用户名: 密码: 验证码:
静电增强超声雾化热解法制备ZnO薄膜的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用静电增强超声雾化热解法制备了ZnO薄膜,用XRD、SEM、PL、RAMAN等手段研究了制备条件对ZnO薄膜形貌、内部缺陷的类型、发光性能、气敏性能的影响;研究了掺杂对ZnO薄膜光学性能、电学性能、气敏性能的影响;并以制备的ZnO薄膜为缓冲层,在Si衬底上生长ZnO纳米阵列和ZnO纳米结构,研究了ZnO纳米阵列在气体电离传感器上的应用。其主要研究结论如下:
     (1)采用静电增强超声雾化热解方法制备出高质量的ZnO薄膜,并对不同工艺条件下薄膜的结构、成分、形貌、沉积速率、光致发光进行分析,我们发现当前驱体的浓度在0.01~0.005M之间时,衬底温度在400~500℃,当载气量为200~500sccm制备的薄膜的取向性较好,且薄膜平整致密。使用较高浓度前驱体制备的ZnO中,存在明显的蓝光发射峰和绿光发射峰;蓝光发射峰与锌间隙能级有关;绿光发射峰由VZn的不同电离态引起;在600℃下氧气氛退火60 min后蓝光发光峰和绿光发光峰消失了。
     (2)评价了不同衬底温度、不同载气条件下制备的ZnO薄膜的电学性能,在衬底温度为440℃制备出了霍尔迁移率为141 cm2/Vs,电阻率为9.99?cm-1的p-型ZnO薄膜;使用XPS和低温PL分析了在440℃制备的p-型ZnO的成分及受主缺陷的类型,该薄膜中受主能级位于价带上160 meV和250meV处,并推测其与NO和VZn有关。研究了晶界对薄膜电学性能的影响,发现载气的类型影响薄膜的导电性能。使用SCM对氧气做载气制备的ZnO薄膜的载流子分布进行了表征。晶界上吸附的氧使得晶粒中的电子耗尽,造成晶粒中空穴的散射作用减弱和晶界附近空穴积累,是引起超高空穴迁移率的原因。
     (3)制备了Ag掺杂和N掺杂p-型ZnO薄膜,研究了它们的结构、光学性能、电学性能,摸索了最佳的掺杂量。研究了双受主共掺杂理论,揭示了Ag-N共掺杂在理论是可行的。使用共掺杂技术制备ZnO: (Ag, N)薄膜,并研究了该薄膜的结构和光学电学性能。XDR表明共掺杂提高了晶体的质量,霍尔测量表明共掺杂制备的ZnO有较低的电阻和较高的霍尔迁移率;实验表明双受主共掺杂增强了N和Ag原子的稳定性,提高了掺杂浓度;我们还发现ZnO(Ag, N)与ZnO:Ag相比,薄膜的光学透过率明显提高,Ag-N共掺杂的ZnO电学和光学性能的稳定性较好。
     (4)使用化学气相传输法在蒸金的硅片生长了ZnO纳米线;通过分析生长不同阶段的SEM,明确了ZnO纳米线的生长遵循VLS机理。使用静电增强超声雾化法在Si上制备了ZnO缓冲层,并在该缓冲层上生长了ZnO纳米阵列。在Si上使用不同催化剂成功生长了ZnO纳米结构,实验发现Cu作催化剂在Si衬底上得到楔状ZnO纳米片,该结构的ZnO纳米片沿[011_0]方向生长,纳米片上下表面为±(0001)极性面;纳米片的生长遵循VLS机理,属于六角纤锌矿晶体结构,纳米片的位错和堆垛层错等晶格畸变较少;使用Zn催化在Si衬底上得到长达几百微米的ZnO纳米带。ZnO纳米带沿[011_0]方向生长,属于六角纤锌矿晶体结构;纳米带的生长遵循VLS机理。比较了不同使用不同催化剂制备ZnO的PL。实验表明,在缓冲层上Au催化制备的ZnO纳米阵列具有较强的发光强度,Cu催化制备的ZnO楔状纳米片次之,Zn催化制备的ZnO纳米带最弱;这是由于使用不同的催化剂制备的ZnO纳米结构中的缺陷数量和缺陷类型不同造成的。
     (5)研究了场致电离气敏传感器的工作原理。发现在电场限制区中,气体场致电离产生的电流强度与气体的特性密切相关,可以作为鉴别不同气体的特征。使用有限元软件模拟了纳米线顶端的场强分布,模拟的结果表明纳米ZnO的顶端电场增强因子的最大值约为187。使用不同取向的ZnO纳米棒制作了场致电离气体传感器,研究了不同形貌纳米线制备器件对丙酮的响应曲线,测试表明器件的响应曲线分为三个区,响应曲线与电场增强因子β密切相关。研究了器件对甲苯和丙酮的电离特性曲线。从气体放电电流和击穿电压来看,器件可以明显的区分甲苯和丙酮。测量了器件对NOx化合物的响应,实验表明在较低的浓度下,NOx化合物的浓度电流响应值呈现近似的线性关系,器件的响应速度为17~40s,器件的灵敏度为0.045±0.007 ppm/pA。测量了器件对苯、异丙醇、乙醇、甲醇化合物的响应,实验表明器件对静态极化率较大,电离能低的气体有一定的选择性。
     (6)测试了不同衬底温度下制备的ZnO薄膜对NO2气体的气敏性能;实验表明550℃制备的粉末状的ZnO薄膜对NO2的敏感度较高,并表现出较好的响应-恢复特性;研究了致密的ZnO薄膜厚度对气敏性能的影响,实验表明薄膜对NO2的敏感度随膜厚增加而减少;对于550℃制备的粉末状的ZnO薄膜而言,对NO2的敏感度先随薄膜的厚度增加而增加,当薄膜厚度到达一定程度时,其敏感度反而下降了。研究了ZnO:Al薄膜对NO2的敏感度,实验表明在260℃的工作温度下,当ZnO:Al中Al含量为0.4mol%,对40ppm的NO2的敏感度高达74.8。研究了ZnO:Ag薄膜对NO2的敏感度,当掺Ag量为3mol%时,ZnO:Ag薄膜对NO2的灵敏度最高,实验还发现ZnO:Ag薄膜在NO2中光学透过率会发生改变。我们比较了掺Al、Ag的ZnO薄膜及未掺杂的ZnO薄膜对NO2的气敏性的动态响应,实验表明ZnO:Al薄膜对NO2的灵敏度最高,但达到稳定状态时所需的响应时间较长;掺Ag的ZnO灵敏度较低,且在排气后不容易恢复到初始的状态;未掺杂的ZnO薄膜对NO2的灵敏度居中,但是其响应速度较快。
Zinc oxide, a representative II–VI group compound semiconductor with a direct wide bandgap of 3.37 eV at room temperature and a large exciton binding energy of 60 meV, is an important photoelectric material and draws much attention. ZnO is of interest for low-voltage and short wavelength light emitting devices such as light-emitting diodes, diode lasers, and ultraviolet photo-detectors. In this thesis, the ZnO thin films were fabricated by Electrostatic-enhanced Ultrasonic Spray Pyrolysis (EUSP); and the films morphology, composition, structure, and defects were characterized by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra, and Raman spectra; we also studied the influence of doping on the optical, electrical, and gas-sensing properties of ZnO films; moreover, we assembled the ZnO nanostructures on the Si substrate, on where, ZnO buffer layer was grown by EUSP; and then, the as-prepared ZnO nanorods were used to fabricate the gas ionization sensor, at last, we explored the function and principle of the gas ionization sensor.
