用户名: 密码: 验证码:
闭合场非平衡脉冲磁控溅射沉积碳氮化铬薄膜结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用闭合场非平衡脉冲磁控溅射沉积碳氮化铬薄膜,利用EPMA、XPS、GIXRD、FESEM和HRTEM表征了薄膜的成分与结构,纳米压痕仪、Rockwell C硬度计、划痕仪和球盘式磨损实验机分别表征碳氮化铬薄膜的力学和摩擦学性能,分析薄膜成分、结构及其性能之间的关系,探讨复合薄膜性能改善机制。采用等离子体质量和能量分析仪探测闭合场非平衡脉冲磁控溅射沉积薄膜时的离子质量和能量分布,讨论等离子体特性对薄膜结构与性能的作用规律。
     脉冲直流纯氩和氮氩混合气磁控溅射铬和碳时52Cr+、40Ar+、12C+和28N2+的离子能量分布均包括3个能量区域:峰值为4-5 eV的低能能量峰、能量峰为20-40 eV的中间区域和80-200 eV的高能区域。脉冲频率100 kHz时,随着占空比由90%降至50%,最大离子能量由90 eV拓宽至量程极限200 eV;脉冲频率提高至200 kHz,最大离子能量却逐渐由90 eV减至50 eV,占空比为50%时又突然增至130 eV,且均小于相同占空比条件下100 kHz时的能量。
     脉冲直流磁控溅射沉积碳氮化铬薄膜,厚度约为2-3μm,在不锈钢和单晶Si基体与薄膜之间沉积了厚约100 nm的金属铬附着层,工作气压0.27 Pa,铬靶和碳靶共溅射,溅射功率分别为500-1000 W和600-1400 W,脉冲频率0-200 kHz,占空比50-90%,氮气分压0-60%。氮气分压、铬靶和碳靶溅射功率是控制碳氮化铬薄膜成分的主要参数,覆盖的成分范围为47.0-58.9 at.%Cr,15.5-38.9 at.%C和36.3-55.9 at.%N。碳氮化铬薄膜由纳米晶体相和非晶相组成,非晶相的含量随着碳、氮含量的增加而提高。固定铬靶溅射功率1000 W、碳靶1400 W,随着氮气分压fN2由20%增至50%,C/Cr原子比为0.29-0.39,而N/Cr原子比由0.41增至0.92。Cr靶700 W,FN2为20%-60%时,C/Cr原子比为0.23-0.90,而N/Cr原子比由0.37增至1.90。保持20%氮气分压和1000 W铬靶溅射功率,逐渐提高碳靶功率至1000 W, N/Cr原子比为0.54-0.62,而C/Cr原子比由0.26增至0.44。氮化铬薄膜为密排六方Cr2N结构,C进入密排六方Cr2N点阵中N的亚点阵位置,形成复合化合物Cr2(C,N),随着碳和氮的不断增加,最终转变为面心立方Cr(C,N)。铬靶溅射功率降至500 W时,薄膜中Cr含量进一步降低,组成为CrC1.47N1.30,薄膜结构为含Cr非晶C(N)。Cr靶和C靶的脉冲参数对碳氮化铬薄膜的成分与相结构没有明显影响,组成为CrC0.23-0.35N0.83-0.91,均为面心立方Cr(C,N)。
     随着(C+N)/Cr原子比由0.81增至2.77,碳氮化铬薄膜中观测到3种微结构:横向晶粒尺寸为20-50 nm的纳米柱状晶Cr2(C,N)或Cr(C,N),纳米晶Cr(C,N)/非晶C(N)复合结构和含Cr非晶C(N),对应的薄膜组成为:CrC0.26N0.55或CrC0.29N0.74,CrC0.35N0.91和CrC0.90N0.88,以及CrC1.47N1.30。
     闭合场非平衡脉冲直流磁控溅射沉积碳氮化铬薄膜的硬度为11.0-30.9 GPa, H/E比值0.058-0.102,摩擦系数0.31-0.59,磨损量1.28-18.2×10-6 mm3N-1m-1,膜基结合性能HF1-3,薄膜开始失效的临界载荷(LC3)5-23 N,具有很好的力学和摩擦学性能。碳氮化铬薄膜微结构为纳米柱状晶时,随着晶体结构由hcp-Cr2(C,N)转变为fcc Cr(C,N),硬度由17.5 GPa增至25.4 GPa,摩擦系数为0.52-0.56,磨损量为1.28-1.76×10-6 mm3N-1m-1;具有纳米晶Cr(C,N)/非晶C(N)复合结构的碳氮化铬薄膜硬度达30.9 GPa, H/E比值0.102,摩擦系数和磨损量分别为0.31和3.67×10-6 mm3N-1m-1,随着非晶含量的增加,硬度和H/E比值降至19.7 GPa和0.089,摩擦系数升至0.45;薄膜结构转变为含Cr非晶C(N)结构时,硬度仅为11.0 GPa, H/E比值0.059,磨损量高达18.20×10-6mm3N-1m-1。
     等离子体质量和能量分析表明高功率调制脉冲磁控溅射铬时产生了高束流低能多价金属铬和气体原子,离化率随着靶峰值功率和电流的增加而提高,氩气溅射时产生的等离子体中包含52Cr+、40Ar+、52Cr2+、40Ar2+离子,而氮氩反应溅射时由Cr1-3+、Ar1-3+、N+1-2、N2-4+、CrN+和CrN2+组成,峰值能量均为3-4 eV。随着平均功率由1 kW增至3.5kW,直流磁控溅射沉积铬的沉积速率由67.9 nm min-1线性增至163.0 nm min-1,高功率调制脉冲磁控溅射沉积时,同样随着平均功率在0.8-4 kW范围内线性增加,为53.7-230.3nm min-1。高功率调制脉冲磁控溅射和直流磁控溅射沉积氮化铬的沉积速率相当,氮气分压50%、平均功率1-4 kW条件下,沉积速率为30-220 nm min-1。
     平均功率为1-4 kW时,高功率调制脉冲磁控溅射沉积的铬薄膜为纳米柱状晶a-Cr,晶粒尺寸为60-100 nm,硬度为9-15 GPa,而直流磁控溅射的晶粒尺寸随着平均功率增加而增至微米级,硬度为8.2-4.3 GPa。氮气分压50%条件下,直流、脉冲直流和高功率调制脉冲磁控溅射沉积氮化铬薄膜为纳米柱状晶CrN结构,晶粒尺寸分别为105 nm、78 nm和45-60 nm,硬度、摩擦系数、磨损量分别为16.0 GPa、0.58、8.75×10-6 mm3N-1m-1, 21.0 GPa、0.45、3.65×10-6mm3N-1m-1和24.5-26 GPa、0.33-0.36、2.43×10-6 mm3N-1m-1。随着氮气分压由10%增至30%,高功率调制脉冲磁控溅射沉积的碳氮化铬薄膜由a-Cr+β-Cr2(C,N)逐渐演变为Cr(C,N),硬度为23.2-24.6 GPa,摩擦系数0.4-0.6,磨损量1.2-3.7×10-6mm3N-1m-1。高功率调制脉冲磁控溅射改善了薄膜的结构,提高了所沉积薄膜的力学和摩擦学性能。
Chromium carbonitride (Cr-C-N) coatings were deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS). The composition and microstructure of the coatings were investigated using electron probe micro-analysis (EPMA), x-ray photoelectron spectroscopy (XPS), glancing incident angle x-ray diffraction (GIXRD), field-emission scan electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Mechanical and tribological properties of the coatings were measured by nanoindentation, Rockwell C test, scratch test and ball-on-disk wear tests. A correlation was pursuit between the composition, microstructure and properties of the coatings. A diagnostic of the ion species and their energy distribution generated during P-CFUBMS deposition was performed by electrostatic quadrupole plasma analyzer (EQP) to understand the improved structure and performance.
