用户名: 密码: 验证码:
矿山空区诱发的岩移特征及覆盖层冒落效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采空区是采矿工程产生的最主要的灾害形式之一,当暴露面积增大到一定程度时,将可能会诱发灾难性的事故。研究采空区的稳定性及其岩层移动冒落特征和规律意义重大。本文以作者负责的项目“龙桥铁矿采空区监测与项板岩石冒落规律研究”为研究背景,采用室内试验、数值模拟、理论分析、现场监测与调查相结合的方法,借鉴统计学、多源信息融合技术的思想,研究揭示龙桥铁矿矿体回采产生的开采效应及关键块体特征参数。
     系统地对现有的岩石力学参数取值方法存在的缺陷进行分析,给出了用稳健回归方法确定岩石抗剪强度的模型,并对各种岩体参数取值方法进行评述。针对岩石抗剪强度确定中图解法和最小二乘法(LS)存在的问题:(1)只适用于实验数据相关性较高的情况,不适用于数据离散并有异常值存在的情况;(2)在对试验法获得的试验数据进行处理时,传统的最小二乘法由于采用残差平方和,容易夸大试验数据中异常值的影响。鉴于此,提出了岩石抗剪强度参数的稳健(Robust)回归分析方法。该方法在实验数据相关性差、数据离散并有异常值存在的情况下,具备削弱数据离散和对异常值定位的能力,提高了估计参数的稳健性和可靠性。该方法以残差的绝对值之和代替残差平方和,并通过复形法求得力学参数,避免了异常值的二次项,可以有效地减少异常值的影响。研究表明,在试验数据的相关性较好时,两种方法的计算结果相差不大,但当试验数据的相关性较差,存在异常值时,稳健回归方法的计算结果要优于最小二乘法。另外,为方便及提高数值计算精度,测量了龙桥铁矿的地应力。
     在前期现场调查、现场原岩应力测定、室内力学试验及岩体力学参数工程处理的研究基础上,采用FLAC3D方法对龙桥铁矿空区形成过程及采空区稳定性进行模拟计算和预测分析,分析了空区围岩的主应力、正应力、剪应力及变形情况,初步得到了围岩体变形和失稳的规律。采空区稳定性数值模拟结果表明,采空区形成后,空区四周各角隅处将首先达到极限剪切破坏状态。随着采空区的增大,角隅处破坏区域逐步延深扩大,顶板中央拉应力分布逐渐明显,最终可能变为拉应力破坏。根据研究结论,指出该矿山后续开采设计和管理中应注意的问题,并提出了合理的开采设计建议。
     传统的有限元分析方法很难分析岩体大变形及块体的跨落情况,系统地将关键块体理论、极限平衡分析与可靠度理论相结合,研究关键块体跨落的可能性。在常规可靠度分析理论一次二阶矩方法和二次二阶矩方法中,需要对基本随机变量进行正态变换或当量正态化,必须已知随机变量的概率分布,有时比较麻烦,而且这种变换也是导致功能函数非线性从而成为误差的一种来源。为消除这些误差,本文引入一次渐近积分方法与二次次渐近积分方法,很好的解决了该问题,不再需将变量正态化,提高了计算精度。
     科学准确的理解关键块体的特征参数,如关键块体的位置、体积、滑动方向、下滑力及抗滑力,可以有效对采矿方案进行优化,最大限度的提高开采效益,有效防止灾害事故的发生。建立空区上块状岩体的特征分析方法,该方法结合块体理论、可靠度理论及矢量分析可以确定关键块体的大小、移动方向、滑动模式、块体的可靠性及其失效概率等。通过本文建立的模型,根据模型的思路和数学公式编制了Matlab程序进行计算,计算结果显示,在15个开采区域,可动块体有270多个,可动块体中安全系数小于2的关键块体有48个,其中安全系数小于1.5的关键块体有33个,占68.73%。并给出了每个块体特征参数、可靠度及可靠概率。
     将安全系数与可靠度比较指出了安全系数在分析中存在的缺陷,由于岩体的复杂性和不确定性,很难准确确定岩石力学计算参数,然而,岩体力学参数的确定直接影响着计算结果,考虑参数的随机性,引入随机可靠度理论对其进行研究。研究发现,用安全系数分析关键块体的稳定性存在很大的误差,甚至有时候会得出完全错误和相反的结论。
     根据2009年龙桥铁矿回采后采空区的实际空间分布情况,结合整体稳定性分析对几何建模工作提出的要求,与龙桥铁矿技术人员多次讨论、分析,在确定本研究中矿体开采状况的时空对应关系后,对矿整个矿山开采显现的规律进行研究,主要从最大主应力、最小主应力、产生的垂直位移及地表变形等几个方面展开。
     将意大利产的Detector新型探地雷达设备应用到龙桥铁矿采空区覆盖层厚度探测中,并论述了探测原理及具体方法。该设备天线为IDS TR40MHz屏蔽天线,最大探测深度可以达到50米。探测结果表明,该矿山空区垫层厚度大于25 m,满足国家安全生产规程规定的无底柱分段崩落法空区垫层厚度必须超过2个分段高度。
     讨论了三种GM(1,1)模型与最小二乘支持向量机结合的方法:并联型、串联型和残差型灰色最小二乘支持向量机预测模型。给出了岩石覆盖层冒落及碴石厚度预测的灰色最小二乘支持向量机模型的建模思路及关键步骤,并应用该模型对覆盖层冒落高度及碴石厚度进行预测,研究表明,3种灰色最小二乘支持向量机的预测结果优于单一的GM(1,1)和单纯的LSSVM,各项指标均有所降低,体现了多信息融合的优势。残差型模型要优于并联型和串联型模型,表明用LSSVM来描述覆盖岩层及碴石厚度序列的随机项是正确可靠的。在串联型模型中,该组合预测结果要优于单个GM(1,1)模型预测,在实际应用GM(1,1)模型进行预测时,不能够事先知道哪个模型最优,因此使用该模型可以减小预测的盲目性,有一定的实用价值。充分显示了GLSSVM这种新的信息处理和预测方法的优越性,可以在工程实践中加以推广。
The goaf is one of the most important forms of disasters induced by mining engineering. As mining progresses, when the exposed area of cavity increases to a certain extent, it will induce a catastrophic accident. In this paper, the horizontal projec "goaf Monitoring and the roof of goaf and falling law in Longqiao iron mine" as the research background around mining-induced rock movement and goaf falling effect cover the themes of work, combined with indoor test, numerical simulation, theoretical analysis, field monitoring and survey methods, the iron ore mining Longqiao effect produced by mining and key block feature parameter were revealed.
