用户名: 密码: 验证码:
悬索桥隧道式复合锚碇系统作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带预应力岩锚的隧道式复合锚碇作为悬索桥锚固系统的一种新的结构型式,具有重力式、隧道式锚碇所不具备的优点,其结构受力更合理,安全性更可靠,工程造价低,保护生态环境,实现可持续发展,拓宽了隧道式锚碇的应用范围和工程条件,提高了悬索桥的竞争力,填补了岩土工程领域中真正意义上充分利用自然宿主介质的强大的自承性的空白,具有较广阔的工程应用前景,经济效益巨大。
     受地质条件限制,隧道式锚碇目前还局限应用在节理较少、围岩整体性能完好的地质环境。在节理裂隙发育或破碎岩层的工程边界进行悬索桥带预应力岩锚的隧道式复合锚碇工程的设计和施工,其难度和风险极大,国内外的研究基本处于空白。同时,作为系统承载主体之一的预应力岩锚,仅仅作为体系的安全储备考虑是不完善的。设计、施工均以经验类比法为主,没有相关理论作指导,与蓬勃发展的工程实践是极不相称的。
     锚碇优化设计能产生巨大的经济效益,改善系统的受力,保证工程的安全可靠性和耐久性。一方面,在确定的荷载条件下,满足静力平衡、变形协调、本构关系以及边界条件时,拓扑参数变化和后部锚索初设预应力变化等对系统稳定性的影响,从而指导和修正设计;另一方面,数值方法虽然能综合考虑岩土材料的不连续性、各向异性、非线性的本构关系以及结构在破坏时呈现的体胀、软化、大变形特性等问题,但却不能为大多数设计者所采用。工程实践中,有时并不要求知道结构物中应力和应变随着外荷载如何变化,而只需求出最终达到塑性流动状态所对应的极限荷载或者结构物的安全系数。寻找能基本反映工程条件的简化计算公式,为工程师们提供一个整体的设计思路和方法。
     研究中,通过文献综述和科技查新,论证课题的现状和方向;综合采用理论分析、数值模拟、工艺研究、实验验证(现场模型试验和原位试验)的技术路线。主要内容和成果如下:
     1.分析锚固长度,自由长度,注浆性质以及锚注体与围岩接触方式对岩锚极限抗拔力和破坏形态的影响。阐释了锚索的根状效应和围岩应力场分布形态,提出安全储备系数概念。自由长度对围岩有效传递和分散围岩应力有关键作用,和锚固长度共同控制岩锚的破坏形态;在锚碇系统中,和初始预
As a kind of new stnicture form of anchorage system of suspension bridge, tunnel anchorage compound with prestressed anchorage cable possess inavailability advantage of tunnel anchorage: reasonable structure stress distribution, reliable safety, low construction, ecological condition conservancy, realizing sustainable development, enlarging field of application and engineering condition of tunnel anchorage, increasing competitive power of suspension bridge, filling up the blank that made the most of nature host dielectric powerful self-supporting in deed meaning, foreground engineering practice and great economic benefit.Limited by geologic conditions, application of tunnel anchorage was localized in geologic environment of intact rock with less joint at presen. It was difficult and worst risk that tunnel anchorage compound with prestressed anchorage cable was designed and constructed in engineering boundary condition with abundant joint fissure or break ground, the research was blank both domestic and abroad. At the same time, as one of the system bearing main body, it was not perfect only considering the prestressed anchor cable as safety margin of system.. It was incommensurate with the engineering practice that design and construction gave priority to empirical analogism method because of no related theory guide.Anchorage optimum design can generate enormous eonomic benefits, improve system stress, ensure engineering safety reliability and endurance. On the one hand, under definitive condition of load, satisfy static equilibrium, compatibility of deformation, constitutive law as well as boundary condition, system stability affected by topological parameter and initial stress of back anchorage cable change, thereby supervise and modify design;On the other hand, numerical method can't be adopt by majority designer although it can comprehensively consider discontinuity, anisotropy, nonlinear constitutive law and characteristic cubic of expansion, soften, large deformation, etc. of rock and soil matter, while structure was destroyed. Sometimes in engineering practice, how stress and strain of structure change with external load didn't be demand, only ultimately critical load or structure safety factor corresponding to plastic flow state need to be find out, it
    provides a simplified calculation and an overall design thought for engineers that look for a simplified calculation formulae reflect basic engineering condition.Research state and prospect were argumented by literature overview and science and technology originality innovation approval;Theoretical analysis, numerical simulation, processing study, experimental verification (field model test and in-shu test) were synthetical adopt in research methodology. Primary coverage and achievements as follows:1. The ultimate anti-pulling capacity and failure mode affected by anchor-length, free-length, grouting quality and interface mode between grout-cable and rock mass were analyzed. Stress distribution modality in rock mass and root effect was illustrated The concept of safety storage coefficient was put forwardFree-length has key effect to effectively transfer and disperse stress to wall rock;The failure mode of anchor cable is controlled by free and anchor length;Contribution value and occasion of anchor cable is determined by its free-length and initial stress while they share the load together with anchorage system. Strands stubble or grout-cable- pour slippage were mostly two kind of single anchor cable destroy model, integral reversed cone failure of rock mass wont occur. Failure of anchorage cable was progressive: bearing capacity won't loss at once following destroy occuring before, higher peak instead under a certainty condition of loading until limiting destructive system. Domino offect occurs while the prestressed anchor cable group is destroyed2. Inclination, length, clamping angle of anchorage, interface roughness concentration and bonding capacity of interface ,etc. affect the displacement of anchorage and repose stability of rock mass. It indicates by multiplex load contrastive analysis, that anti-pulling capacity increase depend on effective projected area (axial direction projection component along main cable) of anchorage-wall rock interface increasing, gravity anchorage resist three-dimensional load depend on base friction, mat anti-slippage capacity increase mostly depend on anchorage volume gain;compound tunnel anchorage transfer and leveling foci stress, confine displacement by dip-holdup effect of tunnel anchorage and counterforce of prestressed anchor cable, spread systemic bearing depth and sphere. inclination of anchorage should be controlled in the field;Axial length L presence critical value, clamping angle of anchorage dominated displacement, and length influenced and "disturb " stress distribution on interface. The application of compound tunnel
    anchorage should be restricted at certain range and geologic conditioa3. Clip-holdup effect of rock mass and anti-pulling effect of anchorage cable system were self-balanceable, while they participate withstanding the load applied on tunnel anchorage system. Intial stress value of anchorage cable determined resource(carrying capacity that can be manoeuvred from rock mass) distribution: oversize initial stress generates unprofitable distortion and secondary stress in rock mass;undersize initial stress only generates reinforced effect and it was of no service to system stress redistributioa Initial stress of anchor cable ought to be controlled at the range of [(0.75~0.85)x0.75^k], thereby, value and occasion contributed by anchor cable will correspond with anchorage. If anchorage occur axial displacement corresponding with external load acting direction, the negative direction displacement and distortion of the anchorage must be overcame result in rock anchor stretching phase first of all.While initial stress was less, the anchorage cable stress enhanced only after rock mass clip-holdup being overcame.4. Based on field test results for compound tunnel anchorage system of suspension bridge, the failure model and failure condition are analyzed. The equilibrium equation of the anchorage system is established based on limit theorem. According to the actual construction technology and design scheme, the anchorage-rock mass interface is generalized into four types of mechanics model, and the failure criterion is correspondingly presented based on rock mass joint mechanics theorem and test achievements. The meaning and option method of subentry coefficient in simplified formula for bearing capacity estimation are discussed. The simplified formula for calculation of bearing capacity of anchorage was validated by practical engineering case. The proposed method provides a simplified calculation and an overall design thought for engineers.It's key core which leads theory harvest in a position to engineering practice by marriaging rock mechanics and engineering, both serving and supervising construction practice, and looking forward to provide rationale and guide for optimum design and construction of compound tunnel anchorage used in mutable landform and geology environment <.