     When chromium and carbon targets were pulsed asynchronously in Ar and Ar+N2 atmospheres, the 52Cr+、40Ar+\12C+ and 28N2+ ion energy distributions (IEDs) were measured by EQP. The basic characteristics of these typical IEDs are similar and reproducible, which present three energy regions in all ion species:a low energy peak at 4-5 eV, a middle energy region at 20-40 eV, and a high-energy region at 90-200 eV. The reduction of duty cycle 90% to 50% led to the increase of maximum ion energy from 90 eV to 200 eV when pulsed at 100 kHz, whereas at 200 kHz, the maximum ion energy decreased firstly from 90 eV to 50 eV, and then suddenly increased to 130 eV under 50% duty cycle.
     The Cr-C-N coatings were deposited by pulsed direct current magnetron sputtering (PMS) under 0-200 kHz frequency and 50-90% duty cycle at 0-60% nitrogen flow rate ratio (fN2) and working pressure of 0.27 Pa. The chromium and graphite targets were respectively powered at 500-1000 W and 600-1400 W. The thickness of Cr-C-N coatings was 2-3μm and a chromium adhesion layer (about 100 nm) was firstly deposited onto the substrates. The concentration of coatings was controlled by the nitrogen flow rate ratio and the power on chromium and graphite targets, which was varied in the range of 47.0-58.9 at.%Cr,15.5-38.9 at.%C, and 36.3-55.9 at.%N. The Cr-C-N coatings consist of nanocrystalline embedded in an increased amorphous matrix as the carbon and nitrogen content were improved in the coatings. With an increase in fN2 from 20% to 50%, the atomic ratio of nitrogen to chromium (N/Cr) was increased from 0.41 to 0.92 as well as the C/Cr in the range of 0.29-0.39 when the chromium and graphite target was powered at 1000 W and 1400 W respectively. Decreasing the power on chromium target to 700 W, the N/Cr was also increased from 0.37 to 1.90, whereas the C/Cr varied in the range of 0.23-0.90 as the fN2 was increased from 20% to 50%. Under a 20% fN2 and 1000 W on chromium target, (N/Cr) in the Cr-C-N coatings was 0.54-0.62, whereas the C/Cr ratio was increased from 0.26 to 0.44 as the power on the graphite target was increased from 600 to 1000 W. The carbon occupied the sublattice positions of nitrogen in hcp-Cr2N to form the multi-compound Cr2(C,N), which transferred into fcc-Cr(C,N) with the increase of carbon and nitrogen content in the coatings. At a low chromium target power of 500 W, no crystalline phase but the Cr-containing amorphous C(N) phase was detected in the CrC1.47N1.30 coating. There were no effect of the pulse configuration on the composition and structure, which had the compositions of CrC0.23-0.35N0.83-0.91 and fcc-Cr(C,N) phase structure.
     A nanostructure transition from nano-columnar Cr2(C,N) or Cr(C,N) with the diameter of 20-50 nm to nanocomposite nc-Cr(C,N)/amorphous-C(N), and then to Cr-containing amorphous C(N) was detected in the Cr-C-N coatings with an increase in (C+N)/Cr from 0.81 to 2.77, which possessed the corresponding compositions of CrC0.26N0.55/CrC0.29N0.74, CrC0.35N0.91 and CrC0.90N0.88.