     ZnO films have been fabricated using EUSP. The ZnO films had a polycrystalline hexagonal wurtzite type structure. The influence of preparing conditions on ZnO films morphology were explored by SEM, the dense and smooth films were prepared using the precursor within the concentration of 0.01~0.005M, at the substrate temperatures between 400~500oC, with carrier gas at the flow rate between 200~500sccm. The influence of preparation conditions on photoluminescence was discussed, photoluminescence and Raman spectra of ZnO show that blue and green luminescence observed in ZnO films can be attributed to Zni and VZn. After annealing at 600 oC, only the UV emission can be seen from the ZnO sample.
     We explore the influence of substrate temperatures and carrier gases on the ZnO electrical properties by EUSP. The ZnO films structure and composition were characterized by XRD and XPS. The substrate temperatures of 360-480oC produced a p-type ZnO structure, whereas a temperature of 520oC produced an n-type ZnO structure. Hall-effect measurements indicated that prepared at 440oC exhibited the lowest resistivity of 9.99?cm-1 associated with a high carrier mobility of 141 cm2/Vs. Low-temperature photoluminescence PL spectra illustrate acceptor states in the ZnO films attributed to zinc vacancies and nitrogen substituting for oxygen defects. The scanning capacitance microscopy images and annealing the p-type ZnO indicate that the absorbed oxygen in the grain boundary (GB) aroused the p-type conductivity, and the high Hall mobility of the p-type ZnO film own to the holes accumulation layer, which was induced by the negatively charged interface states in the GBs.
     We have prepared the Ag-doped and N-doped p-type ZnO thin films trying to find out the best amount of doping, and we also studied double-acceptor theory, revealed that it was feasible. The p-type ZnO was realized by dual-doping with nitrogen and silver via EUSP. The structural, electrical, and optical properties were explored by XRD, Hall-effect and optical transmission spectra. The resistivity of ZnO:(N,Ag) film was found to be 56 ?cm-1 with the high mobility of 76.1cm2/Vs. Compared with the ZnO:N film and the ZnO:Ag film, the ZnO:(N,Ag) film exhibited the higher and the more stable optical transmittance.
     ZnO nanowires were grown on the Au-deposited Si substrate. The SEM images at different stages indicate that the growth of nanowires follow VLS mechanism. ZnO nanowires were also assembled on the Si substrate with the ZnO buffer layer, which was deposited by EUSP. We compare the effect of buffer layers deposited by EUSP and magnetron sputter, the ZnO film with EUSP shows the better buffering effect. The ZnO nanostructures with different morphology were achieved on Si by choosing Zn or Cu as the catalyzer, the wedge-liked ZnO nanostructure was gained with Cu-catalyzed. The HRTEM lattice fringes image and fast Fourier transform crystal lattice from the sample illustrate that the wedge-liked ZnO nanostructure grew along [011_0] orientation with±(0001) as the upper and lower surface, and owned the lower dislocations and stacking faults. The ZnO with Zn-catalyzed are of wire-shapes with of about 50~300nm in diameter and hundreds of micron in length, the nanowires are along the[011_0] orientation. The PL spectra of ZnO nanostructures indicate that the Au-catalyzed ZnO has the highest luminous intensity at UV wavelength, while Zn-catalyzed ZnO own the weakest UV emission, and the Cu-catalyzed ZnO is moderate-intensity; this is due to the use of different catalyst caused the unequal defects number and defect type.
     The gas ionization sensors were fabricated with as-prepared ZnO nanostructure. By measuring their field ionization current, the sensors can fingerprint and distinguish different gas species. We employed finite element simulations to demonstrate the field enhancement effect near the tip top of the ZnO nanorod, the result show a maximum field enhancement factor ofβ= 187 was obtained for our model. Responses of the gas sensor to N2 mixed with toluene and acetone were investigated; the precise discharge current provides the‘fingerprint’for the gas to be identified. In addition, the influence of the morphologies of ZnO nanorods on the response of the gas sensor to N2-organic gas mixture was also discussed. From the gases discharge current and breakdown voltages, the device can be a clear distinction between toluene and acetone. We measured the response of devices to the NOx compounds, the experiments show that at the lower concentrations, the concentration of NOx response to current with a similar linear relationship, and the device shows the response speed of 17 ~ 40s, with the sensitivity of 0.045±0.007 ppm/pA. We also measured the response to benzene, isopropyl alcohol, ethanol, and methanol, the device shows the high selectivity on the gases with the larger static polarizability and the lower ionization energy.
     The NO2-sensing properties of the ZnO films, which were prepared under the different substrate temperature, were investigated. The experiments show that the powder-like ZnO film deposited at 550oC is more sensitive to NO2, and the film illustrate the good response- restoration properties. The result shows that the sensitivity of the film deposited at 400oC increase with thickness reduction; while as to the film deposited at 550oC, the sensitivity increases with the thickness of the film, until the thickness reach to a certain degree, and then, the sensitivity decreased with the thickness raised. We explore the influence of doping on the NO2-sensing properties of the ZnO films at the work temperature of 260oC, the ZnO:Al film with the Al content of 0.4mol% show the best sensitivity of 74.8 to 40ppm NO2, while the ZnO:Ag film, which contents 3mol % Ag, exhibits the higher NO2 sensitivity; and we find the optical transmittance of the ZnO:Ag film increase with the NO2 concentration. The dynamic response to NO2 were tested using the as-prepared ZnO:Al film, ZnO:Ag film, and undoped ZnO. The experiments show that the ZnO: Al film is of the highest sensitivity to NO2, but required a longer time to achieve steady-state; the sensitivity of ZnO: Ag film is low, and the film is not easy to return to the initial state after the NO2 exhausted; the undoped ZnO is the middle sensitivity, but the fast response.
引文
1 Bunn.et al Proc. Phys. Soc. London 47, 836 (1935).
    2 Damen et al. Phys. Rev. 142, 570 (1966).
    3 Mollwo et al Z. Angew. Phys. 6, 257 (1954).
    4 Galli , Coke Appl. Phys. Lett. 16, 439 (1970).
    5 Mead et al Phys. Lett. 18, 218 (1965).
    6 Drapak et al Semiconductors 2, 624 (1968).
    7 Minami et al. Jpn. J.Appl. Phys. 13, 1475 (1974).
    8 Tsurkan et al. Semiconductors 6, 1183 (1975).
    9 Brillson _J. Vac. Sci. Technol. 15, 1378 (1978).
    10张富春,邓周虎,阎军锋,电子元件与材料, 24, 4 (2005).
