍.岩溶塌陷发育条件的试验研究.地质灾害学术讨论会论文集.1998, 9(增刊): 187~191
    [7]蒋小珍.岩溶塌陷中水压力的触发作用.中国地质灾害与防治学报. 1998(3):42~47
    [8]蒋小珍,雷明堂等.岩溶水作用下填石路基稳定性模型试验研究.中国岩溶. 2005(2):96~102
    [9]林世文,蔡秋景,林珺.大连地区红粘土特征研究.岩土工程技术, 2005, 19(3):123~126
    [10]庞春勇,赖来仁,周明芳.桂林市红粘土的化学活动性与工程环境效应.矿产与地质, 2002, 16(6):357~359
    [11]袁莉明.岩溶地区土洞的发育机制及治理.土工基础, 2002, 16(1): 5~6
    [12]杨先寿,丁坚平.黔北岩溶区土洞发育特征及工程地质性质──以贵州珍酒厂工程建筑场区为例.贵州地质, 1998, 15(2): 176~181
    [13]廖义玲,毕庆涛,姜国萍,等.碳酸盐岩地表岩溶与红粘土.地球与环境, 2005, 33(4): 13~19
    [14]万志清,秦四清,李志刚,等.土洞形成的机理及起始条件.岩石力学与工程学报, 2003, 22(8):1377~1382
    [15]陈荣波,郑水清.岩溶土洞的工程特性与鉴别.广东土木与建筑, 2004, No.2: 21~24
    [16]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验.长安大学学报(自然科学版), 2007, 27(1):23~26
    [17]彭涛,葛少亭,武威.岩溶土洞发育区地基塌陷的治理.水文地质工程地质, 2001(3): 55~57
    [18]丁春林.含土洞、溶洞的机场滑行道路基稳定性评估.岩石力学与工程学报, 2003, 22(8):1329~1333
    [19]马金荣,韩宝平.徐州市塌陷区岩土体特性与塌陷机理.中国地质灾害与防治学报, 1996,7(2):51~56
    [20]李清春,冯克印,等.临沂市城区岩溶塌陷特征及成因分析.山东国土资源, 2005, 21(9): 61~64
    [21]陈学道,朱学愚.粘性土土洞形成的水化学侵蚀试验.水文地质工程地质. 1997, No.1: 29~32。
    [22]赵显鹏,刘运清.岩溶地区路基土洞成因及处理措施.交通科技, 2004, 205(5): 35~37
    [23]刘之葵.等.岩溶区土洞发育机制的分析.工程地质学报, 2004, 12(1): 45~49
    [24]谭鉴益.广西覆盖型岩溶区土层崩解机理研究.工程地质学报, 2001, 9(3): 272~276
    [25]赵颖文,孔令伟,郭爱国,等.广西原状红粘土力学性状与水敏性特征.岩土力学, 2003, 24(4): 568~572
    [26]王柳宁.高武振.桂林市西城区地下水活动与岩溶塌陷的关系.桂林工学院学报, 2000(2):106~110
    [27] American Society for Testing and Materials. ASTM D6429~99. Standard Guide for Selecting Surface Geophysical Methods. USA: West Conshohocken, Pennsylvania.1999
    [28] Technos. Inc.. Surface Geophysical Methods. 2004.
    [29]中华人民共和国水利部. SL 326-2005.水利水电工程物探规程.北京:中国水利水电出版社, 2005-11-01
    [30]刘传正,等.地质灾害勘察指南.北京:中国地质出版社,2001
    [31]王兴泰.工程与环境物探新方法新技术.北京:中国地质出版社,1996
    [32]郭正言,刘长平.地质雷达在岩溶地区公路工程勘察中的应用.公路, 1999(11):50~52
    [33]鄢宏庆.高速公路岩溶地段路基的地球物理勘探及处理探讨.路基工程, 2002(2):12~13
    [34]甘伏平,马祖陆,喻立平.岩溶地区复杂条件下的浅层地震方法应用研究.地质与勘探, 2005, 41(3):75~78
    [35]王建军.强建科,李成香.高密度电法在地面塌陷勘察中的应用.工程地球物理学报, 2005,2(3):232~234
    [36]武斌,曾校丰.综合物探在京珠高速公路粤境北段岩溶探测中的应用.四川地质学报,2005,25(3):190~192
    [37]武斌,张淳.瑞雷波法在灰岩工程中的应用.四川地质学报, 2007,27(2):149~152
    [38]何金武,徐干成,郑建中.地质雷达在地下洞穴探测中的应用.铁道建筑技术,2008(S1):548~550
    [39]王亮,李正文,王绪本.地质雷达探测岩溶洞穴物理模拟研究.地球物理学进展, 2008, 23(1): 281~283
    [40]甘伏平,李金铭,黎华清,等.跨孔电磁波透视法在岩溶探测中的应用.物探与化探, 2006, 30(4): 303~307
    [41]祝卫东,钱勇峰,李建华.高密度电阻率法在采空区及岩溶探测中的应用研究.工程勘察, 2006(4): 69~72
    [42] Zisman, E.D. Wightman, M.J. and Taylor, C.. The Effectiveness of GPR in Sinkhole Investigations. In: Barry F. Beck, eds. Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2005, Geotechnical Special Publication, No. 144: 608~616.