引文
[1] 铁道部大桥工程局桥梁科学研究所.悬索桥口[M].北京:科学技术文献出版社,1996
    [2] 徐君兰,向中富.关于悬索桥的重力刚度[J].重庆交通学院学报,2000,19(2):71-74.
    [3] Gimsing N J. Cable supported Bridge Conception and Desing[M]. New York: John Wiley & Sons, 1983.
    [4] 刘建新.胡兆同.大跨度吊桥[M].北京:人民交通出版社,1995.
    [5] 刘建新.对吊桥可能最大跨度的探讨[J].华东公路,1994,(2):7~9.
    [6] 卢永成.重庆长江鹅公岩大桥东隧道式锚碇[J].中国市政工程,2003,(6):31~34.
    [7] 林长川.现代悬索桥技术的若干进步[J].公路,1996,(8):17~24.
    [8] 万国朝.90年代桥梁工程发展趋势[J].国外公路,1995,15(4):24~28.
    [9] Ammann O H. George Washington Bridge: general conception and development of design[J], Trans. ASCE. 1933, 9(7): 56~62
    [10] 汪海滨,高波,孙振.悬索桥隧道式锚碇系统力学行为研究[J].岩石力学与工程学报,2005,24(15):2728-2735.
    [11] 钱冬生,陈仁福.大跨悬索桥的设计与施工[M].成都,西南交通大学出版社,1999
    [12] 卢永成.重庆长江鹅公岩大桥西锚碇设计,中国市政工程,2003,3
    [13] 周孟波.悬索桥手册[M].北京:人民交通出版社,2003:105-219.
    [14] 李佩武,邬伦.广东虎门大桥工程对生态环境的影响与防治对策研究[J].应用基础与工程科学学报,1994,2(2):187-193.
    [15] 高辛财,刘维宁.隧道施工期间的环境响应分析与对策[J].现代隧道技术2002,5
    [16]马建秦,王小明.与地下工程修筑有关的几个环境问题[J].现代隧道技术,2002,5
    [17] 孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [18] 陈有亮.虎门大桥东锚碇重力锚及基岩的稳定性[J].工程力学,1996(增刊):142~148.
    [19] 程鸿鑫,夏才初,李荣强.广东虎门大桥东锚碇岩体稳定性分析[J].同济大 学学报,1995,23(3):131~135.
    [20] 夏才初,程鸿鑫.广东虎门大桥东锚碇现场结构模型试验研究[J].岩石力学与工程学报.1997,16(6):19~23
    [21] 肖本职,吴相超,姚文明.悬索桥隧道锚碇围岩体极限承载力灰色预测[J].岩土力学,2003,24(S1):143-145.
    [22] 阳金惠,郭占起,万仁辉,等.隧道式锚碇加锚杆在万州长江二桥锚固系统中的应用[J].公路,2002,1:40-43.
    [23] 中交第二公路勘测设计研究院.沪蓉国道四渡河特大桥第四分册:锚碇锚固系统设计(送审稿),武汉,2004.
    [24] 汪海滨,高波,朱栓来.四渡河特大桥隧道式锚碇数值模拟研究[J],中国公路学报,已录用。
    [25] 张利洁,黄正加,丁秀丽.四渡河特大桥隧道锚碇三维弹塑性数值分析[J].岩石力学与工程学报,2004,23(S2):4971-4974.
    [26] 汪海滨,高波,等.预应力岩锚隧道式复合锚碇系统作用机理研究[R],成都,西南交通大学,2004.7.
    [27] 汪海滨,高波.悬索桥隧道式复合锚碇承载力计算方法[J],东南大学学报(自然科学版),2005,35(S1):89~94.
    [28] 沈华春.吊桥设计技术[M].北京:人民交通出版社,1995.12.
    [29] 王志仁.虎门大桥东锚碇基坑深开挖及防护[J].桥梁建设,1995,(2):48~52
    [30] 林碧华.虎门大桥桥塔地基基础类型及锚碇区稳定性分析[J].地质灾害与环境保护,1997,8(2):39~43
    [31] 赵启林,陈斌,卓家寿.悬索桥锚碇及地基基础中的力学问题研究动态[J].水利水电科技进展,2001,(1):25~26.
    [32] 沈华春.吊桥设计技术[M].北京:人民交通出版社,1995.12.