     Shortcomings existing of methods to get rock mechanics parameters was analyzed. The rock with a robust regression method to determine the shear strength model was given, and the various methods of rock mass parameters is reviewed and studied their in metal mining on application. Aiming at solve problems in determining the shear strength of rock in the graphic method and Least Squares (LS):(1) It only applies to a higher degree of experimental data related to the situation but not to discrete data and the existence of outliers; (2) When the test data obtained by the experimentation method are analyzed, the effect of anomalous values in test data increase markedly because the quadratic sum of residual error is adopted in calculation by the least square method. In view of this, a rock of stability of shear strength parameters (Robust) regression analysis is proposed. This method is related to the experimental data in the poor, dispersion and the existence of outlier cases, and can be weakened the value of discrete and abnormal positioning of the ability to improve the robustness and reliability of estimated parameters. In order to reduce the effect of anomalous values in test data, the sum of residual absolute value is used to replace the quadratic sum of residual error in the robust regress method, then the quadratic of anomalous value could be avoided, and the effect of anomalous value could be reduced availably. It shows that the results of the two methods are same when the relativity of the test data is good, but the results of the robust regress method are better than the least square method when there are have the anomalous values in test data. In addition, to facilitate and improve the numerical precision, Longqiao iron stress was measured.
     Based on the pre-site investigation, site of the original rock stress measurement, indoor rock mechanical parameters of the mechanical testing and handling of works, goaf forming process and the stability of simulation and prediction analysis of the goaf surrounding the principal stress, normal stress, shear stress and deformation were analyzed using FLAC3D. The law of rock deformation and instability iron was initially obtained.
     Simulation results of goaf stability show that the formation of goaf, the goaf around the corner will be the first to reach the ultimate state of shear failure. As the mined area increases, the destruction of the corner region of extended gradually expanded roof became clear the central tensile stress, tensile stress may eventually become damaged. According to the conclusions, follow-up exploration of the mine design and management should pay attention to the problems and proposed a reasonable design of the proposed mining.
     Traditional finite element method is difficult to analyze large rock deformation and block cross-off situation, according to key block theory, limit equilibrium analysis and reliability theory, across key block down the possibility was researched. In the conventional theory of first order second moment reliability analysis methods and second order second moment method, the need for the basic random variables are normal state of transformation or the equivalent, must be known to the probability distribution of random variable, sometimes too much trouble, and this kind of transformation is also the leading non-linear performance function to be a source of error. To eliminate these errors, we introduce an asymptotic integration method and the second time asymptotic integration method, a good solution to the problem.
     The establishment of the goaf on the characteristics of rock block analysis, the method combines block theory, reliability theory and vector analysis can determine the key block size, moving direction, sliding mbde, the reliability and effectiveness of block probability and so on.
     Through proposed model, based on the model of thinking and mathematical formulas to calculate the preparation of Matlab program, the results showed that in 15 mining areas, movable block with more than 270, the movable block in the critical safety factor is less than 2 Block 48, in which the key factor of safety less than 1.5,33 bulk, accounting for 68.73%. And the characteristic parameters of each block, the probability of reliability and reliability were given.
     Iron ore mining under the 2009 Longqiao Goaf after the actual spatial distribution, combined with the overall stability of the analysis of geometric modeling request, and iron and technical personnel Longqiao discussions, analysis, in determining the present study ore mining conditions corresponding relationship between time and space, the mining of the mineral appear to rule throughout the study, mainly from the maximum principal stress, minimum principal stress, the resulting vertical displacement and surface deformation, and several other fronts.
     The Detector will be in Italy a new application of ground penetrating radar equipment to the iron ore mined area Longqiao cover thickness detection, and discusses the principles and specific methods of detection. The equipments for the IDS TR40MHz antenna at the antenna, the maximum detection depth reach up to 50 m. Detected results show that the mine Air District cushion thickness is greater than 25 m, to meet national safety rules of order the natural caving pillar-free space zone cushion thickness must be more than two segmentation height.