    [43] Hoover, R.A.. Geophysical Choices for Karst Investigations. In: Barry F. Beck, eds. Proceedings of the 9th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2003, Geotechnical Special Publication, No. 122: 529~538
    [44] Saribudak, M. Hawkins, A. and Stoker, K.R.. Integrated Geophysical Surveys Applied to Karstic Studies Over Transmission Lines in San Antonio, Texas. In: Barry F. Beck, eds. Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2005, Geotechnical Special Publication, No. 144: 580~589
    [45]夏照华,李晓峰.地质雷达在探测地下溶洞中的应用.西部探矿工程, 2005(1):91~92
    [46]李玮.梁晓圆.对地质雷达探测岩溶的方法和实例的探讨.勘察科学技术, 1995(2):61~64
    [47]胡晓光.探地雷达在工程地质勘察中查寻土洞的应用效果.物探与化探, 1994(6):473~476
    [48]葛双成.邵长云.岩溶勘察中的探地雷达技术及应用.地球物理学进展. 2005, 20(2): 476~481
    [49]刘日圣,梅仕然,苏泉鸣.高速公路路基土洞勘探与处理简述.中南公路工程, 2001, 26(2): 63~65
    [50]吴基文,吕庆成.覆盖型岩溶地区隐伏土洞探测实例.中国煤田地质, 1999,11(2):67~68
    [51]朱清耀.高密度电法在岩溶地区工程勘察中的应用.福建工程学院学报, 2005,3(3):238~242
    [52]蒋小珍,雷明堂,顾维芳,等.线性工程路基岩溶土洞(塌陷)监测技术与方法综述.中国岩溶, 2008, 27(2): 172~176
    [53] Richard C. Benson, Assessment and long term monitoring of localized subsidence using ground penetrating radar. In:Barry F. Beck, William L. Wilson eds. Proceedings of The Second Multidisciplinary conference on sinkholes and the Environmental Impacts of Karst. Orlando, Florida, 1987:161~170.
    [54]雷明堂,蒋小珍,李瑜,等.桂林柘木岩溶塌陷监测预报,中国岩溶地下水与石漠化研究.广西科学技术出版社, 2003:102~116.
    [55] Rana A. Al-Fares, The Utility of Synthetic Aperture Radar Interferometry in Monitoring Sinkhole Subsidence. In: Barry F. Beck, eds. Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2005, Geotechnical Special Publication, No. 144: 541~547.
    [56] Handfelt L.D. and Attwooll W.J. Exploration of karst conditions in central Florida, American Society of Civil Engineers. Geotechnical Special Publication No.14, ASCE, 1988:40~52.
    [57]冯克印,郑庭明.基于水动力场控制的岩溶塌陷预警预报研究.工程勘察, 2006. No.10:34~37。
    [58] Dowding, C.H. Su, M.B. and O'Connor, K.M.. Principles of Time Domain Reflectometry Applied to Measurement of Rock Mass Deformation. Int. J. Rock Mech. and Min. Sci., 1988, 25 (5): 287~297.
    [59] Dowding C H,Su M B,O'Connor K. Principles of time domain reflectometry applied to measurement of rock mass deformation. International Journal of Rock Mechanics,Mining Sciences& Geomechanics Abstracts,1988,25(5):287~297.
    [60] Su, M.B.. Quantification of Cable Deformation with Time Domain Reflectometry. [Ph.D. Dissertation]. USA: Northwestern Univ.,1987
    [61] Topp, G.C. Davis, J.L. and Annan, A.P.. Electromagnetic Determination of Soil Water Content: Measurement in Coaxial Transmission Lines. Water Resources Research, 1980, 16 (3): 574~582.