     The PMS Cr-C-N coatings exhibited a wide range of mechanical and wear resistance properties:the hardness of 11.0-30.9 GPa, the H/E ratios of 0.058-0.102, the coefficient of frictions (COF) of 0.31-0.59, the wear rates of 1.28-18.2×10-6 mm3N-1m-1, and the adhesion properties of HF1-3 and 5-23 N(LC3), which is dependent on the microstructure of the coatings. An increase of hardness from 17.5 GPa to 25.4 GPa was observed accompanied by the microstructural evolution from nano-columnar hcp-Cr2(C,N) to fcc-Cr(C,N), both of which possessed the COF of 0.52-0.56 and the low wear rates of 1.28-1.76×10-6 mm3N-1m-1. For nanocomposite nc-Cr(C,N)/amorphous-C(N) with the composition of CrC0.26N0.55, the highest hardness and H/E ratio of 30.9 GPa and 0.102 were evaluated with the lowest COF of 0.31 and the wear rate of 3.67×10-6 mm3N-1m-1 in the coatings. When the fraction of the amorphous C(N) phase increased with the further increase of carbon and nitrogen content to CrC0.29N0.74, the hardness and H/E ratio decreased to 19.7 GPa and 0.089, and the COF increased to 0.45. The poor mechanical and wear resistance properties, i.e. the lowest hardness and H/E ratio of 11.0 GPa and 0.059, and the highest wear rate of 18.20×10-6 mm3N-1m-1, were found in the Cr-C-N coating with the Cr-containing amorphous-C(N).
     By EQP diagnostics, the plasma generated by MPP sputtering chromium contain the ion species of 52Cr+,40Ar+,52Cr2+ and 40Ar2+ in Ar, and that of Cr1-3+, Ar1-3+, N+1-2, N2-4+, CrN+ and CrN2+ in Ar+N2, all of which exhibited a peak energy of about 3-4 eV and their intensity improved with the increase of the peak power and current. For dcMS, the deposition rate of Cr coatings increased almost linearly from 67.9 to 163.0 nm min-1 as the average power was increased from 1 to 4 kW. The deposition rates of MPP sputtered Cr coatings are in the range of 53.7-230.3 nm min-1, which are lower than the dcMS rates when the the average power is less than 2.5 kW and exceed the dcMS deposition rates as the Pd is higher than 2.5 kW. The deposition rates of MPP sputtered Cr coatings are comparable with that by dcMs, and increased almost linearly from 30 to 220 nm min-1 as an increase in the average power of 1-4 kW.
     The MPP Cr coatings exhibited a nano-columnar a-Cr in a diameter of 60-100 nm and possessed the hardness of 9-15 GPa, which is higher than 8.2-4.3 GPa for dcMS under the average power of 1-4 kW. A denser nano-columnar fcc-CrN microstructure showing the interruption of the columnar grain growth and a finer grain size of 45-60 nm was found in the CrN coatings deposited by MPP at 50% fN2 as compared to those of the dcMS and PMS CrN coatings. The improved microstructure in the MPP CrN coatings led to high hardness of 24.5-26 GPa, excellent wear resistance with COF of 0.33-0.36 and wear rates of 2.4-2.43 X 10-6 mm3N-1m-1. The MPP Cr-C-N coatings transited from a-Cr+13-Cr2(C,N) to Cr(C,N) with increasing the fN2 from 10% to 30%. The coatings possessed the high hardness of 23.2-24.6 GPa and the COF of 0.4-0.6. The wear rates of the coatings are in the low range of 1.2-3.7×10-6 mm3N-1m-1. The MPP technique was shown to improve the coating microstructure, and then enhance the mechanical and the wear resistance properties of the coatings.
引文
[1]张济忠,胡平,杨思泽,等.现代薄膜技术[M].北京:冶金工业出版社,2009.
    [2]赵晚成,马亚军,李生华,等.CrN活塞环涂层的摩擦学性能[J].润滑与密封,2005,(2):59-62.
    [3]张武装,刘咏,黄伯云.硬质合金切削刀具涂层技术的发展[J].粉末冶金工业,2006,16(5):44-47.
    [4]林凯生,李洪武,林松盛,等.硬质薄膜的研制及其在模具上的应用[J].模具制造,2008,(9):76-82.
    [5]Sproul W D. Multilayer, Multicomponent, and Multiphase Physical Vapor-Deposition Coatings for Enhanced Performance[J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1994,12(4):1595-1601.
    [6]吴大维.硬质薄膜材料的最新发展及应用[J].真空,2003,40(6):1-5.
    [7]赵时璐,张钧,刘常升.涂层刀具的切削性能及其应用动态[J].材料导报,2008,22(11):62-65.
    [8]Mattox D M. Handbook of Physical Vapor Deposition (PVD) Processing:Film Formation, Adhesion, Surface Preparation and Contamination Control[M]. Westwood: Noyes Publications,1998.
    [9]徐万劲.磁控溅射技术进展及应用(上)[J].现代仪器,2005,(5):1-5.
    [10]Bradley J W, Welzel T. Physics and phenomena in pulsed magnetrons:an overview[J]. Journal of Physics D:Applied Physics,2009,42(9):093001.
    [11]Kouznetsov V, Macak K, Schneider J M, et al. A novel pulsed magnetron sputter technique utilizing very high target power densities [J]. Surface and Coatings Technology,1999,122(2-3):290-293.
    [12]Alami J, Bolz S, Sarakinos K. High power pulsed magnetron sputtering:Fundamentals and applications[J]. Journal of Alloys and Compounds,2009,483(1-2):530-534.
    [13]McHale A E. Phase Equilibria Diagrams, Borides, Carbides and Nitrides[M]. Westerville:The American Ceramic Society,1994.
    [14]Grant W K, Loomis C, Moore J J, et al. Characterization of hard chromium nitride coatings deposited by cathodic are vapor deposition[J]. Surface and Coatings Technology,1996,86-87(Part 2):788-796.
    [15]安剑.物理气相沉积氮化铬涂层的制备及其摩擦学性能研究[D].西南交通大学,2007.