     This article discusses the three types of GM (1,1) model and least squares support vector machines approach:parallel, series and residual-type gray squares support vector machine model, and iron by Longqiao examples show that such a new information processing and forecasting method is feasible and effective. Research shows falling rock and overburden thickness of ballast stone Grey forecasting model of least squares support vector machine modeling ideas and crucial step, and apply this model to cover caving height and thickness of ballast stone to predict the results show that,3 gray squares support vector machines is better than a single prediction GM (1,1) and pure LSSVM, the indexes had been lower, reflecting the advantages of multi-information fusion. Residual-based model is superior to parallel and series models, which cover with LSSVM to describe the thickness of rock and stone ballast sequence of random item are correct and reliable. In the series-type model, the combination is better than a single prediction GM (1,1) model prediction, in the practical application of GM (1,1) model forecasts can not know in advance which model the best, so use the model blindness can be reduced forecast, there are some practical value. Fully shows GLSSVM this new method of information processing and forecasting superiority can be extended in engineering practice.
引文
[1]国家安全生产监督管理局,国家煤矿安全监察局,国家安全生产科技发展规划非煤矿山领域研究报告(2004~2010)[R],2003
    [2]古德生,李夕兵.现代矿床开采科学技术[M].北京:冶金工业出版社,2006
    [3]汪旭光,潘家柱.21世纪中国有色金属工业可持续发展战略[M].北京:冶金工业出版社,2001
    [4]中国科学院可持续发展研究组.中国可持续发展报告.科学出版社,2003
    [5]国家安全监督管理局研究中心.我国煤炭城市采空塌陷灾害及防治对策研究[R],2004
    [6]纪万斌,张永庆.七台河市采煤塌陷灾害防治研究[J].第八届国际充填采矿会议论文集,2004:122-124
    [7]S.Weisberg. Applied regression[M]. John Wiley & Sonc,Inc.1985
    [8]Martin RD. Robust statistics with the s-plus robust library and financial applications. Vols 1 and 2. Insightful Corp Presentation, New York:NY,2002: 17-18
    [9]Goodman R E. Shi G H. Block Theory and Its Application to Rock Engineering[M]. Englewood Cliffs:Prentice-Hall,1985.
    [10]于学馥.信息时代岩土力学与采矿计算初步[M].北京:科学出版社,1991
    [11]Hu K X, Kemeny J. Fracture mechanics analysis of the effect of backfill on the stability of cut and fill mine workings[J]. International Journal of Rock Mechanics and Mining Sciences,1994,31(3):231-241
    [12]董陇军,李夕兵.岩石试验抗压、抗拉区间强度及代表值可信度研究[J].岩土工程学报,2010,32(12):1841-1846.
    [13]孙钧.世纪之交岩石力学研究的若干进展.岩石力学数值分析与解析方法.广东:广东科技出版社,1998
    [14]周思孟.复杂岩体若干岩石力学问题.北京:水利水电出版社,1998
    [15]何江达,张建海,范景伟.霍克—布朗强度准则中m,s参数的断裂分析岩石力学与工程学报,2001,20(4):432~435
    [16]何满潮,薛廷河,彭廷飞.工程岩体力学参数确定方法的研究.岩石力学与工程学报,2001,20(2):225~229
    [17]赵明阶,吴德伦.工程岩体的超声波分类及强度预测.岩石力学与工程 学报,2000,19(1):89~92
    [18]刘汉东.岩体力学参数优选理论及应用[M].郑州:黄河水利出版社,2006
    [19]Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scaling sureys[J]. Int. J. Rock Min. Sci.& Geomech. Abstra.,1981,18: 183-197
    [20]Kulatilake P, Wu T H. The density of discontinuity trace in sampling window[J]. Int. J. Rock Mech. Sci.,1984,21(6):345-347
    [21]Barton N, Bandis S. Review of predictive capabilities of JRC-JCS mode in engineering practice[A].In:Rock Joints[C]. Rotterdam:A. A. Balkema, 1990,603-610
    [22]Bandis S, lumsden A C, Barton N K. Experimental studies of scale effects on the hear behavior of rock joint[J].Int. J. Rock Mech. Min. Sci. Geomech. Abstra.,1981,18:1-21
    [23]Hook E, Brown E T.岩石地下工程[M].连志升,田连灿,王维德译.北京:冶金出版社,1986
    [24]蔡美峰.地应力测量原理和技术.北京:科学出版社,2000
    [25]蔡美峰,王双红.地应力状态与围岩性质的关系.中国矿业,1997,6(6):38-41
    [26]周小平,王建华.测量地应力的新方法.岩土力学,2002,23(3):316~320
    [27]程学军,蔡美峰.声发射技术和非线性理论在预报岩体失稳中的应用北京科技大学学报,1998,20(5):409~411
    [28]蔡美峰.地应力测量原理和方法的评述.岩石力学与工程学报,1993,12(3):275~283
    [29]王连捷,潘立宙等.地应力测量及其在工程中的应用.北京:地质出版社,1991
    [30]蔡美峰,乔兰,于波等.金川二矿区深部地应力测量及其分布规律研究岩石力学与工程学报,1999,18(4):414~418
    [31]蔡美峰,王双红.玲珑金矿地应力场测量结果及其分析.中国矿业,2000,9(5):46~51
    [32]John D Lupton. Cavity monitoring system and stope analysis[A]. in: Proceedings of Mass Mine Chile 2004[C]. Santiago:2004.56-62.
    [33]余卫平,汪小刚,杨健,等.地下洞室群围岩稳定性分析及其结果的可 视化[J].岩石力学与工程学报,2005,24(20):3730-3736.
    [34]李仲奎,戴荣,姜逸明.FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报,2002,24(增刊):2387-2392.