    [33] 朱玉,卫军,李昊等.悬索桥隧道锚与下方公路隧道相互作用分析[J].铁道科学与工程学报,2005,2(1):57-61
    [34] 朱玉,卫军,李昊等.大跨径悬索桥隧道锚承载力分析[J].华中科技大学学报(自然科学版),2005,(7)
    [35] 朱玉,廖朝华,彭元诚等.大跨径悬索桥隧道锚设计及结构性能评价[J].桥梁建设.2005,(2)
    [36] 朱玉,卫军,李昊等.大跨径悬索桥隧道锚变位分析[J].岩石力学与工程学报.2005,24(19):3588-3593.
    [37] 袁勇,田毅.离散变量优化方法及在地下墙围护设计中的应用[J].同济大 学学报,1996,24(4):104~111
    [38] 周念先.桥梁方案比选[M].上海:同济大学出版社,1997.
    [39] 孙均.岩石力学的若干进展.面向21世纪的岩石力学与工程,中国岩石力学与工程学会第四次学术大会论文集[M].北京:中国科学技术出版社,1996:1
    [40] 孙钧.中国岩土工程锚固技术的应用和发展.熊厚金编,国际岩土工程锚固与灌浆新进展[M],北京,中国建筑工业出版社,1996,61.
    [41] 程良奎,范景伦,韩军等岩土锚固[M].北京,中国建筑工业出版社,2003,4.
    [42] 梁炯均.我国岩土工程预应力锚索的发展与问题[A].熊厚金编,国际岩土工程锚固与灌浆新进展[M],北京,中国建筑工业出版社,1996,62.
    [43] 孙广忠.岩体结构力学[M],北京,科学出版社,1988年,1-108;339—374
    [44] 李世辉.隧道支护设计新论[M],北京,科学出版社,1999,14.
    [45] 朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M],北京,科学出版社,2002.
    [46] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [47] 范广勤.岩土工程流变力学[M].北京,煤炭工业出版社,1998
    [48] Charles.C.Fairhust.岩土工程中锚固的数值研究.熊厚金编,国际岩土工程锚固与灌浆新进展[M],北京:中国建筑工业出版社,1996:2-11.
    [49] 张乐文,汪稔.岩土锚固理论研究之现状[J],岩土力学 2000 23(5):627-631.
    [50] 汉纳T H.锚固技术在岩土工程中的应用[M].胡定译.北京:中国建筑工业出版社,1986.
    [51] Littlejohn, S. Ground anchorage technology-a forwardlook[A]. Grouting, soil improvement and Geosynthetics[C]. Geotechnical Specia Publications, ASCE. 1992, 30(1): 163-107.
    [52] Lutz L. Gergeley. M, Mechanics of band and slip of deformed bars in concrete[J], J. of American Concrete Institute, 1967, 64 (11): 711-721
    [53] Hansor N. W. Influence of surface roughness of prestressing strand on band performance[J], J. of prestressed Concrete Institute, 1969, 14(1):32-45
    [54] Goto Y.. Cracks formed in concrete around deformed tension bars[J], J. of American Concrete Institute, 1971, 68(4): 244-251
    [55] Nakakyama, M. Beaudoin, B. B. A novel technique determining bond strength developed between cement paste and steel[J]. Cement and Concrete Research. 1987, 22(3): 478—488.
    [56] 陈祖煜,杨健.岩土预应力锚固技术的进展[J].贵州水力发电,2004.
    [57] 徐年丰,牟春霞,王利.预应力岩锚内锚段作用机理与计算方法探讨[J].长江科学院院报,2002,19(3):45-47
    [58] 张发明.岩质边坡预应力锚固效应及应用研究[D],南京,河海大学,2000.
    [59] 张发明,刘宁,陈祖煜.预应力锚索内锚段粘结强度及长度的确定[J].水利水电科技进展,2002,22(3):1-3
    [60] Serrano. C. Olalla. Tensile resistance of rock anchors. Int. Jour. Of Rock Mech. and Min. Sci., 1999, 36(4): 449-474
    [61] Serrano, C. Olalla. Ultimate bearing of grouted cable bolts[J].Int. J Rock Mec. Sci. & Geomench Abstra,1992, 29(5): 503~524.
    [62] Fuller P G, Cox R H T. Mechanics load transfer from steel tendons of cement based grouted [A], Fifth Australasian Conference on the Mechanics of Structures and Materials, Melboume: Australasian Institute of Mining and Metallurgy, 1995.
    [63] Evangelista A, Sapio G. Behaviour of ground anchors in stiff clays[A], Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering [C], Tokyo:The Japanese Society of Soil Mechanics and Foundation Engineering, 1977, 39-47.
    [64] 高永涛,吴顺川,孙金海.预应力锚杆锚固段应力分布规律及应用[J].北京科技大学学报,2002,24(4):387-390.
    [65] Evangelista At Sapio G. Research on ground anchors in non-cohesive soils [A], Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering [C], Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering,1977,92-97
    [66] Phillips S H E, Factors affecting the design of anchorages in rock [R], London: cementation Research Ltd.,1970.
    [67] 张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    [68] Fujita K, etal, A method to predict the load-displacement relationship of ground anchors [A], Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering [C].Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering, 1977, 58-62.
    [69] Kilic, E. Yasar, A. G Celik. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J].Tunnelling Underground Space Technology, 17(2002):355-362.
    [70] Kilic, E. Yasar, C.D. Atis, Effect of bar shape on the pull-out load capacity of fully grouted rock bolt[J], Tunnelling Underground Space Technology,18(2002):1-6.
    [71] 朱焕春,荣冠,肖明等.张拉荷载下全长粘结式锚杆工作机理试验研究[J],岩石力学与工程学报,2002,21(3):379-384.
    [72] 周群.锚筋与砂浆粘结机理及岩石锚杆基础的试验研究[A].见:程良奎,刘启深主编.岩土锚固工程技术的应用与发展-国际岩土锚固技术研讨会论文集[C].北京万国学术出版社,1996,260-264.
    [73] Hyett A J, Bawden W F and Reichert R D. The effect of rock mass confinement on the bond strength of fully grouted cable bolts[J]. Int. J, Rock Mech. Min. Sic. and Genomic. Abstr. 1992, 29(5): 503—524.