    [16]Mo J L, Zhu M H. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc[J]. Applied Surface Science,2009,255(17): 7627-7634.
    [17]Mayrhofer P H, Tischler G, Mitterer C. Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering[J]. Surface and Coatings Technology,2001,142-144:78-84.
    [18]Lee J-W, Tien S-K, Kuo Y-C. The effects of substrate bias, substrate temperature, and pulse frequency on the microstructures of chromium nitride coatings deposited by pulsed direct current reactive magnetron sputtering[J]. Journal of Electronic Materials, 2005,34(12):1484-1492.
    [19]Barshilia H C, Selvakumar N, Deepthi B, et al. A comparative study of reactive direct current magnetron sputtered CrAIN and CrN coatings[J]. Surface and Coatings Technology,2006,201(6):2193-2201.
    [20]Lee J-W, Tien S-K, Kuo Y-C. The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering[J]. Thin Solid Films,2006,494(1-2):161-167.
    [21]Lee J-W, Tien S-K, Kuo Y-C, et al. The mechanical properties evaluation of the CrN coatings deposited by the pulsed DC reactive magnetron sputtering[J]. Surface and Coatings Technology,2006,200(10):3330-3335.
    [22]Zhang Z G, Rapaud O, Bonasso N, et al. Control of microstructures and properties of dc magnetron sputtering deposited chromium nitride films[J]. Vacuum,2008,82(5): 501-509.
    [23]Zou C W, Wang H J, Li M, et al. Characterization and properties of CrN films deposited by ion-source-enhanced middle frequency magnetron sputtering[J]. Vacuum, 2009,83(8):1086-1090.
    [24]Dahotre N B, Sudarshan T S. Intermetallic and Ceramic Coatings[M]. New York: Marcel Dekker, Inc,1999.
    [25]Aubert A, Gillet R, Gaucher A, et al. Hard chrome coatings deposited by physical vapour deposition[J]. Thin Solid Films,1983,108(2):165-172.
    [26]Su Y L, Yao S H, Wu C T. Comparisons of characterizations and tribological performance of TiN and CrN deposited by cathodic are plasma deposition process[J]. Wear,1996,199(1):132-141.
    [27]Tricoteaux A, Jouan P Y, Guerin J D, et al. Fretting wear properties of CrN and Cr2N coatings[J]. Surface and Coatings Technology,2003,174-175:440-443.
    [28]Bertrand G, Mahdjoub H, Meunier C. A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings[J]. Surface and Coatings Technology,2000,126(2-3):199-209.
    [29]Lee C K. Electrochemical behaviour of chromium nitride coatings with various preferred orientations deposited on steel by unbalanced magnetron sputtering[J]. Materials Science and Technology,2006,22(6):653-660.
    [30]Zhou Q G, Bai X D, Chen X W, et al. Corrosion resistance of duplex and gradient CrNx coated H13 steel[J]. Applied Surface Science,2003,211(1-4):293-299.
    [31]Navinsek B, Panjan P, Milosev I. Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures[J]. Surface and Coatings Technology,1997, 97(1-3):182-191.
    [32]Cunha L, Andritschky M, Pischow K, et al. Microstructure of CrN coatings produced by PVD techniques[J]. Thin Solid Films,1999,355-356:465-471.
    [33]Djouadi M A, Nouveau C, Beer P, et al. CrxNy hard coatings deposited with PVD method on tools for wood machining[J]. Surface and Coatings Technology,2000, 133-134:478-483.
    [34]莫继良,朱旻昊,安剑,等.物理气相沉积CrN涂层的研究进展[C].第六届全国表面工程学术会议,兰州,2006:410-414.
    [35]蔡志海,张平,赵军军,等.CrN活塞环涂层的上艺制备与摩擦学性能研究[J].核技术,2009,32(6):435-438.
    [36]Lakare A, Gopal S, Shivpuri R. Coatings and surface treatments for die casting dies:
    composition, coating, techniques, and cause for failure[C]. NADCA 20th Internation Die Casting Cogress, Cleveland,1999:T99-111.
    [37]Terrat J P, Gaucher A, Hadj-Rabah H, et al. Structure and mechanical properties of reactively sputtered chromium nitrides[J]. Surface and Coatings Technology,1991, 45(1-3):59-65.
    [38]Hones P, Sanjines R, Levy F. Characterization of sputter-deposited chromium nitride thin films for hard coatings[J]. Surface and Coatings Technology,1997,94-95: 398-402.
    [39]Rebholz C, Ziegele H, Leyland A, et al. Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering[J], Surface and Coatings Technology,1999,115(2-3):222-229.
    [40]Wei G, Rar A, Barnard J A. Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0<=x<=1) thin films[J]. Thin Solid Films,2001,398-399: 460-464.
    [41]Hurkmans T, Lewis D B, Brooks J S, et al. Chromium nitride coatings grown by
    unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABSTM) deposition techniques[J]. Surface and Coatings Technology,1996,86-87:192-199.
    [42]Sanjines R, Hones P, Levy F. Hexagonal nitride coatings:electronic and mechanical properties of V2N, Cr2N and δ-MoN[J]. Thin Solid Films,1998,332(1-2):225-229.
    [43]Rong S Q, He J, Wang H J, et al. Effects of Bias Voltage on the Structure and Mechanical Properties of Thick CrN Coatings Deposited by Mid-Frequency Magnetron Sputtering[J]. Plasma Science & Technology,2009,11(1):38-41.
    [44]Bewilogua K, Heinitz H J, Rau B, et al. A chromium carbide phase with B1 structure in thin films prepared by ion plating[J]. Thin Solid Films,1988,167(1-2):233-244.
    [45]Cholvy G, Derep J L. Structures and composition before and after annealing of coatings in the Cr-C binary system produced by reactive physical deposition[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1985, 3(6):2378-2383.