    [35]卢正.采空区地表沉陷对公路的破坏特征及预测技术[J].四川测绘,31(3):134-136
    [36]杨帆,麻凤海,刘书贤等.采空区岩层移动的动态过程与可视化研究,中国地质灾害与防治学报,2005,16(1):84-88
    [37]赵静波,高谦,李莉.地下采动岩层移动预测理论分析与研究[J].矿冶工程,2004,24(3):1-4
    [38]王艳辉,宋卫东,蔡嗣经.地下金属矿山崩落采矿法岩层移动规律分析[J].金属矿山,2003,3:13-16
    [39]董陇军,赵国彦.未确知均值分级方法及在回采巷道围岩分类中的应用[J].解放军理工大学学报(自然科学版),2009,10(6):575-579.
    [40]DONG Long-jun, PENG Gang-jian, FU Yu-hua, et al. Unascertained measurement classifying model of goaf collapse prediction[J]. Journal of Coal Science & Engineering,2008,14(2):221-224.
    [41]董陇军,李夕兵,宫凤强.开采地面沉陷预测的未确知聚类预测模型[J].中国地质灾害与防治学报,2008,19(2):95-99.
    [42]李永靖,张向东,兰常玉等.矿山地下岩层移动变形用于预测矿震的研究[J].中国矿业,2005,14(10):66-68
    [43]张东明,尹光志,魏作安等.煤矿开采中岩层移动的分形特征及其预测[J].矿山压力与顶板管理,2003,2:89-100
    [44]Jegbefume E U, Thompson T W. Influence of temperature and nonelastic behavior on roof and collapse and subsidence resulting from underground coal gasification[J]. Oil Coal Shale Minerals,1983,7(2); 143-174
    [45]Stewart D, Rein R, Firewick D. Surface subsidence at the Henderson mine[C]. Geomechanics Applications in Underground Hardrock Mining,1984:203-212
    [46]Britten J A, Thorsness C B. Model for cavity growth and resource recovery during underground coal gasification[J]. Oil Coal Shale Minerals,1989, 13(1-2):1-53
    [47]Esaki T, Dohzono S, Kimura T. Environmental system for subsidence engineering[J]. International Association of Hydrological Sciences,1991, 163-172
    [48]Singh Kalendra B, Dhar Bharat B. Sinkhole subsidence due to mining[J]. Geotechnical and Geological Engineering,1997,15(4):327-341
    [49]Gonzalez N C, Alvarez F M. The influence of time on subsidence in the Central Asturian Coalfield[J]. Bulletin of Engineering Geology and the Environment,2007,66(3):319-329
    [50]Gisotti G Case of induced subsidence for extraction of salt by hydrosolution[J]. International Association of Hydrological Sciences,1991, 200:235-245
    [51]吴建功,林清湲,高锐.地球物理方法及在地质和找矿中的应用[M].北京:地质出版社,1988
    [52]Baker R L, Cull J P. Acquisition and Signal Processing of Ground-Penetrating Radar for Shallow Exploration and Open-pit Mining. Exploration Geophysics[J],1992,23(1-2):17-22
    [53]罗周全,刘晓明.采空区精密探测技术应用研究[J].矿业研究与开发,2006,11(增):87-90
    [54]Greg Turner, Richar J Y, Peter J H. Coal Mining Applications of Ground Radar. Exploration Geophysics,1990,21(1-2):165-168
    [55]Siggins A F. A Radar Investigation of Fracture in a Granite Outcrop[J]. Exploration Geophysics,1990,21 ((1-2):105-110
    [56]Claudio Bruschini, Bertrand Gros, Frederic Guerne. Ground penetrating radar and imaging metal detector for antipersonnel mine detection. Journal of Applied Geophysics,1998,40(1-3):59-71
    [57]George A M, Robert G L, Xiaoxian Zen, et al. Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. Journal of Applied Geophysics,1998,39(1-3):1-10
    [58]Turner G Data Processing Techniques for the Location of One Dimensional Objects Using Ground Probing Radar[J]. Exploration Geophysics,1989,20(3): 379-382
    [59]Seje Carlsten, Sam Johansoon, Anders Warman. Radar Techniques for Indicating Internal Erosion in Embankment Dams[J]. Journal of Applied Geophysics,1995,33(1-3):143-156
    [60]Zaki Harari. Ground-Penetrating Radar(GPR) for Imaging Stratigraphic Features and Groundwater in Sand Dunes. Journal of Applied Geophysics, 1996,36(1):43-52
    [61]曾昭发,王海垠,赵旭荣.探地雷达法及其在金矿勘查中的应用[J].黄金,1997,18(12):3-8
    [62]申宝宏.矿井地质雷达在煤矿中的应用现状[J].矿业安全与环保,1999(1):3-5
    [63]王连成.矿井地质雷达的方法及应用[J].煤炭学报,2000,25(1):5-9
    [64]刘敦文,黄仁东,徐国元等.古德生.探地雷达技术在西部大开发中应用展望.金属矿山[J].2001(9):1-4
    [65]倪新辉.地震勘探在煤矿水文地质勘探和水害防治中的应用.世纪之交煤矿地质学术论文集[C],西安:中国煤炭学会煤田地质专业委员会,中国地质学会矿井地质专业委员会,1999:362-363
    [66]王辉,黄鼎成.地震层析成像方法及其在岩体结构研究中的应用[J].工程地质学报,2000,8(1):109-117
    [67]唐大荣.地面岩溶塌陷的高分辨地震勘查[J].物探与化探,1994,18(1):35-39
    [68]蒋向军,韩永琦,李来喜.地震层析法在调查铁路路基塌陷区中的应用[J].工程地球物理学报,2007,4(1):37-42
    [69]刘纯贵.地震勘探法在井下探测陷落柱中的应用[J].中国煤炭,2006,(1):43-45
    [70]阎述,陈明生,单青生等.二维自动地电阻率技术探测门头沟老窑.煤炭地质与勘探[J].1995,23(5):453-457
    [71]于景村,李志腆.高密度电阻率法检测地基注浆效果.地质与勘探[J].1998,34(5):48-51
    [72]王建军,强建科,李成香等.高密度电法在地面塌陷勘察中的应用.工程地球物理学报[J].2005,2(3):232~23
    [73]祝卫东,钱勇峰,李建华.高密度电阻率法在采空区及岩溶探测中的应用研究.工程勘察[J].2006(4):69-73