    11 PayneM C, TeterM P, Alan D C, et al[J].Rev. Mod. Phys.,64, 1045 (1992).
    12 SegallM D, Lindan P L D, and ProbertM J, et al[J].J. Phys.:CondensMatter, 14, 2717 (2002).
    13 Goubin F, MontardiY, et al.Journal of Solid State Chemistry,177, 89 (2004).
    14方容川,固体光谱学,中国科学技术大学出版社, 2001.
    15 J. E. Jaffe and A. C. Hess, Phys. Rev. B, 48, 7903 (1993).
    16 J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, Phys. Rev. B, 62, 1660 (2000).
    17 N. A. Hill and U. Waghmare, Phys. Rev. B, 62, 8802 (2000).
    18 J. E. Jaffe, R. Pandey, and A. B. Kunz, Phys. Rev. B, 43, 14030 (1991).
    19 Paul Erhart, Karsten Albe, and Andreas Klein Phys. Rev. B, 73, 205203 (2006).
    20 J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, J. Appl. Phys. 86, 6864 (1991).
    21 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).
    22 D. C. Look, D. C.Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun., 105, 399 (1998).
    23 D. C. Look, D. C.Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun., 105, 399 (1998).
    24 J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, J. Appl. Phys., 86, 6864 (1991).
    25 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).
    26 D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun., 105, 399 (1998).
    27 J. Nause and B. Nemeth, Semicond. Sci. Technol., 20, S45 (2005).
    28 K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol., 20, S49 (2005).
    29 D. S. Ginley and C. Bright, Mater. Res. Bull., 25, 15 (2000).
    30 E. M. Kaidashev et al., Appl. Phys. Lett., 82, 3901 (2003). T. Edahiro, N. Fujimura and T. Ito, J. Appl. Phys., 93, 7673 (2003).
    31 H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., Part 1, 42, 2241 (2003).
    32 K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, and H. Takasu, Phys. Status Solidi. A, 180, 287 (2000).
    33 K.Miyamoto, M. Sano, H. Kato, and T. Yao, Jpn. J. Appl. Phys., Part 2, 41, L1203 (2002).
    34 T. Edahiro, N. Fujimura and T. Ito, J. Appl. Phys., 93, 7673 (2003).
    35 K Miyamoto, M Sano, H Kato, T Yao, J. Cryst. Growth, 265, 34 (2004).
    36 M. V. Cho, A. Setiawan, K. J. Ko, S. K. Hong, and T. Yao, Semicond. Sci. Technol., 20, S13 (2005).
    37 A. Ohmoto and A. Tsukazaki, Semicond. Sci. Technol., 20, S1 (2005).
    38 Wanklyn B. M., J. Cryst. Growth, 7, 107 (1970).
    39 Sharma S. D., Subhash K. C., J. Cryst. Growth, 10, 121 (1971).
    40 Ushio M., Sumiyoshi Y., J. Mater. Sci., 28, 218 (1993).
    41 Oka K., Hajime S., Satoshi K, J. Cryst. Growth, 237, 509 (2002).
    42 Ntep J. M., Gohen S. Cx., J. Cryst.Growth, 184, 1026 (1998).
    43 L. N. Demianets, D. V. Kostomarov, I. P. Kuz'mina, et al.. Crystallogr. Rep., 47, S86 (2002).
    44 M. Suscavage, Harris M., Yip P., et al. MRS Internet J. Nitride Semicond. Res., 4S1, 537 (1999).
    45 E. Ohshima, H. Ogino, I. Niikura, et al. Journal of Crystal Growth, 260, 166 (2004).
    46上海硅酸盐所氧化锌组,物理, S (1), 6 (1976).
    47 G Agarwal, Nause J. E., Hill D. N. Mat. Res. Soc. Symp. Proc., 512, 41 (1998).
    48王力衡,黄运添,郑海涛,薄膜技术,清华大学出版社,1991.
    49陈光华.新型电子薄膜材料.化学工业出版社,2002.
    50李学丹,万英超,姜祥祺等,真空沉积技术,浙江大学出版社,1994.
    51陈治明,王建农,半导体器件的材料物理学基础,科学出版社,1999.
    52 A. Fouchet, W. Prellier, B. Mercey, L. Méchin, V. N. Kulkarni, and T.Venkatesan, J. Appl. Phys., 96, 3228 (2004).
    53 W. Prellier, A. Fouchet, B. Mercey, C. Simon, and B. Raveau, Appl.Phys. Lett., 82, 3490 (2003).
    54 H. Sankur and J. T. Cheung, J. Vac. Sci. Technol. A 1, 1806 (1983).
    55 T. Nakayama, Surf. Sci., 133, 101 (1983).
    56 S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, T.Venkatesan, A. Iliadis, and
    57 D. C. Look, Appl. Phys. Lett., 75, 3947 (1999).
    58 Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater., 29, 69 (2000).
    59 M. Kasuga and S. Ogawa, Jpn. J. Appl. Phys., Part 1, 22, 794 (1983).
    60 N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, and H. Yamamoto, Jpn. J. Appl. Phys., Part 2, 38, L454(1999).
    61 M. V. Chukichev, B. M. Ataev, V. V. Mamedov, Ya. Alivov, and I. I. Khodos, Semiconductors, 36, 1052 (2002).
    62 B. M. Ataev, I. K. Kamilov, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. Kh. Rabadanov, J. Tech. Phys., 69, 138 (1999).
    63 K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, and H.Yamamoto, Thin Solid Films, 409, 116 (2002).
    64 N. Takashi, M. Makino, T. Nakamura, and H. Yamamoto, Chem. Mater., 14, 3622 (2002) T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, J. Appl. Phys., 93, 1961(2003).
    65 P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, and M. Watanabe, J. Cryst. Growth, 209, 532 (2000).
    66 K. Sakurai, D. Iwata, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 1, 38, 2606 (1999).
    67 N. Izyumskaya, V. Avrutin, W. Schoch, W. A. El-Shaer, F. Reuss, T. Gruber, and A. Waag, J. Cryst. Growth, 269, 356 (2004).
    68 K. Nakahara et al., Jpn. J. Appl. Phys., Part 1, 40, 250 (2001).
    69 T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, J. Appl. Phys., 93, 1961 (2003)
    70 M. Foex. Bull: Soc. Chim., 11, 6 (1944).
    71 J. Spitz&J.C. Viguie. French Patent 7038371(1970), Japanese Patent 838457 (1971), US Patent 389031 919740, 3880112 (1975), FRG Patent 2151809 (1974), Br. Patent 1362803 (1974).
