用户名: 密码: 验证码:
弹性蛋白的层层自组装改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于弹性蛋白良好的性能和层层自组装技术的在生物材料表面改性中的一系列优点,本课题首先以弹性蛋白膜为基底材料,分别以细胞外基质成分透明质酸、Ⅰ型胶原和透明质酸、天然多糖壳聚糖为组装材料通过层层自组装成功的对弹性蛋白膜进行了表面改性;其次,将弹性蛋白部分降解后应用冷冻干燥法制备了弹性蛋白三维支架,并对支架进行了自组装改性探索。
     1.成功在弹性蛋白膜表面构筑了透明质酸/胶原多层膜,扫描电镜测试显示,随组装层数增加弹性蛋白膜表面粗糙程度逐渐降低,组装14层后弹性蛋白膜表平整,缺陷基本消失,组装14层的弹性蛋白膜纵切面照片直观证明了基材表面多层膜结构的存在;X光电子能谱测试证实了组装膜为透明质酸/胶原;紫外-可见光谱测试证实了透明质酸/胶原多层膜的线性增长;动态接触角测试表明,组装后弹性蛋白膜表面呈现良好的亲水性,组装14层样品的前进接触角由组装前的121.76°降低到69.33°;拉伸测试显示弹性蛋白拉伸强度在840-870 KPa范围内,断裂伸长率在140-160%范围内,改性对其力学性能影响不大。
     2.成功在弹性蛋白膜表面组装了层透明质酸/壳聚糖多层膜,扫描电镜照片显示,随组装层数增加弹性蛋白膜表面粗糙程度逐渐降低,组装14层的弹性蛋白膜的表面平整,表面缺陷显著减少;X光电子能谱测试表明组装膜为透明质酸/壳聚糖;动态接触角测试显示,组装后弹性蛋白膜表面呈现良好的亲水性,组装14层样品的前进接触角由组装前的121.76°降低到80.13°;拉伸测试显示弹性蛋白拉伸强度在840-870 KPa范围内,断裂伸长率在130-160%范围内,改性对其力学性能几乎没有影响。
     3.成功制备了性能较好的弹性蛋白三维支架,0.15 mol/L NaOH溶液降解2.5 h后制备的支架的孔径可达100μm且较均匀,孔隙间贯通性较好,孔隙率为76.2%,吸水率为126.3%,拉伸强度可达112.6 KPa,0.3 mol/L草酸溶液降解4 h后制备的支架平均孔径在80-100μm左右,孔隙间贯通性较好,孔隙率为83.7%,吸水率为156.5%,拉伸强度为81.5 KPa。并初步利用1、2中的方法对性能较好的弹性蛋白支架进行了表面改性,改性后支架的表面形貌没有明显的变化、孔径基本不变、孔隙率有所降低、吸水能力明显提高、拉伸强度有所提高。
Based on the good properties of elastin and the series advantages of layer-by-layer self-assembly technology in the surface modification of biomaterials, in this paper, first of all, elastin were modified via layer-by-layer self-assembly of hyaluronic acid(HA)/collagen(typeⅠ) and the hyaluronic acid(HA)/chitosan(CS) respectively. Secondly, elastin was degraded partly and prepared into 3D scaffolds, and the modifi- cation of the elastin scaffolds was also explored.
     1. HA/collagen multilayer films were successfully constructed on the elastin membranes. SEM images showed it was clear sandwich structures on an edge of the elastin membranes containing 14 layers of HA and collagen. The XPS analysis demonstrated that the assembly films were HA and collagen. The UV-visible spectroscopy results demonstrated the linearity of the multilayer build-up. The advancing contact angle data revealed the hydrophilicity of the elastin membranes was greatly improved after assembly.The tensile test data showed the mechanical properties of elastin membranes had not changed after the modification.
     2. Elastin membranes were successfully modified via layer-by-layer self-assembly of HA and CS. SEM images showed the surface roughness of elastin membranes gradually decreased with the number of the multilayer’s increasing. The XPS analysis demonstrated that the assembly films were HA and CS. The advancing contact angle data revealed the hydrophilicity of the elastin membranes was greatly improved after assembly. The tensile test data showed the mechanical properties of elastin membranes had not changed after the modification.