    [74] Massarsch K R, Oikawa K. Design and practical application of soil anchors[A]. In: Proc. Ground Anchorages and Anchored Structures[C]. London: Thomas Telford,1997. 153-158.
    [75] Jarred D J, Haberfield C M. Tendon-grout interface performance in grouted anchors[A]. Proc. Ground Anchorages and Anchored Structures[C]. London: Thomas Telford, 1997.
    [76] 杨庆生.复合材料细观结构力学与设计[M].北京,中国铁道出版社,2000.
    [77] 徐桢祥等.岩土锚固技术与西部开发[M].北京,人民交通出版社,2002.
    [78] 李铀,白世伟,方昭茹等.预应力锚索锚固体破坏与锚固力传递模式研究[J],岩土力学 2000 24(5):686-690.
    [79] 范宇洁,郑七振,魏林.预应力锚索锚固体的破坏机理和极限承载能力研究[J].岩石力学与工程学报,2005,24(15):2765-2769.
    [80] 唐湘民岩体锚固效应模型试验研究及解析计算[D].武汉:中国科学院武汉岩土力学研究所,1987.
    [81] 朱维申,白世伟等.预应力锚索加固机理研究[R].“八五”国家科技攻关,中国科学院武汉岩土力学研究所,1995.
    [82] 顾金才,民治清,沈俊等.预应力锚索内锚固段受力特点现场试验研究[J],岩石力学与工程学报,1998,17(增):778-792
    [83] 张发明,刘宁,赵维炳.岩质边坡预应力锚固的力学行为及群锚效应[J],岩 石力学与工程学报,2000,19(增):1077-1080.
    [84] 黄德福.层状岩质高边坡预应力群锚加固机理[J],水利发电,1996,(8):30-33
    [85] 李宁,赵彦辉.预应力群锚加固机理数值试验研究[J],岩土工程学报,1997,19(5):60—66.
    [86] 黄德福.高边坡群锚加固中锚索体的动态受力特征[J],西北水电,1997(4):33-37
    [87] 李宁,陈飞雄.群锚加固机理与效果数值仿真试验研究[J],西安理工大学学报,1997,13(2):104—109.
    [88] 戴运祥,侯学渊,李象范.软地层中斜拉群锚特性的研究[J],岩土力学,1996,17(2):23-28.
    [89] 钱家欢,殷宗泽.土工原理与计算[M].中国水利水电出版社,1996
    [90] 谢和平,陈忠辉,周宏伟等.基于工程体与地质体相互作用的两体力学模型初探[J],岩石力学与工程学报,2005,24(9):1457-1464.
    [91] 胡黎明,濮家骝.土与结构物接触面损伤本构模型[J],岩土力学,2002,23(1):6-11
    [92] Zhang C H, Xu Y J, Jin F. Effects of soil-structure interaction on nonlinear response of arch dams[A].In: Zhang C H, John Wed. Dynamic soil-structure interaction[C].[s.1.]: Elsevier Science,1998:12-19.
    [93] 林皋.土与结构相互作用[J],世界地震工程,1991,7(2):4-21.
    [94] 张建民.土体与结构物动力相互作用[A].张楚汉编.水利水电工程科学前沿[C].北京:清华大学出版社,2002,266-287.
    [95] 陈志坚,董学武,谢和平.复杂受力条件下重力式结构基底应力的实测研究[J],河海大学学报(自然科学版),2004,32(1):46-50
    [96] Hertz, H, Uber die beruhrung fester elastlscher korPer fill[J]. Reine and Angewandte Mathematik., 1882, 92: 156-171.
    [97] Johnson著,K.L,徐秉业等译.接触力学[M],高等教育出版社,1985.
    [98] G.M.L.Gladwell著,范天佑译,经典弹性理论中的接触问题[M],北京理工大学出版社,1991.
    [99] Muskhelishvili, V. I..Singular Integral equations, Moscow, 1946
    [100] Muskhelishvili, V. I. The fundamental general problem of the theory of elastlclty, 3rd Edition, Moscow, 1949.
    [101] Galin著,王君健译, 王仁校.弹性理论的接触问题[M],科学出版社,1958.
    [102] Kikuchi, N. and Oden, J.T., Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, Philadelphia, 1988.
    [103] Kalker, J. J., Three-dimensional elastic bodies in rolling contact[M], Kluwer Academic Publishers, Netherlang, 1990
    [104] Panagiotouplos P D.. On the unilateral contact problem of structures with a nonquadratic strain energy[J], Int. J Solid. Strut., 1977(13):253-261.
    [105] Panagiotouplos P. D., A, variational inequality approach to the friction problem of structures with convex strain energy density and application to the frictional unilateral contact pmblem[J], J. Struct. Mech.,1978(6): 303-318.
    [106] 崔俊芝.关于有间隙的弹性接触问题[J],力学学报,1980(3):261-268.
    [107] Kalarbring and G. Bjorkman.A mathematical programming approach to contact problems with friction and varying contact surface[J], Comp. Struct, 1988(30): 1185-1198
    [108] Kalarbring. On discrete and discretized nonlinear elastic structures in unilateral contact(stability, uniqueness and variational principles) [J],Int.J. Solids. Struct., 1988(24): 459-479.
    [109] 卓家寿,陈振雷.非线性介质摩擦接触问题的变分不等式及其应用[M],计算力学理论与应用,科学出版社,1992.10
    [110] Bathe. K. J. and Chaudhary A..A solution method for planar and axisymmetric contact problems[J], Int. J. Num. Meth. Eng,1985(21):65-88.
    [111] Chaudhary A. and Bathe K. J., A solution method for static and dynamic analysis of three-dimensional contact problems with friction[J],Comput. Struct., 1986(24): 855-873.
    [112] Wriggers P. and Simo J. C., A note on tangent stiffness for fully nonlinear contact problems[J], Comp, meth. Appl. Mech. Eng., 1985(50): 199-203.
    [113] 毛坚强.接触问题的一种有限元计算方法及其在岩土工程中的应用[D].西南交通大学,2002.
    [114] 陈万吉.用有限元混合法分析弹性接触问题[J],大连工学院学报,1979(8):16-28.