    72 T.R. Viverito, E.W. Rilee, L.H. Slack. Am. Ceram. Soc. Bull.,54, 217 (1975).
    73 J.C. Viguie, J. Spitz. J. Electrochem. Soc., 122, 585 (1975).
    74 G. Blandenet, M. Court and Y Lagarde. Thin Solid Films.,77, 81 (1981).
    75 J.A. Retamozo. Thesis. Grenoble (1983).
    76 T.M. Young, S.H. KIM, H.Y. Moon et al. Jpn. J. Appl. Phys.,35, 6208 (1996).
    77 F.D. Paraguay, W.L. Estrada, D.R.N. Acosta et al. Thin Solid Films.,350, 192 (1999).
    78 S. Roy, S. Basu. Bull. Mater. Sci., 25, 513 (2002).
    79 A. Dutta, S. Basu. Materials Chem. Phys.,34, 41(1993)
    80 A. Smith. Thin Solid Films.,376, 47 (2000).
    81 Ortiz, C. Falcony, J. A. Hernandez et al. Thin Solid Films., 293,103 (1997).
    82 S.A. Studenikin, N. Golego, M. Cocivera. J. Appl. Phys.,84, 2287 (1998).
    83 M. dela, L. Olvera, A. Maldonado, R. Asomoza. Energy Mater.&Sol Ce11s., 71, 61 (2002).
    84 A.F. Aktaruzzaman, G.L. Sharma, L.K. Malhotra. Thin Solid Films.,198, 67 (1991).
    85 J. Song, LJ. Park, K.H. Yoon., Phvs. Soc., 29, 219 (1996).
    86 J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, L. D. Chen, Appl. Phys. Lett., 84, 541 (2004).
    87 Jun-Liang Zhaoa,b, Xiao-Min Lia,, Ji-Ming Biana,b,Wei-Dong Yua, Can-Yun Zhang,Journal of Crystal Growth, 280, 495 (2005)
    88 C. Y. Zhang, X. M. Li, J. M. Bian, W. D. Yu, X. D. Gao, Solid State Commun., 132, 75(2004).
    89 J. G. Lu, Z. Z. Ye, G. D. Yuan, Y. J. Zeng, F. Zhuge, L. P. Zhu, B. H. Zhao, and S. B. Zhang,Appl. Phys. Lett., 89, 053501 (2006).
    90ü. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho,and H Morko?, J. Appl. Phys., 98, 041301 (2005).
    91 Sh. U. Yuldashev, G. N. Panin, T. W. Kang, R. A. Nusretov, and I. V. Khvan, J. Appl. Phys.,
    100, 013704 (2006).
    92 S.K. Hazra, S. Basu, Solid State Communications 133, 245 (2005).
    93 K.H. Nam, H. Kim, H.Y. Lee, D.H. Han, J.J. Lee, Surface & Coatings Technology 202, 5463(2008).
    94 Anderson Janotti , Chris G. Van de Walle, Journal of Crystal Growth 287, 58 (2006).
    95 C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000).
    96 S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. J. Appl. Phys., Part 2, 36,L1078 (1997).
    97 B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, andR. A. Rabadanov, ThinSolid Films, 260, 19 (1995).
    98 V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins,Thin Solid Films, 427, 401 (2003).
    99 Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, J. Cryst. Growth, 259, 130 (2003).
    100 M. Chen, Z. Pei, W. Xi, C. Sun, and L. Wen, Mater. Res. Soc. Symp. Proc., 666, F.1.2.(2001).
    101 H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett., 77,3761 (2000).
    102 T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., Part 2, 23, L280 (1984).
    103 H. Kato, M. Sano, K. Miyamoto, and T. Yao, J. Cryst. Growth, 538, 237 (2002).
    104 Yanfa Yan, M. M. Al-Jassim, and Su-Huai Wei, Appl. Phys. Lett., 89, 181912 (2006).
    105 S. Limpijumnong, X. Li, S. Wei, and S.B. Zhang, Appl. Phys. Lett., 86, 211910 (2005).
    106 Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, Appl. Phys. Lett., 88 062107 (2006).
    107 A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, J. Vac. Sci. Technol. A 9 (1991) 286.
    108 Y Hatanaka, M. Niraula, A. Nakamura, and T. Aoki, Appl. Surf. Sci., 462, 175 (2001).
    109 C.H. Park, S.B. Zhang, and S.H. Wei, Phys. Rev. B, 66, 073202 (2002).
    110 S. Fujihara, C. Sasaki, and T.Kimura, J European Ceramic Society, 21, 2109 (2001).
    111 K. Minegishi, Y Koiwai, Y Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys.,
    36L, 1453 (1997).
    112 J.Cx Lu, Z.Z. Ye, L. Wang, B.H. Zhao, and J.Y Huang, Chin. Phys. Lett. 19, 1494 (2002).
    113 J.Cz Lu, Z.Z. Ye, L. Wang, J.Y Huang, and B.H. Zhao, Mater. Sci. in Semicond. Proc., 5, 491(2003).
    114 Z.Z. Ye, J.G Lu, H.H. Chen, YZ. Zhang, L. Wang, B.H. Zhao, and J.Y Huang, J. CrystalGrowth, 253, 258 (2003).
    115 J.Cx Lu, YZ. Zhang, Z.Z. Ye, L. Wang, B.H. Zhao, and J.Y Huang, Mater. Lett. 57, 3311(2003).
    116 J.Y Huang, Z.Z. Ye, H.H. Chen, B.H. Zhao, and L. Wang, J. Mater. Sci. Lett., 22, 249 (2003).
    117 Z.Cx Ji, C.X. Yang, K. Liu, and Z.Z. Ye, J. Crystal Growth, 253, 239 (2003).
    118 Neugebauer and C.C Van de Walle, Appl. Phys. Lett., 68, 1829 (1996).
    119 K. Ogata, D. Kawaguchi, T. Kera, S. Fujita, and S. Fujita, J. Crystal Growth, 159, 312 (1996)
    120 X.L. Guo, H. Tabata, and T. Kawai, J Crystal Growth, 223, 135 (2001).
    121 X.L. Guo, H. Tabata, and T. Kawai., Optical Materials, 19, 229(2002).
    122 X.L. Guo, H. Tabata, and T. Kawai, J. Cryst. Growth, 544, 237 (2002).
    123 M. Joseph, H. Tabata, and T. Kawai, Jpn J Appl. Phys., Part 2, 38, L1205 (1999).
    124 T. Aoki, Y Hatanaka, and D.C. Look, Appl. Phys. Lett., 76, 3257 (2000).
    125 F.C.Chen, Z.Z. Ye, W Z. Xu, B.H. Zhao, Zhu, and J.G. Lu, J. Crystal. Growth, 281, 458(2005).
    126 Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W White, J. Crystal Growth,216, 330 (2000).