     3. Elastin 3D scaffolds with good properties were successfully prepared. The pore diameter of the scaffolds prepared after 2.5 h degraded in the 0.15mol/L NaOH solution reached 100μm and the pores are absolutely open. The porosity are 76.2% and the tensile strength are 112.6 KPa. The pore diameter of the scaffolds prepared after 4 h degraded in the 0.3 mol/L oxalic acid solution are in the range of 80-100μm and the pores are absolutely open. The porosity are 83.7% and the tensile strength are 81.5 KPa. Furthermore, the elastin scaffolds were modified via layer-by-layer self-assembly of HA/collagen and HA/CS, and the modification improved the bibulous ratio of the scaffolds.
引文
[1]Laurent Debelle, Alain J. P. Alix, Shao M. Wei et al, The secondary structure and architecture of human elastin. Eur. J. Biochem., 1998, 258: 533~539
    [2]Jason C. Isenburg, Dan T. Simionescu, Naren R. Vyavahare,Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials, 2004, 25: 3293~3302
    [3]Laurent Duca, Nicolas Floquet , Alain J.P. Alix et al, Elastin as a matrikine. Crit. Rev. Oncol. Hematol., 2004, 49: 235~244
    [4]Laurent Debelle, A.M. Tamburro, Elastin: molecular description and function. Int. J. Biochem. Cell Biol., 1999, 31: 261~272
    [5]Sauvage M., Hinglasis N., Mandet C. et al, Localization of elastin mRNA and TGF-β1 in rat aorta and caudal artery as a function of age. Cell Tissue Res., 1998, 291(2):305~314.
    [6]Li D. Y., Brooke B., Davis E. C. et al, Elastin is an essential determinant of arterial morphogenesis. Nature, 1998, 393: 276~280.
    [7]Ladislas Robert, Elastin, past, present and future. Pathologie Biologie, 2002, 50: 503~511
    [8]Getie M., Raith K., Analysis of two elastin cross-links, desmosine and isodesmo- sine, and their radiation-induced degradation products. Biochim. Biophys. Acta., 2003, 1624: 81~87
    [9]A. J. Bailey, Collagen and elastin fibres. J. clin. Path, 31, Suppl.(Roy. Coll. Path.), 12: 49~58
    [10]Gerhard E. Gerber, Rashid A. Anwar, Comparative studies of cross-linked regions of elastin from bovine ligamentum nuchae and bovine, porcine and human aorta. Biochem.J. 1975, 149: 685~695
    [11]Roach MR., Song SH., Aterial elastin as seen with scanning electron microscopy: A review, Scan. Microsc., 1988, 2: 994~1004
    [12]Laurent Debelle, Alain J.P., The structures of elastins and their function. Alix. Biochimie, 1999, 81: 981~994
    [13]Kouser M. Baig, Marianna Vlaovic, Rashid A., Amino acid sequences. C-Terminal to the cross-links in bovine elastin. Biochem. J. 1980, 185: 611~616
    [14]Wasano K., Yamamoto T., Tridimensional architecture of elastic tissue in the rat aorta and femoral artery—a scanning electron microscope study. J. Electron. Microsc., 1983, 32(1): 33~44
    [15]Nakatake J., Wasano K., Yamamoto T., Three-dimensional architecture of elastic tissue in early atherosclerotic lesions of the rat aorta. Atherosclerosis, 1985, 57(2): 199~208
    [16]M. A. Lillie, J. M. Gosline, Unusual swelling of elastin. Biopolymers, 2002, 64: 115~126
    [17] M. A. Lillie, J. M. Gosline, Swelling and viscoelastic properties of osmotically stressed elastin. Biopolymers, 1996, 39: 641~652
    [18]Gosline J. M., Hydrophobic interactions and model for the elasticity of elastin. Biopolymers, 1978, 17: 677~595
    [19]Gosline J. M., The temperature-dependent swelling of elastin. Biopolymers, 1978, 17: 697~707