    [62] Fellner-Feldegg, J.. The Measurement of Dielectrics in the Time Domain. J. Phys. Chem. 1969(73): 616~623.
    [63] Herkelrath, W.N., Hamburg, S.P. and Murphy, F. Automatic, Real-Time Monitoring of Soil Moisture in a Remote Field Area with Time Domain Reflectometry. Water Resources Research, 1991, 27 (5): 857~864.
    [64] Dowding, C. H. and Huang, F.. Telemetric Monitoring for Early Detection of Rock Movement With Time Domain Reflectometry. J. Geot. Eng., Am. Soc. Civ. Eng., 1994, 120 (8): 1413~1427.
    [65] Dowding, C.H. and Prine, D.. Remote Monitoring of Mine Subsidence of Interstate 70 With Time Domain Reflectometry. ITI Technical Report. Evanston: Northwestern University, 1998
    [66] O’Connor, K.M., Peterson, D.E., and Lord, E.R. Development of a Highwall Monitoring System using Time Domain Reflectometry. Proc., 35th U.S. Sym. Rock Mdch., Reno, Nevada, June, 1995:79~84.
    [67] Kane W F,Beck T J,Anderson N O,et al.Remote monitoring of unstable slopes using time domain reflectometry. Proceedings of Eleventh Thematic Conference and Workshops on Applied Geologic Remote Sensing.Las Vegas:ERIM,1996:431~440.
    [68] Andrews, J.R.. Time Domain Reflectometry. Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston, Illinois, Sept 7~9,1994, U.S. Bureau of Mines, Special Publication SP 19~94, NTIS PB95~105789, 4~13.
    [69] Lei, M. Gao, Y. Jiang, X. and Hu, Y.. Experimental Study of Physical Models for Sinkhole Collapses in Wuhan, China. In: Barry F. Beck, eds. Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2005, Geotechnical Special Publication, No. 144: 91~102.
    [70] O'Conner, K.C. and Dowding, C.H.. Real Time Monitoring of Infrastructure Using TDR Technology Principles. Proceedings of The First International Conference on the Application of Geophysical Methodologies & NDT to Transportation Facilities and Infrastructure,2000, St Louis, Missouri.
    [71] Schwartz, B. F. and Schreiber, M. E.. New Applications of Differential Electrical Resistivity Tomography and Time Domain Reflectometry to modeling infiltration and soil moisture in agricultural sinkholes. In: Barry F. Beck, eds. Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2005, Geotechnical Special Publication No. 144: 548~554.
    [72] Kevin M. O’Connor , Real Time Monitoring of Subsidence Along I~70 in Washington, Pennsylvania, Publications of Infrastructure Technology Institute, Northwestern University, USA, 2001. http://www.iti.northwestern.edu/publications
    [73] Matthieu L. Dussud. TDR Monitoring of Soil Deformation: Case Histories and Field Techniques: [硕士学位论文].美国:西北大学, 2002
    [74] Xiaozhen Jiang, Mingtang Lei, Yongli Gao, et al. Monitoring soil void formation along highway subgrade using Time Domain Reflectometry (TDR), a pilot study at Guilin-Yangshuo highway, Guangxi, China. In: Barry F. Beck, eds. Proceedings of the 11thMultidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2008, Geotechnical Special Publication, No. 183: 213~222
    [75]湯士弘,林志平,鐘志忠.時域反射技術應用於邊坡監測—成效與問題. The 11th Conference on Current Researches in Geotechnical Engineering in Taiwan. Sept. 2005.
    [76]蘇苗彬,廖建鑫.使用TDR量測梨山地層滑動面之成果分析. Taiwan Rock Engineering Symposium. Tainan, 2006:357~366.
    [77]黄安斌,林志平,廖志中,等.先进边坡监测系统之研发.土木水利,2002,29(2):65~78.
    [78]陈云敏,陈赟.滑坡监测TDR技术的试验研究.岩石力学与工程学报, 2004,23(16):2748~2755.
    [79]万华琳,蔡德所,等.高陡边坡深部变形的光纤传感监测试验研究.三峡大学学报(自然科学版), 2001, 23(1):20~23.
    [80]施斌,徐洪钟,张丹,等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究.岩石力学与工程学报,2004,23(3):493~499.