    [115] 陈万吉.裂缝重力坝的非线性分析[J],计算结构力学及其应用,1985(2):11-17
    [116] 钟万勰.弹性接触问题的变分原理及参数二次规划求解[J],计算结构力 学及其应用,1985(2):1-9
    [117] 钟万勰.弹性接触问题的势能原理及其算法[J],计算结构力学及其应用,1985(2):21-29.
    [118] 陈万吉,陈国庆.三维弹性接触问题的互补变分原理和非线性互补模型[J],计算结构力学及其应用,199603]:138-146.
    [119] 陈国庆,陈万吉,冯恩民.三维接触问题的非线性互补一接触柔度法[J],计算结构力学及其应用,1996(3):385-392.
    [120] Zhong W X, Sun S M. A finite method for elastio-plastic structure and contact problem by parametric quadratic programming[J]. Int. J. for Numerical Methods in Engi., 1988, 1(26): 2723-2738.
    [121] Oden J T. Exterior penalty methods for contact problems in elasticity. In Bathe K J, Stein E, Wunderlich. Nonlinear Finite Element Anaysis in Structural Mechanics, Europe-US Workshop, Springer, Berlin, 1980.
    [122] 雷晓燕,Swoboda G,杜庆华.接触磨擦单元的理论及应用[J].岩土工程学报,1994(5):23-32
    [123] 黎勇,栾茂田.地基与基础相互作用分析的接触力元法及应用[C].见:第四届中日建筑结构技术交流会,大连:大连理工大学出版社,1999.
    [124] 汪召华,高莲士,宋文晶.三维摩擦接触的有限元分析[J].清华大学学报,2002,42(S1):25-28.
    [125] Ngo, D. and Scordelis, A.C, Finite element analysis of reinforced concrete. J. American Concrete lust, 1967, 46(14): 152-163.
    [126] 李录贤,沈亚鹏,叶天麒.摩擦接触问题的数学规划解法[J],应用力学学报.1998,15(2):49-55.
    [127] Kwak B. M. and Lee S. S., A complementary problem formulation for two-dimensional frictional contact problem[J], Comput. Struct.,1988, 28(4): 469-480.
    [128] Kwak B. M..Numerical implementation of three-dimensional frictional contact by a linear complementary problem[J], ASCE. J. Appl. Mech., 1990(4):23-31.
    [129] 孙苏明,钟万勰.摩擦接触弹塑性分析的数学规划法[J],力学学报,1991,(23):323-331
    [130] Kwak B. M. Complementarity problem formulation of three dimensional frictional contact[J], ASCE J. Appl. Mech., 1991(113): 134-140.
    [131] Kwak B. M. and Im S.B., Periodic loading in frictional contact formulated by complementary[J], Int. J. Solids. Struct.,1992, 29(24):3065-3085.
    [132] 张柔雷.参变量变分原理及其应用[D],大连理工大学博士学位论文,1987.
    [133] 陈国庆,陈万吉,冯恩民.摩擦接触问题数学规划法的收敛性和算法的改进[J],计算结构力学及其应用,1994,(4):374-379.
    [134] 钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[C].北京:科学出版社,1997:244-251.
    [135] Franeavilla A. and Zienkiewicz O. C.. A note on numerical computation of elastic contact problems[J], Int. J Num. Meth. Eng., 1975(9):913-924.
    [136] Fredriksson B. et al., Numerical solutions to contact, friction and crack problems with applications[J], Eng. Comput., 19940]: 133-143.
    [137] Okamoto N. and Nakazawa M., Finite element incremental contact analysis with various frictional conditions[J], Int. J Num. Meth. Eng., 197904]: 337-357.
    [138] Tseng. J. and Olson M. D., The mixed finite element method applied to two-dimensional elastic contact problems[J], Int. J. Num. Meth. Eng., 1981(17):991-1014.
    [139] Ngo, D. and Scordelis, A.C. Finite dement analysis of reinforced concrete. J. American Concrete Inst., 1967,46(14):152-163.
    [140] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed Rock[J].Journal of Soil Mechanics and Foundation Engineering Division, ASCE, 1968, 94(3): 637-660.
    [141] Clough G W, Duncan J M. Finite element analysis of retaining wall behavior[J]. J. of Soil Mechanics and Foundation Engineering. Division, ASCE, 1971, 97(2): 1657-1673.
    [142] Goodman, R. E. and Dubois, J.. Duplication of dilatancy in analysis of jointed rocks[J]. J. of the Soil Mechanics and Foundations Division ASCE, 1972, 983(4): 399-422
    [143] Gens A, Carol 1, Alonso E E. An interface element formulation for the analysis of soil-reinforcement interaction[J].Computers and Geotechnics, 1988, (7):133-151.
    [144] Plesha M E, Ballarini R, Parulekar A. Constitutive model and finite element procedure for dilantant contact problems[J]. Journal of Engineering Mechanics, ASCE, 1989, 115(12):2649-2668.
    [145] Kaliakin V N, Li J. Insight into deficiencies associated with commonly used zero-thickness interface element[J]. Computers and Geotechnics, 1995,(17): 225-252.
    [146] Justo J L, Segovia F, Jaramillo A. Three-dimensional joint elements applied to concrete-faced dams[J].International Journal for Numerical and Analytical Methods in Geotechnics, 1995,(19):615-636.
    [147] 赵德安.带节理型裂缝物体损伤弹性的数值分析[J],兰州铁道学院学报(自然科学版),2000,19(3):1-4.
    [148] Ghaboussi. Contact problems with friction[J], Comp. Meth. Appl. Mech. Eng., 1986(58): 175-200
    [149] Desai C S, Zaman M M. Thin layer element for Interfaces and Joints[J]. Int. J. for Numerical and Analytical Methods in Geomechanics,1984, 8(1):19-43.
    [150] 邵炜,金峰.用于接触面模拟的非线性薄层单元[J],清华大学学报(自然科学版)1999.39(2):34-38.
    [151] 殷宗泽,朱涨,许国华.土与结构材料的接触面的变形及数学模型[J].岩土工程学报,1994,16(3):14-22.