    [46]Cholvy G, Derep J L, Gantois M. Characterization and wear resistance of coatings in the Cr-C-N ternary system deposited by physical vapour deposition[J]. Thin Solid Films,1985,126(1-2):51-60.
    [47]Cekada M, Panjan P, Macek M, et al. Comparison of structural and chemical properties of Cr-based hard coatings[J]. Surface and Coatings Technology,2002, 151-152:31-35.
    [48]Esteve J, Romero J, Gomez M, et al. Cathodic chromium carbide coatings for molding die applications[J]. Surface and Coatings Technology,2004,188-189:506-510.
    [49]Lin C C, Lee J W, Chang K L, et al. The effect of the substrate bias voltage on the mechanical and corrosion properties of chromium carbide thin films by filtered cathodic vacuum arc deposition[J]. Surface and Coatings Technology,2006,200(8): 2679-2685.
    [50]Agarwal V, Vankar V D, Chopra K L. Reactive-magnetron-sputtered chromium carbide films[J]. Thin Solid Films,1989,169(2):281-288.
    [51]Detroye M, Reniers F, Buess-Herman C, et al. Synthesis and characterisation of chromium carbides[J]. Applied Surface Science,1997,120(1-2):85-93.
    [52]Su Y L, Liu T H, Su C T, et al. Effect of chromium content on the dry machining performance of magnetron sputtered CrxC coatings[J]. Materials Science and Engineering A,2004,364(1-2):188-197.
    [53]Wilson G M, Saied S O, Field S K. Mechanical and physical properties of C and C-Cr sputter coatings measured at the nano-scale[J]. Thin Solid Films,2007,515(20-21): 7820-7828.
    [54]Groudeva-Zotova S, Vitchev R G, Blanpain B. Phase composition of Cr-C thin films deposited by a double magnetron sputtering system[J]. Surface and Interface Analysis, 2000,30(1):544-548.
    [55]Hou Q R, Zhang H Y, Chen Y B. Deposition of Chromium-Carbon Films by Magnetron Sputtering of Chromium and Carbon Targets[J]. Modern Physics Letters B, 2005,19(21):1039-1050.
    [56]Paul A, Lim J, Choi K, et al. Effects of deposition parameters on the properties of chromium carbide coatings deposited onto steel by sputtering[J]. Materials Science and Engineering A,2002,332(1-2):123-128.
    [57]Marechal N, Quesnel E, Pauleau Y. Deposition Process and Characterization of Chromium-Carbon Coatings Produced by Direct Sputtering of a Magnetron Chromium Carbide Target[J]. Journal of Materials Research,1994,9(7):1820-1828.
    [58]Su Y L, Liu T H, Su C T, et al. Tribological characteristics and cutting performance of Crx%C-coated carbide tools[J]. Journal of Materials Processing Technology,2004, 153-154:699-706.
    [59]Jehn H A. Multicomponent and multiphase hard coatings for tribological applications[J]. Surface and Coatings Technology,2000,131(1-3):433-440.
    [60]Erturk E, Knotek O, Burgmer W, et al. Ti(C,N) coatings using the arc process[J]. Surface and Coatings Technology,1991,46(1):39-46.
    [61]Guu Y Y, Lin J F, Ai C-F. The tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings[J]. Thin Solid Films,1997,302(1-2): 193-200.
    [62]Lu Y H, Shen Y G. Nanostructure transition:From solid solution Ti(N,C) to nanocomposite nc-Ti(N,C)/a-(C,CNx)[J]. Applied Physics Letters,2007,90(22)
    [63]Lu Y H, Wang J P, Shen Y G. Effect of N content on phase configuration, nanostructure and mechanical behaviors in Ti-Cx-Ny thin films[J]. Applied Surface Science,2009,255(18):7858-7863.
    [64]Almer J, Oden M, Hakansson G. Microstructure, stress and mechanical properties of arc-evaporated Cr-C-N coatings[J]. Thin Solid Films,2001,385(1-2):190-197.
    [65]Almer J, Oden M, Hakansson G. Microstructure and thermal stability of arc-evaporated Cr-C-N coatings[J]. Philosophical Magazine,2004,84(7):611-630.
    [66]Cekada M, Panjan P, Macek M, et al. Comparison of structural and chemical properties of Cr-based hard coatings[J]. Surface and Coatings Technology,2002, 151-152:31-35.
    [67]Cekada M, Macek M, Kek Merl D, et al. Properties of Cr(C,N) hard coatings deposited in Ar-C2H2-N2 plasma[J]. Thin Solid Films,2003,433(1-2):174-179.
    [68]Polcar T, Cvrcek L, Sirok P, et al. Tribological characteristics of CrCN coatings at elevated temperature[J]. Vacuum,2005,80(1-3):113-116.
    [69]Schulz H, Bergmann E. Properties and applications of ion-plated coatings in the system Cr-C-N[J]. Surface and Coatings Technology,1991,50(1):53-56.
    [70]Choi E Y, Kang M C, Kwon D H, et al. Comparative studies on microstructure and mechanical properties of CrN, Cr-C-N and Cr-Mo-N coatings[J]. Journal of Materials Processing Technology,2007,187-188:566-570.
    [71]Neves A M, Severo V, Cvrcek L, et al. In situ structural evolution of arc-deposited Cr-based coatings[J]. Surface and Coatings Technology,2008,202(22-23): 5550-5555.
    [72]Warcholinski B, Gilewicz A, Kuklinski Z, et al. Arc-evaporated CrN, CrN and CrCN coatings[J]. Vacuum,2009,83(4):715-718.
    [73]Yao S H, Su Y L. The tribological potential of CrN and Cr(C,N) deposited by multi-arc PVD process[J]. Wear,1997,212(1):85-94.