    [20]Winlove C. P., Parker K. H., Influence of solvent composition on the mechanical properties of arterial elastin. Biopolymers, 1990, 29: 729~735
    [21]Tamburro A. M., Guantieri V., Pandolfo L. et al, Synthetic fragments and analogues of elastin. II. Conformational studies. Biopolymers, 1990, 29: 855~870
    [22]魏少敏,弹性蛋白降解与皮肤衰老及其护肤品开发,日用化学工业,1997,5:32~34
    [23]Jacob M. P., Hornebeck W., Isolation and characterisation of insoluble and kappa-elastins. In: Robert L, Moczar M, Moczar E, editors. Connect Tissue Res., 1985, 4: 92~129
    [24]Hattori M., Yamaji-Tsukamoto K., Kumagai H. et al, Antioxidative activity of soluble elastin peptides. J. Agric. Food Chem., 1998, 46: 2167~2170
    [25]Schoen F. J. , Levy R. J., Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res.,1999, 47: 439~465
    [26]Grauss R. W., Hazekamp M. G., Oppenhuizen F. et al, Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur. J. Cardiothorac. Surg., 2005, 27: 566~571
    [27]Daamen W. F., Hafmans T., Veerkamp J. H. et al, Comparison of five procedures for the purification of insoluble elastin. Biomaterials, 2001, 22: 1997~2005
    [28] Rasmussen B. L., Bruenger E., Sandberg L. B., A new method for purification of mature elastin. Anal. Biochem., 1975, 64: 255~259
    [29]John R., Thomas J., Chemical compositions of elastins isolated from aortas and pulmonary tissues of humans of different ages. Biochem. J., 1972,127: 261~269
    [30]Partridge SM, Davis HF, Adair GS. The chemistry of connective tissues. 2-Soluble proteins derived from partial hydrolysis of elastin. Biochem. J., 1955, 61: 11~21
    [31]Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT,Parker TM. Elastic protein-based polymers in soft tissue augmentation and generation. J. Biomater. Sci. Polymer Edn., 1998, 9: 1015~1048
    [32]Qijin Lu, Kavitha Ganesan, Dan T. Simionescu et al, Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials, 2004, 25: 5227~5237
    [33]Dan T. Simionescu, Qijin Lu, Ying Song et al, Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials, 2006, 27: 702~ 713
    [34]Aditee Kurane, Dan T. Simionescu, Narendra R. Vyavahare, In vivo cellular repopulation of tubular elastin scaffolds mediated by basic fibroblast growth factor.Biomaterials, 2007, 28: 2830~2838
    [35]Boland ED, Matthews JA, Pawlowski KJ, Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front. Biosci., 2004, 9:1422~1432
    [36]L. Buttafoco, Engbers-Buijtenhuijs, A. A. Poot, First steps towards tissue engineering of small-diameter blood vessels: preparation of flat scaffolds of collagen and elastin by means of freeze drying. Appl Biomater, 2006, 77B:357~368
    [37]W.F. Daamen, S.T.M. Nillesen, T. Hafmans et al, Tissue response of defined collagen–elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials, 2005, 26: 81~92
    [38]Joel Stitzel, Jie Liu, Sang Jin Lee et al, Controlled fabrication of a biological vascular substitute. Biomaterials, 2006, 27: 1088~1094
    [39]W.F. Daamen, H.Th.B. van Moerkerk, T. Hafmans, Preparation and evaluation of molecularly-defined collagen–elastin–glycosaminoglycan scaffolds for tissue engine- ering. Biomaterials, 2003, 24: 4001~4009
    [40]Laura Buttafoco, Paula Engbers-Buijtenhuijsa, Andre A. Poot et al, Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials. 2006, 27: 2380~2389
    [41]Paula Engbers-Buijtenhuijsa, Laura Buttafoco, Andre A. Poot et al, Biological characterisation of vascular grafts cultured in a bioreactor. Biomaterials. 2006, 27: 2390~2397