    [152] 殷宗泽.土体本构模型剖析[J].岩土工程学报,1996,18(4):95-97.
    [153] 张冬齐,卢廷浩.土与结构接触面模型的建立与应用[J].岩土工程学报,1998,20(6):62-66.
    [154] Katona, M. G. A simple contact—friction Interface element with applications to buried culverts[J], Int. J for Numer. And Analys. Methods. In Geomechanics, W I. 1983, (7):871-384.
    [155] 雷晓燕.岩土工程数值计算[M].北京,铁道出版社,1999
    [156] 李宁,Swoboda,葛修润.岩体节理在动荷作用下的有限元分析.岩土工程学报,1994 16(1):29-38.
    [157] 张燎军.水工结构接触问题的力学模型及其在三峡工程中的应用[D].河海大学,2005.
    [158] 毛坚强.接触问题的一种有限元计算方法及其在岩土工程中的应用[D].西南交通大学,2002.
    [159] 徐志英.岩石力学[M],河海大学出版社,1993
    [160] 赵荣国.楔环连接结构静力接触行为与动力学特性研究[D].中国工程物理研究院,2004.
    [161] 盛建龙.岩体结构面力学特征及地下工程结构稳定性的研究[D].武汉理工大学,2001.
    [162] 邢福东.岩石—砼两相介质胶结面抗剪强度分形描述及其工程应用[D].河海大学博士学位论文,2004.
    [163] 武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析[D].大连理工大学,2003
    [164] 吴春秋.非线性有限单元法在土体稳定分析中的理论及应用研究[D].武汉大学,2004.
    [165] 何素艳.互补问题算法研究及其在力学中的应用[D].大连理工大学,2003.
    [166] 徐颖强.循环载荷下接触安定问题的数值方法及工程应用[D].西北工业大学,2002.
    [167] 翟英达.采场上覆岩层结构的面接触类型及稳定性力学机理[D].煤炭科学研究总院,2002.
    [168] 刘永健.三维弹性体移动接触问题的边界元法研究[D].清华大学,2003.
    [169] 陈一鸣.弹性及弹塑性摩擦接触边界元快速算法的理论与方法研究[D].燕山大学,2003.
    [170] 孙林松.三维弹塑性接触问题的线性互补方法及拱坝结构非整体性分析研究[D].河海大学,2001.
    [171] 李锡润,金银东.全长固定式锚杆受拉时的变形特征[J].东北工学院学报,1985,(5):25~30.
    [172] 李锡润,金银东.有预张力的粘结式锚杆[J].岩土工程学报,1987,9(1):40-52
    [173] R.Muki & E.Stemberg, Elastosfic Load Transfer to a Partially Ambeded Axially Loaded Rod, Int.J,Solids & Structure,1970,(6): 69~90.
    [174] 云天铨.简便积分方程法分析桩[J].应用数学和力学,1981,2(3):307~320
    [175] 云天铨.轴对称问题的积分方程的迭代解法[J].应用数学和力学,1980;1(1):115-123
    [176] 汪海滨,高波.预应力锚索荷载分布机理原位试验研究[J],岩石力学与工程学报,2005,24(12):2113-2118.
    [177] 汪海滨,高波.预应力群锚根状效应原位试验研究[J],岩土力学,已录用.
    [178] 丁秀丽,盛谦等.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报,2002;21(7):980~988.
    [179] 尤春安.锚固系统应力传递机理理论及应用研究[D].山东科技大学,2004.
    [180] 何思明.预应力锚索作用机理研究[D].西南交通大学,2004
    [181] 何思明,张小刚,王成华.预应力锚索的非线性分析[J].岩石力学与工程学报,2004.23(9):1535~1541
    [182] 王敏强,刘晓刚,艾建申.某厂房边坡施工过程仿真及稳定分析[J].岩石力学与工程学报,2002,21(S2):2506-2510
    [183] 张强勇,向文,朱维申.三维加锚弹塑性损伤模型在溪洛渡地下厂房工程中的应用[J].计算力学学报.2000,17(4):475~482
    [184] 张玉军,刘谊平.锚固正交各向异性岩体的三维弹塑性有限元分析[J].岩石力学与工程学报.2002,21(8):1115~1119
    [185] 杨延毅,王慎跃.加锚节理岩体的损伤增韧止裂模型研究[J].岩土工程学报,1995,17(1):9-17
    [186] 于学馥,郑颖人.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [187] 朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究[J].岩土力学,1996,17(2):1~6
    [188] Zhu Weishen, ZhangYujun. Effect of supporting surrounding rocks by bolts and its application to high slope of three gorges flight lock. In: Proceedings of the international symposium on anchoring and grouting techniques. Hong Kong: Econarc Communication (Group) Ltd, 1994.188~197
    [189] 黄福德,赵彦辉,李宁.预应力锚固机理数值仿真分析研究[J].西北水电,1996,55(1):8-17
    [190] 邱用,宋二祥.深基坑锚杆-土钉复合支护的三维非线性有限元分析[J].工程勘察,2001,(6):370-371
    [191] 赵赤云.预应力锚索锚固的作用分析[J].北京建筑工程学院学报,1999,15(2):84-88
    [192] 付敬,盛谦.高边坡预应力锚索加固的数值模拟[J].长江科学院院报.1996,13(3):52-55
    [193] 丁秀美,黄润秋,减亚君.预应力锚索框架作用下附加应力的FLAC3D模拟[J].成都理工大学学报,2003,30(4):339-345
    [194] 徐前卫,尤春安,朱合华.预应力锚索的三维数值模拟及其应用研究.岩石力学与程学报,2004,23(S2):4941-4945
    [195] 张发明,邵蔚侠.岩质高边坡预应力锚固问题研究[J],河海大学学报,27(6),73-76.
    [196] 杨春林,郑百林,贺鹏飞等.岩锚界面及其端部附近应力场奇异行为的弹 性力学分析[J].岩石力学与工程学报,2004,23(6):946-951.
    [197] 陈安敏,顾金才,沈俊,预应力锚索的长度与预应力值对其加固效果的影响[J],岩石力学与工程学报,21(6):848~852.