    [74]Frohlich R K, Urish D W. The use of geoelectrics and test wells for the assessment of groundwater quality of a coastal industrial site[J]. Journal of Applied Geophysics,2002,50:261-278
    [75]Ramirez A, Daily W. LaBrecque D. Owen,E.,and hesnut, D. Monitoring underground steam injection process using electrical resistance tomography[J]. Water Resources Research,1993,29:73-87
    [76]徐首.甚低频电磁法在隐伏采空区勘察中的应用[J].河北地质学院学报,1994,17(3):257-260
    [77]李豺,郭文波,李毓茂.瞬变电磁法在煤田矿井涌水通道勘察中的应用[J].西安工程学院学报,2000,22(3):35-38
    [78]Unsworth M J, Egbert G D, Booker J R. High resolution electromagnetic imaging of the San Andreas Fault in Central California[J]. J. Geophys Res, 1999,104:1131-1150
    [79]周克勤,许志刚,宇文仲.三维影象扫描技术在古建测绘与保护中的应用[J].工程勘察,2004,(5):43-46
    [80]翟建山,康静文,张子虎等.用激发极化法探测煤层采空区积水[J].山西矿业学院学报,1997,15(3):241-247
    [81]龙凡,韩天成.激电法在地下水探测中的应用效果[J].物探与化探,2002,26(6):422-432
    [82]Gilbertson R J. The Application of the Cavity Measurement System at Olympic Dam Operation[C], Proc. Underground Operators Conference, Kalgaoorlie, Western Australia,1995:245-252
    [83]万乐,潘玉玲.利用核磁共振方法探查岩溶水[J].CT理论与应用研究,1999,(3):15-19
    [84]Atekwana E A, Sauck W A, Abdel A G.Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site:implications for the assessment of intrinsic bioremediation[J]. Journal of Environmental and Engineering Geophysics,2002,7:103-110
    [85]Mackie R L, Livel Ybrooks D W, Madden T R. A magnetotelluric investigation of the San Andreas Fault at Carrizo Plain, California[J]. Geophys Res Lett,1997,24:1847-1850
    [86]刘继东.综合物探方法在不良地质体勘察中的应用[J].西安工程学院学报,1998,20(03):63-66
    [87]Mavko G, Mukerji T. Bounds on low frequency seismic velocities in partially saturated rocks[J]. Geophysics,1998,63(3):918-924
    [88]Chen G. Liang G H. Xu D R. Application of a shallow seismic reflection method to the exploration of a gold deposit[J]. Geophysics and Engineering, 2004,1(3):12-16
    [89]Irene C P, John B. A Laboratory Scale Model for the Study of Subsurface Scattering in Low-loss Media with Applications to Ground Penetrating Radar[J]. Journal of Applied Geophysics,1995,33(1-3):109-118
    [90]于宝新.高密度电阻率法在采空区探测中的应用[J].金属矿山,2007,(369):51-53
    [91]刘敦文.地下岩体工程灾害隐患雷达探侧与控制研究[D].中南大学博士学位论文,2001
    [92]王俊茹,张吉恒,许柏青.瞬变电磁法在高速公路采空区勘测中的应用[J].物探与化探,2007,31(4):358-364
    [93]蒋邦远.瞬变电磁法勘探[M].北京:地质出版社,1998
    [94]张开元,韩自豪,周韬.瞬变电磁法在探测煤矿采空区中的应用[J].工程地球物理学报,2007,4(4):341-344
    [95]徐白山,王恩德,田钢.地震横波反射法探测含水洞穴的研究[J].东北大学学报,2006,27(1):84-87
    [96]刘敦文,徐国元,黄仁东等.金属矿采空区探测新技术[J].中国矿业,2000,9(4):34-37
    [97]薛金芳,柴智.高密度电法探测煤矿采空区的效果分析[J].安阳师范学院学报,2007,2:137-139
    [98]Derald G S, Harry M J. Ground Penetrating Radar:Antenna Frequencies and Maximum Probable Depths of Penetration in Quaternary Sediments[J]. Journal of Applied Geophysics,1995,33(1-3):93-100
    [99]郭崇光,刘君.综合电法在采空区探测中的应用[J].科技情报开发与经济,2004,14(2):142-144
    [100]曾若云,姚建华.直流电法在探测老窑采空区的应用[J].中国煤田地质,2001,13(4):53-54
    [101]Liu Xi-Ling, Li Xi-Bing, Li Fa-Ben, et al.3D cavity detection technique and its application based on cavity auto scanning laser system[J]. Journal of Central South University of Technology(English Edition),2008,15(2): 285-288
    [102]过江,古德生,罗周全.金属矿山采空区3D激光探测新技术[J].矿冶工程,2006,26(5):16-19
    [103]Stuttle M C. Combined probe drilling and laser surveying for complex underground mapping[J]. Canadian Mining Journal,1998,119(6):21-23
    [104]Stuttle M C. Laser scanning aids underground mine mapping[J]. Mining Engineering,1999,51(3):45-46
    [105]Park D W, David A. Model studies of subsidence and ground movement using laser holographic interferometer[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,14(5-6):235-245
    [106]Brooker Graham M, Scheding Steven, Bishop Mark V. Development and application of millimeter wave radar sensors for underground mining[J]. IEEE Sensors Journal,2005,5(6):1270-1280
    [107]Grandjean G, Gourry J C. GPR Data Processing for 3D Fracture Mapping A Marble Quarry(Thassos, Greece)[J]. Journal of Applied Geophysics,1996, 36(1):19-30
    [108]何继善.电法勘探的发展与展望[J].地球物理学报,1997,40:308-315
    [109]日丹诺夫著,潘玉玲,王守坦译.电法勘探[M].武汉:中国地质大学出版社,1990
    [110]储绍良.矿井物探应用[M].北京:煤炭工业出版社,1995.