    127 Y.R. Ryu, W.J. Kim, and H.W. White, J. Crystal Growth, 219, 419 (2000).
    128 T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka, Phys. Stat.Sol.(B), 229, 911 (2002).
    129 F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, and J.L. Liu, Appl. Phys. Lett., 87, 152101(2005).
    130 Minami T, Yamamoto T, Miyata T., Thin Solid Films, 366, 63 ( 2000).
    131 Futsuhara M, Yoshioka K, Takai O., Thin Solid Films, 317, 322 (1998).
    132 Sato Y, Sato S. Thin Solid Films, 281, 445 (1996).
    133 A.Kamata, Mitsuhashi H., Fujita H.. Appl Phys Lett, 63, 24 (1993).
    134 LU Jian-Guo, YE Zhi-Zhen, WANG Lei, et al. Chin. Phys. Lett., 19, 1494 (2002).
    135 YAN F, ZHANG S B, PANTELIDES S T. Phys Rev Lett., 86, 5723 (2001).
    136 Guo X L, Tabata H, Kawai T.J. Cryst. Growth, 223, 135 (2001)
    137 Guo X L, Tabata H, Kawai T.Optical Materials, 19, 229 (2002).
    138 Guo X L, Choi J H, Tabata H et al. JPn. J. App. Phys., 40, L177 (2001).
    139 Yamamoto Thin Solid Films, 420, 100 (2002)
    140 Yamamoto T, Yoshida H. K., Jnp. J. Appl Phys, 38, L166 (1999).
    141 Joseph M, Tabata H, Kawait T., Jnp. J. Appl Phys, 38, L1205 ( 1999).
    142 Singh A V, Mehra R. M, Wakharaa, J Appl Phys., 93, 396 ( 2003).
    143 Aoki T, Hatanaka Y, Look D C., Appl. Phys. Lett., 76, 3257 (2000).
    144 Ryu Y R, Zhu S, Look D C, et nl. J. Cryst. Growth, 216, 330 (2000).
    145 Aoki T, Hatanaka Y, Look D C. Appl. Phys. Lett., 76, 3257 (2000).
    146 X.H. Pan, Z.Z. Ye, J.S. Li, X.Q. Gu, et al., Appl. Surf. Sci., 253, 5067 (2007).
    147 S. Limpijumnong, X. Li, S. Wei, and S.B. Zhang Appl. Phys., Lett. 86, 211910 (2005).
    148 Hatanaka, M. Niraula, A. Nakamura, and T. Aoki, Appl. Surf. Sci., 175, 462 (2001).
    149 C.H. Park,S.B. Zhang, and S.H. Wei, Phys. Rev. B 66, 073202 (2002).
    150 Y Kanai, Jpn. J. Appl. Phys., 29, 1426 (1990).
    151 Y Kanai, Jpn. J. Appl. Phys., 30, 2021 (1991).
    152 Y Kanai, Jpn. J. Appl. Phys., 30, 703 (1991).
    153 Kang H S, Ahn B D, Kim J H, et al. Appl Phys Lett.,88, 202 (2006).
    154段满益,徐明,周海平等,物理学报,56, 9 (2007)
    155 A. Krtschil, A. Dadgar, N. Oleynik, J. Bl?sing, A. Diez, and A. Krost Appl. Phys. Lett., 87,262105 (2005).
    156 Soon-Jin So, Choon-Bae Park, J. Cryst. Growth, 285, 606 (2005).
    157 Y.Z. Zhang, J.G. Lu, Z.Z. Ye, H.P. He, L.P. Zhu, B.H. Zhao, L. Wang, Applied SurfaceScience 254, 1993 (2008).
    158 Y J Zeng, Z Z Ye, Y F Lu, J G Lu, W Z Xu, L P Zhu and B H Zhao, J. Phys. D: Appl. Phys.40, 1807 (2007).
    159 Brignell J E, White N M and Cranny A W J,Sensor applications of thick-film technology,IEE Proc. I, 135, 77 (1988).
    160 G. S. Trivikrama Rao, D. Tarakarama Rao, Sensors and Actuators B, 55, 166 (1999).
    161 Yasushi Yamada, Katsuji Yamashita, Yumi Masuoka, and Ogita, Jpn. J. Appl. Phys., 42,7594 (2003)
    162 N. Jayadev Dayan, S. R. Sainkar, A. A. Belkehar, R. N. Karekar, R. C. Aiyer, Journal ofMaterials Science Letters, 16, 1952 (1997).
    163 Chu Xiangfeng, Jiang Dongli, Aleksandra B. Djuri?ic, Yu Hang Leung, Chemical PhysicsLetters, 401, 426 (2005).
    164林颖,鹿崇发,仪表技术与传感器, 2, 48 (1997).
    165 F. Boccuzzi, E. Guglielminotti and A. Chiorino, Sensors and Actuators B: Chemical, 7, 645(1992).
    166沈茹娟,贾殿赠,乔永民,王疆瑛,无机材料学报, 16, 625 (2001).
    167 B. Bhooloka Rao, Materials Chemistry and Physics, 64, 62 (2000).
    168王晓平,湘潭大学自然科学学报, 21,109 (1999).
    169 Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura, N. Yamazoe, Sensors andActuators, 25, 623 (1995).
    170 H. Nanto, H. Sokooshi, T. Kawai, T. Usuda, J. Mater. Sci. Lett., 11, 235 (1992).
    171 Tae-Ha Kwon, Sung-Hyun Park, Jee-Youl Ryu, Hyek-Hwan Choi, Sensors and Actuators B,46, 75(1998)
    172 J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, Sensors and Actuators B, 84, 258 (2002).
    173 B. L. Zhu, D. W. Zeng, J. Wu, W. L. Song, C. S. Xie, Journal of Materials Science: Materialsin Electronics,14, 521 (2003).
    174 M. Egashira, N. Kanehara, Y. Shimizu and H. Iwanaga, Sensors and Actuators, 18, 349(1989).
    175 S. W. Oh, Y. H. Kim, D. J. Yoo, S. M. Oh and S. J. Park, Sensors and Actuators B: Chemical,13, 400 (1993)
    176 Lin F. C., Takao Y., Shimizu Y., et al., Journal of the American Ceramic Society, 78, 2301(1995).
    177 P. Mitra, A. P. Chatterjee, and H. S. Maiti,“ZnO thin film sensor,”Mat. Lett., 35, 33 (1998).
    178 H. M. Lin, S. Tzeng, P. Hsiau, and W. Tsai, Nanostruct. Mater., 10, 465 (1998).
    179 G. Rao and D. Rao, Sens. Actuators B, 23, 181 (1999).
    180 A. P. Chatterjee, P. Mitra, and A. K. Mukhopadhyay, J. Mater. Sci., 34, 4225 (1999).
    181 G. Sberveglieri, P. Nelli, and S. Groppelli, Mater. Sci. Eng., B7, 63 (1990).
    182 B. B. Rao, Phy., 64, (2000).
    183 N. Yamazoe, G. Sakai, and K. Shimanoe, Catal. Surveys Asia, 1, 63 (2003).
    184 Z. L. Wang, Mater. Today, 7, 26 (2004).
    185 Wan Q. Li Q. H., Chen Y. J., Wang T.H., Li J.P. Lin,C.L.Appl.Phys.Lett., 84, 3654 (2004).
    186 Supab C., Niyom H., PongsriM., Nikorn M.. Physica E, 9, 53 (2007).
    187 Comini,E.;Faglia,G.;Ferroni,M.;Sberveglieri,G., Appl.Phys.A, 88,45 (2007).
    188 RoutC.S., Hegde M.,Govindaraj A., Rao C.N.R., Nanotechnology, 18, 205504 (2007).
    189 Wang C.H., Chu X.F., Wu M.W., Sens.Actuators B: Chem. 113, 320 (2006).
    190 WangJ.X., SunX.W., YangY., Huang H., LeeY.C., Tan O.K., Vayssieres L., Nanotechnology,17, 4995 (2006).
    191 Liao L., Lu H.B., Li J.C., He H., Wang D.F., Fu D.J., Liu C. J.Phys.Chem.C111,1900 (2007).
    192 J. Kong, N.R. Franklin, Science 287, 622 (2000).
    193 Ramin Banan Sadeghian, Mojtaba Kahrizi, Sensors and Actuators A 137, 248 (2007).
    194 L Liao, H B Lu,MShuai1, J C Li, Y L Liu, C Liu, Z X Shen and T Yu Nanotechnology 19,175501 (2008).
    1肖锋,叶建东,硅酸盐学报,30, 615 (2002).