    [198] Sharma K G, Pande G N. Stability of rock masses reinforced by passive, fully-grouted rock bolts[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1988, 25(5): 273-285.
    [199] Spang K, Egger P. Action of fully-grouted bolts in jointed rock and factors of influence[J]. Rock Mech. and Rock Eng., 1990, 23(2): 201-222
    [200] 章青,卓家寿.加锚岩体的界面应力元模型[J].岩土工程学报,1998,20(5):50~53.
    [201] Kaiser P. K., Yazici S. and Nose J. Effect of stress change on the bond strength of fully grouted cables[J], Int. J. Rock Mech. Min. Sci. & Geomech, Vol 29.pp. 293-306, 1992
    [202] 汪海滨.山岭隧道地下水规律及防治方法研究[D].西南交通大学,2002
    [203] 蒋楚生.劈裂注浆条件下锚索承载力的理论分析[J].铁道工程学报,2003,80(4):129~123
    [204] 夏雄,周德培.二次劈裂注浆锚索的设计分析[J],铁道建筑技术,2003,(6):38~40.
    [205] 黄福德,高边坡群锚加固中锚索体的动态受力特征[J],西北水电,1997,62(4):33~37.
    [206] 黄福德,吕祖珩.预应力群锚高边坡增稳机理研究[J],西北水电,2000,(4):49-52.
    [207] 蒋忠信.预应力锚索加固松散体滑坡的机理与实践[J],铁道工程学报,1999,61(1):72-77.
    [208] 杨林德.岩土工程问题的反演理论与工程实践[M].北京,科学出版社,1995
    [209] 莫海鸿,曹鸿,房营光.深基坑施工过程的动态优化反演及三维仿真分析[A],首届全球华人岩土工程论坛[C],2003,165~171.
    [210] 房营光,莫海鸿.基于无记忆最小二乘拟牛顿法的边坡稳定性分析[J],岩石力学与工程学报,2002,21(1):34~38.
    [211] 朱合华,丁文其.地下结构施工过程的动态仿真模拟[J],岩石力学与工程学报,1999,18(5):558~562
    [212] 刘钦圣.最小二乘问题计算方法[M],北京,北京工业大学出版社,1989
    [213] 于学馥,宋存仪.不确定性科学决策方法[M].北京,冶金工业出版社,2003
    [214] 于学馥,刘怀恒,郑颖人,方正昌.地下工程围岩稳定性分析[M].北京,冶金工业出版社,1983
    [215] 曹志远.土木工程分析的施工力学与时变力学基础[J].土木工程学报,2001,34(3):42
    [216] 廖雄华,李锡夔.关于土-结相互作用界面力学行为的数值模拟[J],计算力学学报,2002,19(4):450-455.
    [217] Langhaar H L. Dimensional Analysis and Theory of Models, Robert E. Krieger Publishing Company, Huntington, Newyork, 1980.
    [218] 袁文忠.相似模型试验[M].成都,西南交通大学出版社.
    [219] 刘祖德.抗拔桩基础[J].地基处理1995,6(4):1-12;1996,7(1):11-16;7(2):6-17;7(3):8-13
    [220] Wyllie D C. Foundations on rock [M]. London: Chapman and Hall, 1992.
    [221] 刘祖德.抗拔桩基础[A].刘金砺.桩基工程技术[M].北京:中国建材工业出版社,1996
    [222] 黄锋.单桩在压与拔荷载下桩侧摩阻力发展机理研究[D].北京:清华大学,1998
    [223] 张尚根,韩兵,何皎皎.爆扩抗拔桩极限承载力灰色关联度分析[J].建筑技术开发,2003,30(11):33-34
    [224] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2003.
    [225] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [226] 龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [227] 朱伯芳.有限元法原理与应用[M].北京:中国水利出版社,1998.333~337.
    [228] 孙伟,龚晓南.土坡稳定分析强度折减有限元法[J].科技通报,2003,19(4):319-322
    [229] 郑宏,李春光,李焯芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):323—328.
    [230] 连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性[J].岩土工程学报,2001,23(4):406-411.
    [231] 栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [232] 赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254~260
    [233] 郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381~3388
    [234] 郑颖人,赵尚毅.用有限元强度折减法求边(滑)坡支挡结构的内力[J].岩石力学与工程学报,2004,23(20):3552~3558
    [235] 赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343~346
    [236] 郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,4(10):57-61
    [237] 张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21—27.
    [238] 郑颖人,赵尚毅,孔位学.极限分析有限元法讲座—Ⅰ:岩土工程极限分析有限元法[J].岩土力学,2005,26(1):163-168
    [239] 赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座—Ⅱ:有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):
    [240] 徐干成,郑颖人.岩土工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2):93-99.
    [241] Griffiths D V, lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999, 49(3): 387—403.
    [242] Dawson E M. Roth W H, Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique, 1999, 49(6): 835—840.
    [243] 周翠英,刘祚秋,董立国等.边坡变形破坏过程的大变形有限元分析[J].岩土力学,2003,24(4):644—652.
    [244] 刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348
    [245] 张建勋,陈福全.用强度折减有限元法分析土坡稳定问题[J].山东科技大学学报(自然科学版),2004,23(1):115-117
    [246] 赵少飞,栾茂田,吕爱钟.土工极限平衡问题的非线性有限元数值分析[J].岩土力学,2004,25(增2):121—125.
    [247] 万林海,金海元,吴伟功等.有限差分强度折减法的应用分析[J].人民黄河,2005,27(9):43-46
    [248] 吴翔天.基于大变形弹塑性有限元方法的边坡强度折减分析[J].铁道建 筑技术,2005,(1):45-48
    [249] 钟国强,周亦唐,葛晓旭.用有限元强度折减法求加筋土挡墙的稳定安全系数[J].昆明理工大学学报(理工版),2003,28(1):123-126
    [250] Chen W F. Limit analysis and soil plasticity[J]. Elsevier Science Anmterdam, 1975.47-106.
    [251] Collins I F, Boulbibane M. Geomechanical analysis of unbound pavements based on shakedown theory[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, (1):50-59.
    [252] Collins I F, Boulbibane. M. Shakedown under moving loads with applications to pavement design and wear[A]. Developments in Theoretical Geomechanics[C]. New York: Macmillan, 2000,102-163.