    [111]Vozoff K. The magnetotelluric method in the exploration of sedimentary basins[J]. Geophysics,1972,37(1):98-141
    [112]萨姆纳(美)著,陈文化译.地球物理勘探的激发极化原理[M].北京:地质出版社,1981
    [113]Xu Chaoqiang, Butt Stephen D. Evaluation of MASW techniques to image steeply dipping cavities in laterally inhomogeneous terrain[J]. Journal of Applied Geophysics,2006,59(2):106-116
    [114]Glass C E, Nicholas D E, Miller S M. Dection of subsurface cavity at Cananea Sonora, Mexica, using gravity techniques[J]. Proceedings of the Annual Engineering Geology and Soils Engineering Symposium,1977:217-230
    [115]郭崇光,李敬宇,刘君.氡气测量在山西采空区探测中的应用[J].科技情报开发与经济,14(1):180-181
    [116]Jeffery A, Durucan S, Dennis J. An automatic laser scanning system for mine tunnel surface characterization[J]. Control Engineering Practice,1994,2(6): 531-534
    [117]Robson K, Chalmers A, Saigol T. An automated laser scan survey of the upper palaeolithic rock shelter of cap blanc[J]. Journal of Archaeological Science, 2001,28(3):283-289
    [118]Measurement Devices Ltd(MDL), Cavity Auto Scanning Laser System(C-ALS)[EM],2007
    [119]严惠民,倪旭翔,陈奇霖等.无扫描三维激光雷达的研究[J].中国激光,2000,27(9):861-864
    [120]吴建功,林清湲,高锐.地球物理方法及在地质和找矿中的应用[M].北京:地质出版社,1988
    [121]何裕盛.地下动态导体的充电法探测[M].北京:地质出版社,2001
    [122]王妙月.地球勘探物理学[M].北京:地震出版社,2003
    [123]陈乐寿,王光锷.构造电法勘探[M].武汉:中国地质大学出版社,1991
    [124]费锡铨.电法勘察[M].北京:地质出版社,1986
    [125]Canada:Optech System Corporation, Cavity Monitoring System User Manual (Version 2.3) [EM],1996
    [126]Mandelbrol B.B, The fractal geometry of mature(M), san fransisco:freeman, 1983
    [127]郑学敏.特大采空区下矿柱回采的安全性评价[J].矿冶研究与开发,2002,12(6):16-18
    [128]Lucha P, Cardona F, Gutierrez F. Natural and human-induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir[J]. Environmental Geology,2008,53(5):1023-1035
    [129]Jones C J, Spencer W J. The implication of mining subsidence for modern highway structure[C], Large Greunel Movements and Structures Proceedings, University of Wales Cardiff,1977:515-526
    [130]Jones C J, Rourke T D. Mining subsidence effect on transportation facilities[R], MIS,1988,, (7):107-126
    [131]Shand M Sergeant. Highway damage due to subsidence[R], MIS,1988, (2): 18-32
    [132]Wang M C. Settlement behavior of footing above a void[C], PCGGE, New Orleans,1982:168-183
    [133]Zaman M M, Aharn J L, Najjar Y M. Stability analysis and characterization of ground subsidence of abandoned lead-zinc mines in northwest Oklahoma. Rock Mechanics[C], Proceeding of the 30th U S Symposium,2000:707-714
    [134]Johnson R A, York G.Backfill alternatives for regional support in ultra-depth South African gold mines[C]. In:Bloss D M, eds. MINEFILL'98. Brisbane, Australia:Australasian Institute of Mining and Metallurgy Publication,1998. 239-244
    [135]Ryder J A. Application of numerical stress analyses to the design of deep mine[C]. In:South African Inst of Mining & Metallurgy, eds. GOLD 100, Johannesburg:South African Inst of Mining & Metallurgy Publisher,1986. 245-253
    [136]Ryder J A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of The South African Institute of Mining and Metallurgy, 1988,88(1):27-39
    [137]James J V, Macdonald A J, Raffield M P. Backfilling philosophy for massive mining at depth in the South Deep section, Western Areas Gold Mine[C]. In: Bloss D M, eds. MINEFILL'98. Brisbane, Australia:Australasian Institute of Mining and Metallurgy Publication,1998.153-157
    [138]Henderson A, Jardine G, Woodall C. Implementation of paste fill at the Henty Gold Mine[C]. In:Bloss D M, eds. MINEFILL'98. Brisbane, Australia: Australasian Institute of Mining and Metallurgy Publication,1998.299-304
    [139]Jones M Q W, Rawlins C A. Thermal properties of backfill from a deep South African gold mine[J]. Journal of the Mine Ventilation Society of South Africa, 2001,54(4):100-105