    [74]Schuster F, Maury F, Nowak J F, et al. Characterization of chromium nitride and carbonitride coatings deposited at low temperature by organometallic chemical vapour deposition[J]. Surface and Coatings Technology,1991,46(3):275-288.
    [75]Merl D K, Panjan P, Cekada M, et al. The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates [J]. Electrochimica Acta,2004,49(9-10): 1527-1533.
    [76]Hall E O. The Deformation and Ageing of Mild Steel:III Discussion of Results[J]. Proceedings of the Physical Society,1951, B64(9):747-753.
    [77]Petch N J. The cleavage strength of polycrystals[J]. J. Iron Steel Inst,1953,174: 25-28.
    [78]Zhang S, Ali N. Nanocomposite Thin Films and Coatings:Processing, Properties and Performance[M]. London:Imperial College Press,2007.
    [79]Schiotz J. Simulations of nanocrystalline metals at the atomic scale. What can we do? What can we trust?[C]. Proceedings of the 22nd Riso International Symposium on Materials Science:Science of Metastable and Nanocrystalline Alloys-Structure, Properties and Modelling, Roskilde, Denmark,2001:127-139.
    [80]陶斯武,雷诺,曲选辉,等.纳米硬质薄膜的研究进展[J].稀有金属与硬质合金,2005,33(3):37-41.
    [81]Mayrhofer P H, Mitterer C, Hultman L, et al. Microstructural design of hard coatings[J]. Progress in Materials Science,2006,51(8):1032-1114.
    [82]Chu X, Wong M S, Sproul W D, et al. Deposition and properties of polycrystalline TiN/NbN superlattice coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1992,10(4):1604-1609.
    [83]Wrzesinska H, Ratajczak J, Studzinska K, et al. Transmission electron microscopy of hard ceramic superlattices applied in silicon micro-electro-mechanical systems[J]. Materials Chemistry and Physics,2003,81(2-3):265-268.
    [84]Musil J. Hard and superhard nanocomposite coatings[J]. Surface and Coatings Technology,2000,125(1-3):322-330.
    [85]Veprek S, Reiprich S. A concept for the design of novel superhard coatings[J]. Thin Solid Films,1995,268(1-2):64-71.
    [86]Veprek S, Nesladek P, Niederhofer A, et al. Recent progress in the superhard nanocrystalline composites:towards their industrialization and understanding of the origin of the superhardness[J]. Surface and Coatings Technology,1998,108-109(1-3): 138-147.
    [87]Veprek S. The search for novel, superhard materials[J]. Journal of Vacuum Science & Technology A,1999,17(5):2401-2420.
    [88]Veprek S, Veprek-Heijman M G J, Karvankova P, et al. Different approaches to superhard coatings and nanocomposites[J]. Thin Solid Films,2005,476(1):1-29.
    [89]Lu Y H, Sit P, Hung T F, et al. Effects of B content on microstructure and mechanical properties of nanocomposite Ti-Bx-Ny thin films[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2005,23(2):449-457.
    [90]Zhang S, Wang H L, Ong S E, et al. Hard yet tough nanocomposite coatings-Present status and future trends[J]. Plasma Processes and Polymers,2007,4(3):219-228.
    [91]Voevodin A A, Zabinski J S. Load-adaptive crystalline-amorphous nanocomposites[J]. Journal of Materials Science,1998,33(2):319-327.
    [92]Pei Y T, Galvan D, De Hosson J T M, et al. Nanostructured TiC/a-C coatings for low friction and wear resistant applications [J]. Surface and Coatings Technology,2004, 198(1-3):44-50.
    [93]Pei Y T, Galvan D, De Hosson J T M. Nanostructure and properties of TiC/a-C:H composite coatings[J]. Acta Materialia,2005,53(17):4505-4521.
    [94]Pei Y T, Galvan D, De Hosson J T M. Tribological behavior and thermal stability of TiC/a-C:H nanocomposite coatings[J]. Journal of Vacuum Science & Technology A, 2006,24(4):1448-1453.
    [95]Pei Y T, Chen C Q, Shaha K P, et al. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering[J]. Acta Materialia,2008, 56(4):696-709.
    [96]Zhang S, Bui X L, Jiang J, et al. Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposite[J]. Surface and Coatings Technology, 2004,198(1-3):206-211.
    [97]Zhang S, Bui X L, Li X. Thermal stability and oxidation properties of magnetron sputtered diamond-like carbon and its nanocomposite coatings[J]. Diamond and Related Materials,2006,15:972-976.
    [98]Gassner G, Patscheider J, Mayrhofer P H, et al. Structure of sputtered nanocomposite CrCx/a-C:H thin films[J]. Journal of Vacuum Science & Technology B,2006,24(4): 1837-1843.
    [99]Gassner G, Patscheider J, Mayrhofer P H, et al. Tribological properties of nanocomposite CrCx/a-C:H thin films[J]. Tribology Letters,2007,27(1):97-104.
    [100]Gassner G, Mayrhofer P H, Mitterer C, et al. Structure-property relations in Cr-C/a-C:H coatings deposited by reactive magnetron sputtering[J]. Surface and Coatings Technology,2004,200(1-4):1147-1150.
    [101]Singh V, Jiang J C, Meletis E I. Cr-diamondlike carbon nanocomposite films: Synthesis, characterization and properties[J]. Thin Solid Films,2005,489(1-2): 150-158.
    [102]Singh V, Palshin V, Tittsworth R C, et al. Local structure of composite Cr-containing diamond-like carbon thin films[J]. Carbon,2006,44(7):1280-1286.
    [103]Pal S K, Jiang J, Meletis E I. Effects of N-doping on the microstructure, mechanical and tribological behavior of Cr-DLC films[J]. Surface and Coatings Technology,2007, 201(18):7917-7923.