    [81]张俊义,晏鄂川,等. BOTDR技术在三峡库区崩滑灾害监测中的应用分析.地球于环境,2005,33(S1):355~358
    [82]蒋小珍,雷明堂.光纤传感技术监测塌陷模型试验研究.水文地质工程地质, 2006,(6):75~79
    [83]周芳,陈世益.广西贵港红土风化壳的地球化学特征.中南矿冶学院学报,1994,25(2): 151~155
    [84]丁建仁, TDR变形量的量化研究:[硕士研究论文],台湾:国立中兴大学, 1999
    [85]钟宏达. TDR监测地层滑动的可行性研究: [硕士研究论文],台湾:国立中兴大学, 1999
    [86]卢吉勇. TDR错动变形量测之研究: [硕士研究论文] ,台湾:国立交通大学, 2003
    [87]崔志龙. TDR与OTDR错动变形监测之研究: [硕士研究论文],台湾:国立交通大学, 2004
    [88]龚茂波.从工程实例谈岩溶地区土洞的处理.城市道桥与防洪, 1998(3):26~29
    [89]彭涛,葛少亭,武威.岩溶土洞发育区地基塌陷的治理.水文地质工程地质, 2001(3): 55~57
    [90]何晓斌.岩溶_土洞地基处理施工实例.广州建筑, 2005(1):33~36
    [91]王革立.宁横公路岩溶塌陷区路基处理的措施与对策.地质与勘探, 2001, 37(3): 91~92
    [92]邢莉,李宏卓.土洞设计和施工中的若干问题.施工技术研究与应用, 2004(3):39~40
    [93]廖光平.某教学楼土洞的成因与处理.西部探矿工程. 2002(6)
    [94]黄伟,陈义,蓝静辉.土洞及软基加固处理综合技术.煤炭科学技术, 2002(4):34~37
    [95]覃柳华压力灌浆法在粘土岩溶土洞加固中的应用.广西土木建筑, 1999(12):187~190
    [96]董汉雄.覆盖型岩溶地区铁路路基塌陷灌浆处理.路基工程, 2003, NO.6: 35~38
    [97]郑树忠.灌浆法处理水泥混凝土路面板下土洞.西部探矿工程, 2004(4):164~165
    [98]曾重庆.明挖回填法在处治公路路基岩溶地基中的应用及其适用条件.湖南交通科技, 2005(3):35~37
    [99]倪宏革.郑益民等.高速公路岩溶路基注浆加固工法研究.公路, 2004(4):48~51
    [100]韦明.河池(水任)至南宁公路岩溶地段路基的处理.广西交通科技, 2003(5):56~59
    [101] Moore. H. L.. The Use of Graded Solid Rock for Rock ad and Rock Embankment Construction along Highways in Karst Areas of East Tennessee. resented and published in the proceedings of the 56th Annual Highway Geology Symposium, Wilmington , NC, May 4~6,2005:89~102.
    [102]叶涛,肖永忠.注浆法处理高速公路岩溶路基.西部探矿工程, 2004(7):169~170
    [103]母进伟.雷明堂,梁军林,等.岩溶路基病害与处置技术国内外研究现状.中国岩溶, 2005, 24(2):89~95
    [104]盛玉环,岩溶塌陷的勘察与防治,岩土工程界,2005(4):72~74
    [105]韩炜.广清高速公路岩溶地区路基施工技术措施.公路与汽运, 2005(4):77~78
    [106] Mingtang Lei and Junlin Liang. Karst collapse revention along Shui-Nan Highway. China. 2005:293~298
    [107] Mingtang Lei, Yongli Gao, Yu Li, et al. Detection and treatment of sinkholes and subsurface voids along Guilin - Yangshuo highway, Guangxi, China. In: Barry F. Beck, eds. Proceedings of the 11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2008, Geotechnical Special Publication, No. 183: 632~639
    [108] Michael J. Miluski, Charles J. Naples. Two case histories of sinkhole repair using low mobility grouting methods. In: Barry F. Beck, eds. Proceedings of the 11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2008, Geotechnical Special Publication, No. 183: 670~679
    [109] Raymond Saliba, Nick Hudyma, Binay Prakash. Subgrade evaluation and repair of a roadway depression caused by a deep seated sinkhole. In: Barry F. Beck, eds. Proceedings of the 11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. USA: ASCE, 2008, Geotechnical Special Publication, No. 183: 593~601
    [110]蒋小珍,雷明堂.第十届岩溶塌陷、工程、环境影响国际会议综述.中国岩溶, 2005, 24(4): 349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700