    2陈志刚,孙英琨,储金宇,排灌机械, 24, 40 (2006).
    3 S.E. Law, M. D. Lane. ASAE., 24,1441 (1981).
    4 K.L. Choy, B. Su Thin Solid Films, 3889,14 (2001).
    5 Jun-Liang Zhao,Xiao-Min Lia, Ji-Ming Bian, Wei-Dong Yua, Can-Yun Zhang, Journal of Crystal Growth, 280, 495 (2005).
    6 Timothy Biswicka, William Jonesa, Journal of Solid State Chemistry, 180, 1171 (2007).
    1 H. Huang, X. Yao, X.Q. Wu, M.Q. Wang, L.Y. Zhang, Thin Solid Films 458,71 (2004)
    2 PARA GUA Y F D , ESTRADA W L , ACOSTA D RN ,et al., Thin Solid Films,350, 1922202 (1999).
    3徐兴碧,重庆教育学院学报,14卷,3期(2001).
    4 Look D C,Hemsky JW, Sizelove JR. Phys.Rev.Lett., 82, 2552. (1999).
    5 Look D C,Tuomisto F, RankiV, et al., Phys. Rev. Lett., 91, 205502 (2003).
    6 Vlasenko L S, WatkinsG D. Physica B, 376, 677(2006).
    7 Anderson Janott, C.G Van deWalle, Appl.Phys.Lett., 87, 122 (2005).
    8 Vigue F, VenneguesP,Vezian S, et al., Appl.Phys.Lett., 79,194 (2001).
    9 Zhang C Y, Li X M, Gao X D, et al Chemical Physics Letters, 420, 448 (2006).
    10 Xiao Z Y,Liu Y C,DongL, et al.,.Journal ofColloid and Interface Science, 282, 403 (2005).
    11 Wei Z P, Lu Y M, Shen D Z, et al., J.Lumin., 119, 551 (2006).
    12 KOHAN, CEDER, MORGAN, AND Van de WALLE, Phys. Rev. B, 61, 2 (2003).
    1 S.B.Zhang,S.H.Wei, and A.Zunger Phys.Rev.B,63, 075205 (2001)
    2 Fumiyasu Oba, Shigeto R. Nishitani, Seiji Isotani, Hirohiko Adachi, and Isao Tanaka, J. Appl. Phys., 90, 824 (2001).
    3 A. R Kohan, G, Ceder, D. Morgan, and Chris G. Van de Walle, Phys. Rev. B, 61, 15019 (2000).
    4 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999)
    5 C. G. Van de Walle, Phys.Rev. Lett., 85,1012 (2000).
    6 C. GVan de Walle, Physica B, 308/310, 899 (2001).
    7 G. Alvin Shi, Michael Stavola, S. J. Pearton, M. Thieme, E. V Lavrov, and J. Weber, Phys. Rev. B, 72, 195211 (2005).
    8 E. V Monakhov, J. S. Christensen, K. Maknys, B. G Svensson, and A. Yu. Kuznetsov,Hydrogen Appl. Phys. Lett., 87,191910 (2005).
    9 Y. M. Strzhemechny, Howard L. Mosbacker, and David C. Look, Appl. Phys. Lett., 84, 2545 (2004).
    10 N. H. Nickel and K. Fleischer, Phys. Rev. Lett., 90, 197402 (2003).
    11 D. M. Hofmann, Albrecht Hofstaetter, Frank Leiter, Huijuan Zhou, Frank Henecker, Bruno K. Meyer Sergei B. Orlinskii Jan Schmi, Pavel G. Baranov, Phys. Rev. Lett., 88, 045504 (2002).
    12 Vilao, J. Piroto Duarte, N. Ayres de Campos, A. Weidinger, R. L. Lichti, and S. J. C.Irvine, Phys. Rev. Lett., 86, 2601 (2000).
    13 Yanfa Yan, M. M. Al-Jassim, and Su-Huai Wei, Appl. Phys. Lett., 89, 181912 (2006).
    14 S. Limpijumnong, X. Li, S. Wei, and S.B. Zhang, Appl. Phys. Lett., 86, 119102 (2005).
    15 Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, Appl. Phys. Lett., 88 (2006) 062107:1
    16 A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, J. Vac. Sci. Technol., A 9, 286(1991).
    17 Y Hatanaka, M. Niraula, A. Nakamura, and T. Aoki, Appl. Surf. Sci., 175/176, 462 (2001).
    18 C.H. Park, S.B. Zhang, and S.H. Wei, Phys. Rev. B, 66, 073202 (2002).
    19 S. Fujihara, C. Sasaki, and T.Kimura, J European Ceramic Society, 21, 2109 (2001).
    20 K. Minegishi, Y Koiwai, Y Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., 36, L1453 (1997).
    21 J.Cx Lu, Z.Z. Ye, L. Wang, B.H. Zhao, and J.Y Huang, Chin. Phys. Lett., 19, 1494 (2002).
    22 J.Cz Lu, Z.Z. Ye, L. Wang, J.Y Huang, and B.H. Zhao, Mater. Sci. in Semicond. Proc., 5, 491 (2003).
    23 Z.Z. Ye, J.G Lu, H.H. Chen, YZ. Zhang, L. Wang, B.H. Zhao, and J.Y Huang, J. Crystal Growth, 253, 258 (2003).
    24 J.Cx Lu, YZ. Zhang, Z.Z. Ye, L. Wang, B.H. Zhao, and J.Y Huang, Mater. Lett., 57, 3311 (2003).
    25 J.Y Huang, Z.Z. Ye, H.H. Chen, B.H. Zhao, and L. Wang, J. Mater. Sci. Lett., 22, 249 (2003).
    26 Z.Cx Ji, C.X. Yang, K. Liu, and Z.Z. Ye, J. Crystal Growth, 253, 239 (2003).
    27 Neugebauer and C.C Van de Walle, Appl. Phys. Lett., 68, 1829 (1996).
    28 K. Ogata, D. Kawaguchi, T. Kera, S. Fujita, and S. Fujita, J. Crystal Growth, 159, 312 (1996).
    29 X.L. Guo, H. Tabata, and T. Kawai, J Crystal Growth, 223, 135 (2001).
    30 X.L. Guo, H. Tabata, and T. Kawai., Optical Materials,19, 229 (2002).
    31 X.L. Guo, H. Tabata, and T. Kawai, J. Cryst. Growth, 544, 237 (2002).
    32 M. Joseph, H. Tabata, and T. Kawai, Jpn J Appl. Phys. Part 238, L1205(1999).
    33 T. Aoki, Y Hatanaka, and D.C. Look, Appl. Phys. Lett., 76, 3257 (2000).
    34 F.C.Chen, Z.Z. Ye, W Z. Xu, B.H. Zhao, Zhu, and J.G. Lu, J. Crystal. Growth, 281, 458 (2005).
    35 Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W White, J. Crystal Growth, 216, 330 (2000).