    [140]Haase H. Potential for cost reductions by reducing heat loads in deep level mines[J]. Journal of the Mine Ventilation Society of South Africa,1994,47(3): 34-44
    [141]Desouza E, Degagne D, Archibald J F. Minefill Applications, Practices and Trends in Canadian Mines[C], In:Stone D, eds. MINEFILL 2001, Society for Mining, Metallurgy, and Exploration,2001.311-320
    [142]Grice A G. Recent Minefill Developments in Australia[C], In:Stone D, eds. MINEFILL 2001, Society for Mining, Metallurgy, and Exploration,2001. 351-358
    [143]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[J].辽宁工程技术大学博士学位论文,2000
    [144]李俊平,陈慧明.采空区安全评价的理论与实践[J].科技导报,2008,26(9):50-55
    [145]蔡嗣经,陈清运,明世祥.金山店铁矿平行矿体地下开采地表沉降物理模拟预测研究[J].中国安全生产科学技术,2006,2(5):13-19
    [146]戚冉,黄建华,郭春颖.矿山地面塌陷预测方法研究[J].中国矿业,2008,17(6):39-41
    [147]陈陆望,白世伟,李一帆.开采倾斜近地表矿体地表及围岩变形陷落的模型试验研究[J].岩土力学,2006,27(6):885-889
    [148]黄平路,陈从新.露天和地下联合开采引起矿山岩层移动规律的数值模拟研究[J].岩石力学与工程学报,26(supp2):4037-4043
    [149]隋旺华.开采覆岩破坏工程地质预测的理论与实践[J].工程地质学报,1994,2(2):29-36
    [150]李庶林.岩层移动监测及预测研究[J].矿业研究与开发,1998,18(1):16-18
    [151]郭高川,段瑞,杜建伟.采空区残余地表移动变形对建筑物影响的探讨[J].煤炭工程,2008,5:72-74
    [152]段宗银.采空区处理的探讨和实践[J].昆明冶金高等专科学校学报,2001,17(2):3-4
    [153]朱宝金,郝志东,张引良等.采空区探测及处理[J].露天采煤技术,2002,3:39-40
    [154]Rodriguez C R, Reyes G R. Resistivity identification of shallow mining cavities in Real del Monte, Mexico [J]. Engineering Geology,1992,33(2): 141-149
    [155]Li Gongyu, Zhou Wanfang. Sinkholes in karst mining areas in China and some methods of prevention[J]. Engineering Geology,1999,52(1-2):45-50
    [156]李俊平,陈慧明.采空区安全评价的理论与实践[J].科技导报,2008,26(9):50-55
    [157]王明立,张华兴,张刚艳.刀柱式老采空区上行长壁开采的采矿安全评价[J].采矿与安全工程学报,2008,25(1):87~90
    [158]任凤玉,李楠.团城铁矿多空区矿体开采技术研究[J].金属矿山,2008,No.381:32~34
    [159]王荣林.宜昌磷矿采空区现状及隐患分析和建议[J].化工矿物与加工,2008,1:25~29
    [160]Kobayashi M, Hattori M, Yamazaki H. Multidirectional associative memory with a hidden layer. Systems and Computers in Japan,2002,33(6):1-9
    [161]Dyni Robert C. Subsidence investigations over salt-solution mines, Hutchinson, KS[J]. Information Circular-United States, Bureau of Mines, 1986:27
    [162]Wassmann T H. Mining subsidence in Twente, east Netherlands[J]. Geologie en Mijnbouw,1980,59(3),225-231
    [163]Aston T R C, Singh R N, Whittaker B N. Effect of test cavity geoloty on the in situ permeability of coal measures strata associated with longwall mining[J]. International Journal of Mine Water,1983,2(4):19-34
    [164]Fischer F J. Axisymmetric method for analyzing cavity arrays[J]. Oil Coal Shale Minerals,1984,8(3):267-292
    [165]Saberian Ahmad, Podio A L. Computer model for describing the development of solution-mined cavities[J]. Oil Coal Shale Minerals,1977,1(1):1-36
    [166]Mortazavi H R, Emery A F, Corlett R C, et al. Thermal stability of coal cavities[J]. United States Department of Energy, Morgantown Energy Technology Center (Report) DOE/METC,1983:237-245
    [167]曹祥伟,蔡寅峰,郭忠林.采空区处理技术的分析研究[J].铜业工程,2005,1:22-24
    [168]邢万芳,郭树林,姚香.岩金矿山采空区处理技术探讨[J].2007,23(6):7-10
    [169]胡建华,周科平,陈庆发等.充填体下连续开采诱导顶板失稳演化时变分析[J].广西大学学报,2008,33(1):96~99
    [170]Cravero M, Iabichino G, Del Greco O. Experiences in the measurement of stresses and displacements in the Masua mine[C]. Proceedings of the 3rd International Symposium on Field Measurements in Geomechanics,1991, 653-662
    [171]刘献华.紫金山金矿采空区处理技术研究[J].有色矿山,2002,31(1):20-23
    [172]Anon. Coal mining technology:some british developments[J]. Coal Mining, 1986,23(3):38-40
    [173]Sakamoto Akio, Yamada Noritoshi, Iwaki Keisuke, et al. Applicability of recycling materials to cavity filling materials[J]. Journal of the Society of Materials Science,2005,54(11):1123-1128