    [104]Window B, Savvides N. Charged particle fluxes from planar magnetron sputtering sources[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1986,4(2):196-202.
    [105]Sproul W D, Rudnik P J, Graham M E, et al. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system[J]. Surface and Coatings Technology,1990,43-44:270-278.
    [106]Kelly P J, Arnell R D. Magnetron sputtering:a review of recent developments and applications[J]. Vacuum,2000,56(3):159-172.
    [107]Xiang Y, Chengbiao W, Yang L, et al. Recent Developments in Magnetron Sputtering[J]. Plasma Science and Technology,2006,8(3):337-343.
    [108]余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-22.
    [109]Kelly P J, Arnell R D. The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system[J]. Surface and Coatings Technology,1998,108-109(1-3):317-322.
    [110]Kelly P J, Arnell R D. Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1998,16(5):2858-2869.
    [111]Monaghan D P, Teer D G, Laing K C, et al. Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 1993,59(1-3):21-25.
    [112]Anders A. Fundamentals of pulsed plasmas for materials processing[J]. Surface and Coatings Technology,2004,183(2-3):301-311.
    [113]Arnell R D, Kelly P J. Recent advances in magnetron sputtering[J]. Surface and Coatings Technology,1999,112(1-3):170-176.
    [114]Okamoto A, Serikawa T. Reactive sputtering characteristics of silicon in an Ar-N2 mixture[J]. Thin Solid Films,1986,137(1):143-151.
    [115]Schiller S, Heisig U, Steinfelder K, et al. On the investigation of d.c. plasmatron discharges by optical emission spectrometry[J]. Thin Solid Films,1982,96(3): 235-240.
    [116]Affinito J, Parsons R R. Mechanisms of voltage controlled, reactive, planar magnetron sputtering of Al in Ar/N2 and Ar/O2 atmospheres[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1984,2(3):1275-1284.
    [117]Sproul W D, Tomashek J R. Rapid rate reactive sputtering of a group IVB metal[P]. United States,4428811. Jan.31,1984.
    [118]Sproul W D, Christie D J, Carter D C. Control of reactive sputtering processes[J]. Thin Solid Films,2005,491(1-2):1-17.
    [119]Schiller S, Goedicke K, Reschke J, et al. Pulsed magnetron sputter technology[J]. Surface and Coatings Technology,1993,61(1-3):331-337.
    [120]Lin J, Moore J J, Mishra B, et al. Examination of the pulsing phenomena in pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS) of Cr-Al-N thin films[J]. Surface and Coatings Technology,2007,201(8):4640-4652.
    [121]Glocker D A. Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1993,11(6):2989-2993.
    [122]Lee J W, Cuomo J J, Bourham M. Plasma characteristics in pulsed direct current reactive magnetron sputtering of aluminum nitride thin films[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2004,22(2):260-263.
    [123]Backer H, Henderson P S, Bradley J W, et al. Time-resolved investigation of plasma parameters during deposition of Ti and TiO2 thin films[J]. Surface and Coatings Technology,2003,174-175:909-913.
    [124]Bradley J W, Backer H, Kelly P J, et al. Space and time resolved Langmuir probe measurements in a 100 kHz pulsed rectangular magnetron system[J]. Surface and Coatings Technology,2001,142-144:337-341.
    [125]Bradley J W, Backer H, Kelly P J, et al. Time-resolved Langmuir probe measurements at the substrate position in a pulsed mid-frequency DC magnetron plasma[J]. Surface and Coatings Technology,2001,135(2-3):221-228.
    [126]Muratore C, Moore J J, Rees J A. Electrostatic quadrupole plasma mass spectrometer and Langmuir probe measurements of mid-frequency pulsed DC magnetron discharges[J]. Surface and Coatings Technology,2003,163-164:12-18.
    [127]Anton J M, Mishra B, Moore J J, et al. Investigation of processing parameters for pulsed closed-field unbalanced magnetron co-sputtered TiC-C thin films[J]. Surface and Coatings Technology,2006,201(7):4131-4135.
    [128]Voronin S A, Clarke G C B, Cada M, et al. An improved method for IEDF determination in pulsed plasmas and its application to the pulsed dc magnetron[J]. Measurement Science and Technology,2007,18(7):1872-1876.
    [129]Helmersson U, Lattemann M, Bohlmark J, et al. Ionized physical vapor deposition (IPVD):A review of technology and applications[J]. Thin Solid Films,2006,513(1-2): 1-24.
    [130]Kouznetsov V. Method and apparatus for magnetically enhanced sputtering[P]. United States,6296742 B1. Oct.2,2001.
    [131]Gudmundsson J T, Alami J, Helmersson U. Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge[J]. Surface and Coatings Technology,2002,161(2-3):249-256.
    [132]Christie D J, Tomasel F, Sproul W D, et al. Power supply with arc handling for high peak power magnetron sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,2004,22(4):1415-1419.
    [133]Sproul W D, Christie D J, Carter D C, et al. Pulsed Plasmas For Sputtering Applications[J]. Surface Engineering,2004,20:174-176.
    [134]Vasina P, Mesko M, Ganciu M, et al. Reduction of transient regime in fast preionized high-power pulsed-magnetron discharge[J]. Europhysics Letters,2005,72(3):390.
    [135]Kouznetsov V. Process and apparatus for generating plasma[P]. Swedish, SE 525231 C2. Jan.1,2005.
    [136]Chistyakov R. Methods and apparatus for generating strongly ionized plasma with ionizational instabilityes[P]. United States,7095179. August 22,2006.
    [137]吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.
    [138]Anders A, Andersson J, Ehiasarian A. High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering[J]. Journal of Applied Physics,2007,102(11):113303-113311.