    36 Y.R. Ryu, W.J. Kim, and H.W. White, J. Crystal Growth, 219, 419(2000).
    37 T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka, Phys. Stat. Sol. (B) 229, 911 (2002)
    38 F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, and J.L. Liu, Appl. Phys. Lett., 87, 152101(2005)
    39 Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, andD. L. Liu, J. Appl. Phys., 95, 6268 (2004).
    40 Y J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P He, L. P Zhu, B. H. Zhao, Y. Che, and S. B.Zhang, Appl. Phys. Lett., 88, 262103 (2006).
    41 S. K. Hazra, and S. Basu, Stable Solid State Commun., 133, 245 (2005)
    42 S. T. Tan, B. J. Chen, X. W. Sun, M. B. Yu, X. H. Zhang, and S. J. Chua, J. Electron. Mater., 34, 1172 (2005)
    43 D.C. Look, Semiconductor science and technology 20, s55 (2005).
    44 Timothy Biswicka, William Jonesa, Journal of Solid State Chemistry, 180, 1171 (2007)
    45 YAN F, ZHANG S B, PANTELIDES S T. Phys. Rev. Lett., ,86, 5723 (2001).
    46 Teresa M. Barnes, Kyle Olson, Appl. Phys. Lett 86, 112112 (2005).
    47 Guotong Dua Appl. Phys. Lett., 87, 213103 (2005)
    48 W-J. Lee, J. Kang, and K. J. Chang, Phys. Rev. B, 73, 024117 (2006)
    49 S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B, 63, 075205 (2001).
    50 Anderson Janotti, Chris G. Van de Walle, Journal of Crystal Growth, 287, 58 (2006).
    51 A. R Kohan, G, Ceder, D. Morgan, and Chris G. Van de Walle, Phys. Rev. B, 61, 15019 (2000).
    52 D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
    53 A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U.Haboeck, M. Strassburg, and M. Dworzak, Phys. Status Solidi B 234, R7 (2002).
    54 Hiroaki Matsui,a) Hiromasa Saeki, Tomoji Kawai, and Hitoshi Tabata, J. Appl. Phys., 95, 15 (2004).
    55 K. Vanheusden, W. L. Warren. Appl. Phys. 79, 7983 (1996).
    56 Pramod S. Patil, Materials Chemistry and Physics 59,185 (1999).
    57 V. E. Henrich, and P. A. Cox, The Surface Science of Metal Oxides Cambridge University Press, Cambridge, U.K, (1994).
    58 J W ORTON and M J POWELL Rep. Prog. Phys., 43, 1263 (1980).
    59 Matey J R,Blanc J Appl Phys, 57,1437 (1985).
    60 Z. Ling and C. Leach, Journal of Materials Science 34, 6133 (1999)
    61 C Antonio. Mater Res., 6,173 (2003).
    62 Anderson Janotti, Chris G. Van de Walle, Journal of Crystal Growth 287, 58 (2006)
    63 J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, L. D. Chen, Appl. Phys. Lett. 84, 541 (2004)
    64 C. Y. Zhang, X. M. Li, J. M. Bian, W. D. Yu, X. D. Gao, Solid State Commun. 132, 75 (2004)
    65 F. Zhuge, L.P. Zhu, Z.Z. Ye and D.W. Ma et al., Appl. Phys. Lett. 87, 092103 (2005)
    66ü. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho, and H Morko?, J. Appl. Phys. 98, 041301 (2005).
    67 Sh. U. Yuldashev, G. N. Panin, T. W. Kang, R. A. Nusretov, and I. V. Khvan, J. Appl. Phys. 100, 013704 (2006)
    68 S.K. Hazra, S. Basu, Solid State Communications 133, 245 (2005).
    69 K.H. Nam, H. Kim, H.Y. Lee, D.H. Han, J.J. Lee, Surface & Coatings Technology 202, 5463 (2008)
    70 H. B. Ye, J. F. Kong, and W. Z. Shen, Appl. Phys. Lett. 90, 102115 (2007).
    71 Y. J. Zeng, Z. Z. Ye,a W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu, and B. H. Zhao Appl. Phys. Lett. 88, 262103 (2006).
    72 Guotong Dua, Appl. Phys. Lett. 87, 213103 (2005).
    73 F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Appl. Phys. Lett. 87, 152101 (2005).
    74 A. Tsukazaki,A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 88, 152106 (2006).
    75 Gang Xiong, John Wilkinson, Brian Mischuck, S. Tu¨zemen, K. B. Ucer, and R. T. Williams Appl. Phys. Lett., 80, 7,(2002).
    1 Yamamoto, Thin Solid Films,420,100 (2002)
    2 A. Krtschil, A. Dadgar, Appl. Phys. Lett., 87, 262105 (2005)
    3 K. H. Choi, J. Y. Kim, Y. S. Lee, H. J. Kim, Thin Solid Films, 341, 152 (1999)
    4 J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, Appl. Phys. Lett., 88, 222114 (2006).
    5 Y J Zeng, Z Z Ye1, Y F Lu, J G Lu J. Phys. D: Appl. Phys., 40, 1807 (2007).
    6 C. H. Park, S. B. Zhang, and Su-Huai Wei, Phys. Rev. B, 66, 073202 (2002).
    7 M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. B., 71, 155205 (2005).
    8 A. Valentine, F. Quaranta, M. Rossi, and G. Battaglin, J. Vac. Sci. Technol. A, 9, 286 (1991).
    9 Yanfa Yan, M. M. Al-Jassim, and Su-Huai Wei, Appl. Phys. Lett., 89, 181912 (2006).
    10段满益、徐明、周海平、沈益斌、陈青云、丁迎春、祝文军,物理学报,56, 9 (2007).
    11 L. L. Chen, J. G Lu, .Z. Z. Ye,丫M. Lin, B. H. Zhao, Y M. Ye, J. S. Li, L. P. Zhu, Appl. Phys. Lett., 87, 252106 (2005).
    12 Teresa M. Barnes, Kyle Olson, and Colin A. Woldena, Appl. Phys. Lett., 86, 112112 (2005).
    13 A. Kamata, H. Mitsuhashi, H. Fujita, Appl. Phys. Lett., 63, 3353 (1993).
    14 X. Li, B. Keyes, S. Asher. S. B. Zhang, S. Wei, T. J. Coutts, S. Limpijumnong, C. G Van De Walle, H, Appl. Phys.Lett. 86, 122107 (2005).