    [174]Stepanov Y, Solov V O. Effect of the main parameters of an explosion-reactive unit (ERU) on the size of the cavity formed in soft rock[J]. Soviet Mining Science,1991,26(2):154-158
    [175]陈育民,徐鼎平FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008
    [176]李皓月,周田朋,刘相新ANSYS工程计算应用教程[M].北京:冶金工业区出版社,2003
    [177]王立涛.大型有限元分析软件—ANSYS[M]北京:冶金工业出版社, 2003
    [178]张萍.Ansys建模过程中单元属性的定义[M].北京:电子工业出版社,2003
    [179]陈至达.有理力学[M].徐州:中国矿业大学出版社,1988
    [180]吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992
    [181]姚魁宝,刘竹华,李春元.矿山地下开采稳定性研究[M].北京:中国科学技术出版社,1994
    [182]Diederichs M S, Kaiser P K. Stability of large excavations in laminated hard rock masses:the voussoir analogue revisited [J]. International Journal of Rock Mechanics & Mining Sciences,1999,36(1):97-117
    [183]石根华,裴觉民译.数值流形方法和非连续变形分析[M].北京:清华大学出版社,1997
    [184]陈湘才,郭昌寰,胡增强.固体力学基础.南京:东南大学出版社,1990
    [185]姚魁宝,刘竹华,李春元.矿山地下开采稳定性研究[M].北京:中国科学技术出版社.1994
    [186]B.H.G布雷迪,E.T.布朗.地下采矿岩石力学[M].北京:煤炭工业出版社.1986
    [187]唐礼忠,潘长良,谢学斌.深埋硬岩矿床岩爆控制研究[J].岩土力学与工程学报.2001
    [188]Honglai Tan, John A.Nairn. Hierarchical, adaptive, material point method for dynamic energy release rate calculations[J]. Computer methods in applied mechanics and engineering.2001
    [189]Tang C A, Kaiser P. K. Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure-Part I:Fundamentals. Rock Mechanics and Mining Sciences and Geomechanics.1998
    [190]杨官涛.地下采场结构参数优化及稳定性的能量突变分析,中南大学硕士论文,2007
    [191]Barrett A J, Kirsten H A D, Stacey T R. Backfilling in deep level tabular stopes. In:Hassani F P, Scoble M J, Yu T R. eds. Innovations in mining backfill technology. A. A. Balkema publisher,1989.177-186
    [192]Whyatt J K, Board M P, Williams T J. Examination of the support potential of cemented fills for rock bust control. In:Hassani F P, Scoble M J, Yu T R. eds. Innovations in mining backfill technology. A. A. Balkema publisher,1989. 209-216
    [193]董学晟.工程岩体分级标准的研究[J].长江科学院院报,1992,9(4):1-9
    [194]采矿设计手册-矿床开采卷下[M],中国建筑工业出版社,1987
    [195]谭学术,鲜学福,郑道访等.复合岩体力学理论及其应用[M].煤炭工业出版社,1994
    [196]王艳辉,宋卫东.地下金属矿崩落采矿法岩层移动规律分析[J],金属矿山,2002,03:3-4
    [197]杨硕.采动损害空间变形力学预测[M].煤炭工业出版社,1994
    [198]陈国荣.弹性力学[M].南京:河海大学出版社,2002
    [199]Lin C N, Jiao Y Y, Liu Q S. Site experiment for predicting hazardous geological formations ahead of tunnel face[J]. Key Engineering Materials, 2006,1:326-328
    [200]丛爱岩,成枢,陈宜金等.时序分析法在岩层与地表移动中的应用[J].中国矿业大学学报,1999,28(2):159-161
    [201]布雷迪BHG,布朗E T.地下采矿岩石力学[M].冯树仁,佘诗刚等译.北京:煤炭工业出版社,1990
    [202]崔文.缓倾斜薄矿脉矿柱回收实践[J].黄金,2000,21(4):28-30
    [203]蔡美峰.金属矿山采矿设计优化与地压控制-理论与实践[M].北京:科学出版社,2001
    [204]刘同有,高谦,赵千里.地下采矿系统分析与综合集成[M].北京:地质出版社,1998
    [205]采矿手册(第四卷).北京:冶金工业出版社,1990
    [206]郭汉集.矿柱强度的若干影响因素[J].岩石力学与工程学报,1993,12(1):38-45
    [207]Moomivand H, Vutukuri v S. Effect of geometry on the compressive strength of pillars[J]. Mining Sciencea and Technology, B aikema, Roterdam.1996, 715-720
    [208]Krauland N, Soder P E. Determining pillar strength from pillar failure observation[J]. Eng. Min. J,1987,188(8):34-40
    [209]Sheorey P R. Coal Pillar Strength Estimation from Failed and Stable Case[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1987:24(6):347-355
    [210]Falconer K J. Fractal Geometry:Mathematical Foundation and Application, Wiley, NewYork,1990
    [211]Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series[J]. Phys. Rev. Lett.,1980,45(9):712-716
    [212]飞思达科技产品研发中心编著MATLAB(6.5)辅助神经网络分析与设计.北京:电子工业出版社,2003
    [213]王文平,邓聚龙.灰色系统中GM(1,1)模型的混沌特性研究.系统工程,1997,15(2):13-15
    [214]V. N. Vapnik. IEEE Trans Neural Network.10,988(1999).
    [215]李潇.灰色最小二乘支持向量机在滑坡变形预测中的应用[J].测绘通报,2010,(6)44-46
    [216]Q.Y. Tang, M.G. Feng, DPS Data Processing System. Science Press, Beijing(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700