    [139]Bohlmark J, Gudmundsson J T, Alami J, et al. Spatial electron density distribution in a high-power pulsed magnetron discharge[J]. IEEE Transactions on Plasma Science, 2005,33(2):346-347.
    [140]Ehiasarian A P, New R, Munz W D, et al. Influence of high power densities on the composition of pulsed magnetron plasmas[J], Vacuum,2002,65(2):147-154.
    [141]Bohlmark J, Lattemann M, Gudmundsson J T, et al. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J]. Thin Solid Films,2006,515(4):1522-1526.
    [142]Alami J, Sarakinos K, Mark G, et al. On the deposition rate in a high power pulsed magnetron sputtering discharge[J]. Applied Physics Letters,2006,89(15): 154104-154103.
    [143]Konstantinidis S, Dauchot J P, Ganciu M, et al. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J]. Journal of Applied Physics,2006,99(1):013307.
    [144]Christie D J. Target material pathways model for high power pulsed magnetron sputtering[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2005,23(2):330-335.
    [145]Vetushka A, Ehiasarian A P. Plasma dynamic in chromium and titanium HIPIMS discharges[J]. Journal of Physics D:Applied Physics,2008,41(1):015204.
    [146]Vlcek J, KudlaCek P, Burcalova K, et al. High-power pulsed sputtering using a magnetron with enhanced plasma confinement[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2007,25(1):42-47.
    [147]Karlsson L, Hultman L, Johansson M P, et al. Growth, microstructure, and mechanical properties of arc evaporated TiCxNl-x (0<=x<=1) films[J]. Surface and Coatings Technology,2000,126(1):1-14.
    [148]Rafaja D. X-Ray Diffraction and X-Ray Reflectivity Applied to Investigation of Thin Films. In:B. Kramer. Advances in Solid State Physics. Heidelberg:Springer-Verlag Berlin,2001:275-286.
    [149]进藤大辅,平贺贤二,著,刘安生,译.材料评价的高分辨电子显微方法[M].北京:冶金工业出版社,2002.
    [150]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research,1992,7(6):1564-1583.
    [151]Jehn H, Reiners G, Siegel N. DIN Fachbericht 39. Characterisierung dunner Schichten[S]. Berlin:Beuth Verlag,1993.
    [152]Heinke W, Leyland A, Matthews A, et al. Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests[J]. Thin Solid Films,1995,270(1-2): 431-438.
    [153]Bull S J. Failure mode maps in the thin film scratch adhesion test[J]. Tribology International,1997,30(7):491-498.
    [154]Bull S J, Berasetegui E G. An overview of the potential of quantitative coating adhesion measurement by scratch testing[J]. Tribology International,2006,39(2): 99-114.
    [155]Stallard J, Poulat S, Teer D G. The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester[J]. Tribology International, 2006,39(2):159-166.
    [156]Goretzki H, Rosenstiel P v, Mandziej S. Small area MXPS- and TEM-measurements on temper-embrittled 12% Cr steel[J]. Fresenius' Journal of Analytical Chemistry, 1989,333(4):451-452.
    [157]Robertson J. Amorphous carbon[J]. Advances in Physics,1986,35(4):317.
    [158]Diaz J, Paolicelli G, Ferrer S, et al. Separation of the sp3 and sp2 components in the Cls photoemission spectra of amorphous carbon films[J]. Physical Review B,1996, 54(11):8064.
    [159]Ronning C, Feldermann H, Merk R, et al. Carbon nitride deposited using energetic species:A review on XPS studies[J]. Physical Review B,1998,58(4):2207.
    [160]Muhl S, Mendez J M. A review of the preparation of carbon nitride films[J]. Diamond and Related Materials,1999,8(10):1809-1830.
    [161]Leyland A, Matthews A. On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour[J]. Wear,2000, 246(1-2):1-11.
    [162]Diserens M, Patscheider J, Levy F. Mechanical properties and oxidation resistance of nanocomposite TiN-SiNx physical-vapor-deposited thin films[J]. Surface and Coatings Technology,1999,120-121:158-165.
    [163]Patscheider J. Nanocomposite hard coatings for wear protection[J]. Mrs Bulletin,2003, 28(3):180-183.
    [164]Lin J. Effect of pulsing parameters on the pulsed closed field unbalanced magnetron sputtering of chromium aluminum nitride coatings used for aluminum pressure die casting[D]. Golden:Colorado School of Mines,2006.
    [165]Langner J, Sadowski M J, Strzyzewski P, et al. Progress in Use of Ultra-High Vacuum Cathodic Arcs for Deposition of Thin Film Superconducting Layers[C]. International Symposium on Discharges and Electrical Insulation in Vacuum, Matsue,2006: 535-538.
    [166]Scherrer P. Bestimmung der grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen[J]. Nachrichten Gesellschaft Wissenschaft Gottingen,1918,26: 98-100.
    [167]Vlcek J, Zustin B, Rezek J, et al. Pulsed Magnetron Sputtering of Metallic Films Using a Hot Target[C]. The 52nd Annual Technical Conference of the Society of Vacuum Coaters, Santa Clara,2009:HP-5.
    [168]Petrov I, Barna P B, Hultman L, et al. Microstructural evolution during film growth[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2003, 21(5):S117-S128.
    [169]Alami J, Sarakinos K, Uslu F, et al. On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering[J]. Journal of Physics D:Applied Physics,2009, 42(1):015304.
    [170]Ehiasarian A P, Hovsepian P E, Hultman L, et al. Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique[J]. Thin Solid Films,2004,457(2):270-277.
    [171]Ehiasarian A P, Munz W D, Hultman L, et al. High power pulsed magnetron sputtered CrNx films[J]. Surface and Coatings Technology,2003,163-164:267-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700