    15 A. Krtschil, A. Dadgar, Appl. Phys. Lett., 87, 262105 (2005)
    16 X.Y. Duan, R.H. Yao, Y.-J. Zhao, Appl. Phys. A 91, 467 (2008)
    17 M.Y. Duan, X. Ming, Chin. Phys. Soc. 56, 1000 (2007)
    18 L. Duan, B.X. Lin, W. Zhang, S. Zhong, Z. Fu, Appl. Phys. Lett., 88, 232110 (2006)
    19 Q.B. Ma, Z.Z. Ye, H.-P. He, J.-R. Wang, L.-P. Zhu, B.-H. Zhao, Mater. Charact., 59, 124 (2008)
    20 Y. Marfaing, A. Lusson, Superlattices and Microstructures, 38, 385 (2005)
    1 S.Iijima.Helical, Nature., 354, 56 (1991)
    2 P.Yu,Z.K.Tang and G.K.L.Wong.23nd Int.Conf.On the Physics of Semiconductors.World Scientific,Singapore.197,1453.
    3 M.H.Huang,S.Mao,H.Feick,et al Nanolasers. Science., 292,1897, (2001).
    4 Z.W.Pan, Z.R.Dai and Z.L.Wang. Science., 291,1947 (2001).
    5 J.H.Song,X.D.Wang,E.Riedo and Z.L.Wang, J.Phys.Chem.B,109, 9869 (2005)
    6 J.H.He, J.H.Hsu, C.W.Wang, et al. J.Phys.Chem.B.,110, 50 (2006).
    7 H.M.Cheng,H.C.Hsu,Y.K.Tseng,L.J.Lin and W.F.Hsieh. J.Phys.Chem.B., 109, 8749 (2005).
    8 X.D.Wang,C.J.Summers and Z.L.Wang Appl.Phys.Lett., 86, 013111 (2005).
    9 J.B.Baxter,F.Wu and E.S.Aydil. Appl.Phys.Lett., 83, 3797 (2003).
    10 Y.Liang,X.T.Zhang,L.Qin,et al. J.Phys.Chem.B., 110, 21593 (2006).
    11 Y.B.Li,Y.Bando and D.Golberg, Appl.Phys.Lett., 84, 3603 (2004).
    12 F.Li,Y.Ding,P.X.Gao,X.Q.Xin and Z.L.Wang, Angew.Chem.,116, 5350 (2004).
    13 G.H.Du,F.Xu,Z.Y.Yuan and G.V.Tendeloo.Flowerlike Appl.Phys.Lett., 88, 243101 (2006).
    14 C.K.Xu,K.Rho,J.Chun and D.E.Kim.Fabrication Nanotechnology.,17, 60 (2006).
    15 J.H.Jie,G.Z.Wang,X.H.Han,et al. J.Crys.Growth. 267, 223 (2004).
    16 Z.L.Wang,X.Y.Kong,Y.Ding,et al, Adv.Func.Mater.,14, 943 (2004).
    17李宗木,徐法强,孙秀玉,化学物理学报,18, 117 (2005)
    18 Y F. Hao, G W. Meng, Z. L. Wang, C. H. Ye and L. D. Zhang. Nano Lett. 6, 1655 (2006)
    19 S.R. Hejazi, H.R. Madaah Hosseini, Journal of Crystal Growth 309,70 (2007)
    20 Walter Water, and Sheng-Yuan Chu., Mater. Lett., 55, 67 (2002)
    21沈复初,叶必光,郦剑,毛志远,甘正浩,晋圣发,浙江大学学报30, 5 (1996)
    22华素坤,晶体生长形态学,7-03-007353-3科学出版社1999年
    23 Xiang Yang Kong and Zhong Lin Wang, Appl. Phys. Lett., 84, 6 (2004).
    24 X.Y.Kong,Y.Ding,R.S.Yang and Z.L.Wang. Science. 303,1348 (2004)
    25 Z. L Wang, J. Phys.: Condens. Matter 16R, 829 (2004)
    26 N. Y. Garces, L. Wang, L. Bai, N. C. Giles, and L. E. Halliburton, Appl. Phys. Lett., 81, 4 (2002)
    1 The Environmental Response Team. Standard Operating Procedure No. 2114
    2 Flame ionization detector, product data sheet (SRI Instruments, Torrance, CA)
    3 A. Modi, N.Koratkar, E. Lass, B.Wei, and P. M. Ajayan, Nature, 424, 171 (2003).
    4 Ashish Modi, Nikhil Koratkar, Eric Lass, NATURE, 10, 424 (2003).
    5 X.Y. Kong, Y Ding, R. Yang, Z. L. Wang, Science, 303, 27 (2004)
    6 R. Gomer, Field Emission and Field ionization. Cambridge, MA: Harvard Univ. Press, 1961.
    7 M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field Ion Microscopy. New York: Oxford, 1996
    8 T. T. Tsong, Surf. Sci., 85, 1 (1979).
    9 L. Ernst, Surf. Sci., 85, 302 (1979).
    10 L. Ernst and J. H. Block, Surf. Sci.,49, 293 (1975).
    11 Y. Ohno, S. Nakamura, T. Adachi, and T. Kuroda, Surf. Sci., 69, 521 (1977).
    12 R. Gomer, Field Emission and Field ionization. Cambridge, MA:Harvard Univ. Press, 1961.
    13 X. Liu and J. Orloff, J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures, 23, 2816, (2005).
    14 F. H. Read and N. J. Bowring, Accelerators, Spectrometers, Detectors and Associated Equipment, 519, 305 (2004).
    15 R. B. Sadeghian and M. Kahrizi, in Proc. COMSOL Multiphysics Conf., Boston, MA, 2005, 251
    16 C.J. Edgcombe, U. Valdre, Solid State Electron. 45, 857 (2001).
    17杨津基,气体放电,北京科学出版社, 1983
    18徐学基,诸定昌,气体放电物理,复旦大学出版社, 1996
    19 Akivama M, Tamak, Miura N, et al, Chem. Lett., 273,1611 (1991).
    20 Heer De, Chatelain W. A., Ugarte D. A., Science. 270, 1179 (1995).
    21 Rinzler A G, Hafner J H, Nikolaev P, Lou L G, Kim S, Tomanek D, Nordlander P, Colbert D. T.,Smalley R. E., Science. 269, 1550 (1995)
    1邓志杰,郑安生,半导体材料,化学工业出版社, 260, 2004.
    2 P. B. Weisz, The Journal of Chemical Physics, 21, 1531 (1953)
    3 S. R. Morrison, The Chemical Physics of Surfaces 2"d, New York: Plenum Press, 251,(1999)
    4 D. Kohl, Sensors and Actuators, 18,71 (1989)
    5 D. J. M. Bevan and J. S. Anderson, Discuss. Faraday Soc., 8, 238 (1950)
    6赵卫萍,孙以材,王小捧,宫云梅,传感器世界, 12, 11, 2005.
    7 R K Gupta, N Shridhar, M Katiyar, Science in Semiconductor Processing, 5, 11 (2002)
    8 Mashi Ohyama, Hiromitsu Kouzukab, and Toshinobu Yoko, Thin Solid Films, 306, 78 (1997)
    9 Itagaki Y, Mori M, Hosoya Y, et al. Sensor and Actuat. B, 122 , 315 (2007)
    10 Chaonan Xu, Jun Tamaki, Norio Miura and Noboru Yamazoe, Sensor and Actuat. B, 3, 147 (1991)
    11范志新,陈玖琳,孙以材,真空, 5, 10 (2000)
    12 S.C. Navale, V. Ravia, I.S. Mulla, S.W. Gosavi, S.K. Kulkarni, Sensors and Actuators B 126, 382 (2007)
    13 G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, Critical Reviews in Solid State and Material Sciences, 29, 111 (2004)
    14 Hongbo He and Zhengxiu Fan, Proc. SPIE, 3555, 83 (1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700