    [42]W. Haslik, L. P. Kamolz, G. Nathschlager et al, First experiences with the collagen-elastin matrix Matriderm as a dermal substitute in severe burn injuries of the hand. Burns, 2007, 33 : 364~368
    [43]B.Hafemann, S.Ensslen, C.Erdmann et al, Use of a collagen/elastin-membrane for the tissue engineering of dermis. Burns, 1999, 25: 373~384
    [44]S. A. Sell,M. J. McClure,C. P. Barnes et al.Electrospun polydioxanone-elastin blend: potential for bioresorbable vascular grafts. Biomed.Mater. 2006, 1:72~80
    [45]Mengyan Li, Mark J. Mondrinos, Xuesi Chen, Co-electrospun poly(lactide-co- glycolide), gelatin, and elastin blends for tissue engineering scaffolds, Inc. J. Biomed. Mater. Res., 2006, 79A: 963~973
    [46]Thomas Chandy, Gundu H. R. Rao, Robert F. Wilson et al, The development of porous alginate/elastin/PEG composite matrix for cardiovascular engineering. J. Biomater. Appl., 2003, 17(4): 287~301
    [47] Kajitani, Michio, Wadia, Yasmin; Hinds, Monica T. et al, Use of a new elastin patch and glue for repair of a major duodenal injury. ASAIO J. 2001, 47(4): 342~345
    [48]Monica T. Hinds, Rebecca C. Rowe,Zhen Ren et al, Development of a reinforced porcine elastin composite vascular scaffold. J. Biomed. Mater. Res. Pt A, 2006, 77(3): 458-469
    [49]S. M. Partridge,H. F. Davis, The Chemistry of Connective Tissues 3. Composition of the soluble proteins derived from elastin. Biochem. J., 1955, 1: 21~30
    [50]Jennie B. Leach , Jesse B. Wolinsky , Phillip J. Stone et al. Crosslinked a-elastin biomaterials: towards a processable elastin mimetic scaffold, Acta Biomaterialia, 2005, 1: 155~164
    [51]Mengyan Li, Mark J. Mondrinos, Milind R. Gandhi, Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26(30): 5999~6008
    [52]Tristan de Chalain, John H. Phillips, Aleksander Hinek, Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and kappa-elastin. J. Biomed. Mater. Res., 1999, 44(3): 280~288
    [53]S. Dutoya, A. Verna, F. Lefebvre et al. Elastin-derived protein coating onto poly(ethylene terephthalate): technical, microstructural and biological studies. Biomaterials. 2000, 21:1521~1529
    [54]S. Dutoya, F. Lefebvre, C. Deminieres et al.Unexpected original property of elastin derived proteins:spontaneous tight coupling with natural and synthetic polymers. Biomaterials.1998,19:147~155
    [55]F. San-Galli, C. Deminihre, J. Guerin et al. Use of a biodegradable elastin-fibrin material, Neuroplast, as a duralsubstitute. Biomaterials.1996,17:1061~1085
    [56]Lefebvre F., Gorecki S., Bareille R. et al. New artificial connective matrix-like structure made of elastin solubilized peptides and collagens: elaboration, biochemical and structural properties. Biomaterials, 1992,13: 28~33
    [57]Bonzon N., Carrat X., Deminiere C. et al. New artificial connective matrix made of fibrinmonomers, elastin peptides and type I & II collagens: structural study, biocompatibility and use as tympanic membranes in rabbit. Biomaterials, 1995,16: 881~885
    [58]Ooyama T., Fukuda K., Oda H. et al. Substratum-bound elastin peptide inhibits aorta smooth musclecell migration in vitro. Arteriosclerosis, 1987, 7: 593~598
    [59]Ito SH., Ishimaru S., Wilson SE.. Application of coacervateda-elastin to arterial prostheses for inhibition of anastomoticintimal hyperplasia.ASAIO J.,1998, 44: M501 ~505.