    [253] Collins I F, Cliffe P F. Shakedown in frictional materials under moving surface loads[J].International Journal of Numerical and Analytical Methods in Geomechanics,1987, (11): 409—420.
    [254] Koiter W T. General theorems for elastic-plastic solids[M]. Proeress in Solid Mechanics.1960.(1): 165-221.
    [255] LUAN Mao-tiara, WU Yajun, NIAN Ting-kai. A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003.(9): 1-8.
    [256] Pool J H. Geotechnical aspects of gravity structures[J]. Journal of Ocean Engineering, 1976, 1: 4-19.
    [257] Martin J B.Plasticity: Fundamentals and General Results[M].[s.1.]: The Massachusetts Institute of Technology Press, 1975. 633-697.
    [258] Konig JA. On upper bounds to shakedown loads[J].ZAMM, 1979, 59: 349-354.
    [259] 栾茂田,王飞,屠晟,朱菊芬.非均质地基的极限荷载与安定荷载比较分析[A].栾茂田.第七届全国岩土力学数值分析与解析方法讨论会论文集[C].大连:大连理工大学出版社,2001.131-134.
    [260] 栾茂田,曹永喆.基于温度参数法的土工安定性分析方法及其应用[A].王铁宏.第八届土力学及岩土工程学术会议论文集[C].北京:万国学术出版社,1999,113-116.
    [261] 陈祖煜.土质边坡稳定分析—原理、方法、程序[M].北京:中国水利水电 出版社,2003.33-65.
    [262] 王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1987.
    [263] 陆杨,徐千军.交变载荷作用下边坡的安定性分析[J].岩土力学,2004,25(11):1693-1697
    [264] 冯西桥,刘信声.影响弹塑性结构安定性的各种因素[J].力学进展,1993,23(2):214-222.
    [265] 刘应华.结构极限与安定分析的数值方法研究及其工程应用[D].北京:清华大学,1995
    [266] 王志必.工程结构的安定性和极限分析[D].大连:大连理工大学,1987.
    [267] 王飞,朱菊芬.增量破坏型机动安定性分析方法及其应用[J].海洋工程,2003,(2):7-13.
    [268] 王飞,栾茂田,朱菊芬.安定荷载上限近似解的数值分析方法及其应用[J].工程力学,2003,20(5):76-81
    [269] 王飞,栾茂田,朱菊芬.基于弹塑性有限元法的土工安定性分析方法及其应用[J].大连理工大学学报,2001,41(3):349-354.
    [270] 王飞.安定性数值分析方法及其在海洋地基承载力评价中的应用[D].大连:大连理工大学,2002
    [271] 张明焕.结构安定分析方法研究[J].应用力学学报,1994,11(4):83-90.
    [272] 曾宪明,陈肇元等.锚固类结构安全性与耐久性问题探讨[J],岩石力学与工程学报,2004,23(13):2235-2242
    [273] 曾宪明,雷志梁,张文巾等.关于锚杆“定时炸弹”问题的讨论—答郭映忠教授[J].岩石力学与工程学报,2002.
    [274] 夏才初,孙宗颐.工程岩体节理力学[M].上海:同济大学出版社,2002
    [275] K.L.Johnson著,徐秉业等译.接触力学[M].北京高等教育出版社,2002
    [276] 高大钊,孙均.岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001.
    [277] 刘祖德.抗拔桩基础[J].地基处理,1995,6(4):1-12;1996,7(1):11-16;7(2):6-17;7(3):8-13.
    [278] Wyllie D C. Foundations on rock [M]. London: Chapman and Hall, 1992.
    [279] 汪海滨,高波.隧道式复合锚碇作用机理研究[J].西南交通大学学报.2005,39(6).
    [280] Patton F D. Multiple modes of shear failure in rock[A]. Proc 1st International Congress of Rock Mechanics [C]. Lisbon. 1966, 1: 509-513.
    [281] Barton Choubey V. The shear strength of rock joints in theory and practice [J]. Rock Mechanics, 1977, (10): 1-54.
    [282] Barton Bandis Stavros. Some effect of strale on the shear strength of joints [J]. Mining Science & Geomechanics Abstract, 1980, 17: 69-73.
    [283] Barton N. Review of a new shear strength criteria for rock joints[J]. Engineering Geology, 1973(7): 287-332.
    [284] Landanyi B, Archambault G. Simulation of shear behaviour of a jointed rock mass. Proc 11th Symposium on Rock Mechanics. New York: RIME, 1970. 105-125
    [285] 李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [286] TB10003-2004.铁路隧道设计规范[S].北京:中国铁道出版社.2004.
    [287] 张尚根,韩兵,何皎皎.爆扩抗拔桩极限承载力灰色关联度分析[J].建筑技术开发,2003,30(11):33-34
    [288] 高玉峰彭立才,程永锋.插入式基础抗拔陛能真型试验装置的设计及试验方案介绍[J].防灾减灾工程学报,2004,24(4):460-464
    [289] 彭立才,程永峰,高玉峰.插入式基础真型抗拔试验研究[J].岩土力学,2004,25(12):2037-2040
    [290] 陈轮,蒋力,王海燕.DX桩抗拔承载力机理的现场试验研究[J],工业建筑,2004,34(10):33-35
    [291] 王勖成.有限单元法[M].第二版.北京:清华大学出版社,2002.
    [292] 谢康和,周键.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002
    [293] 漆泰岳.锚杆与围岩的相互作用的数值模拟[M],徐州:中国矿业大学出版社,2002
    [294] 曹文贵,速宝玉.岩体锚固支护的数值流形方法模拟及其应用[J].岩土工程学报,2001,23(5)
    [295] 李卧东,陈胜宏.接触摩擦问题的数值模拟[J].岩土力学,2003,24(3):385-388
    [296] ANSYS基本过程手册.美国ANSYS公司成都代表处.
    [297] ANSYS建摸与分网指南.美国ANSYS公司成都代表处
    [298] ANSYS非线性分析指南.美国ANSYS公司北京代表处.
    [299] ANSYS高级技术分析指南.美国ANSYS公司成都代表处
    [300] 闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700