    [60]Di Gao, Nicole McBean, Jerome S. Schultz et al.Fabrication of Antibody Arrays Using Themally Responsive Elastin Fusion Proteins. J.AM.CHEM.SOC, 2006, 128: 676~677
    [61]Eiry Kobatake, Koji Onoda,Yasuko Yanagida et al. Design and Gene Engieering Synthesis of an Extremely Thermostable Protein with Biological Activity. Biomacro- molecules 2000,1: 382~386
    [62]Dominic C.Chow, Matthew R.Dreher, Kimberly Trabbic-Carlson et al, Ultra-High Expression of a Themally Responsive Recombinant Fusion Protein in E.coli. Biotechnol. Prog., 2006, 22: 638~646
    [63]Hiroyuki Kurihara,Tetsuaki Morita,Masashige Shinkai et al. Recombinant extrac- elluar matrix-like protein with repetitive elastin or collagen-like functional motifs. Biotechnol. Lett., 2005, 27: 665~670
    [64]Ashutosh Chilkoti,Trine Christensen, J. Andrew MacKay. Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr. Opin. Chem. Biol., 2006, 10(6): 652-657
    [65]Herrero-Vanrell R.,Rincon AC.,Alonso M. et al. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J. Control. Release, 2005, 102: 113~122
    [66]David Tirrell, Allison Doerr. Protein microarray Velcro. Nature methods, 2005, 2: 642~643
    [67]沈家骢等,超分子层状结构——组装与功能,北京:科技出版社,2003:1-10
    [68]Zhiyong Tang, Ying Wang, Paul Podsiadlo et al, Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Adv. Mater. 2006, 18, 3203~3224
    [69]Fischer P., Laschewsky A., Wischerhoff E. et al, Polyelectrolytes bearing azobenzenes for the functionalization of multilayers. Macromol Symp.,1999,137: 1~7
    [70]X. Arys, A. M. Jonas, B. Laguitton et al, Structural studies on thin organic coatings built by repeated adsorption of polyelectrolytes. Thin Solid Films,1997,34: 108~118
    [71]W. Fabianowski, M. Roszko, W. Brodzi?ska, Optical sensor with active matrix built from polyelectrolytes–smart molecules mixture. Thin Solid Films. 1998, 329: 743~747
    [72]沈家骢等,超分子层状结构——组装与功能,北京:科学出版社,2003:237~249
    [73]Ji J., Tan Q., Shen J. C. et al. Fabrication of alternating polycation and albumin multilayer film coating onto stainless steel by electrostatic layer-by-layer adsorption. Coilliod and Interface Science. Biointerface, 2004, 34: 185~196
    [74]Thierry B., Winnik F. M., Tabrizian M. et al. Bioactive Coatings of Endovascular Sents Based on Polyelectrolyte Multilayers. Biomacromolecules, 2003, 4(6):1564 ~1571
    [75]E. Brynda, M. Houska, J. Skvor et al, Immobilisation of multilayer bioreceptor assemblies on solid substrates. Biosensors and Bioelectronics, 1998, 13(2): 165~172.
    [76]Qinggang Tan, Jian Ji, M. A. Barbosa et al, Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomate- rials, 2003, 24(25): 4699~4705
    [77]Jun Zhang, Bernard Senger, Dominique Vautier et al, Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials, 2005, 26(16): 3353~3361
    [78]D. Korneev, Y. Lvov, G. Decher et al, Neutron reflectivity analysis of self- assembled film superlattices with alternate layers of deuterated and hydrogenated polysterenesulfonate and polyallylamine. Physica B: Condensed Matter., 1995, 213: 954~956
    [79]Chung AJ., Rubner MF., Methods of loading and releasing low molecular weight cationic molecules in week polyelectrolyte multilayer films. Langmuir, 2002, 18: 1176~1184
    [80]Das S., Pal AJ., Layer-by-layer self-assembling of a low molecular weight organic material by different electrostatic adsorption processes. Langmuir, 2002, 18:458~463
    [81]Kazunori Emoto,Yukio Nagasaki and Kazunori Kataoka, Coating of Surfaces with Stabilized Reactive Micelles from Poly(ethylene glycol)-Poly(DL-lactic acid) Block Copolymer. Langmuir, 1999, 15 (16): 5212~5218
    [82]F. Boulmedais, B. Frisch, O. Etienne, Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials, 2004, 25(11): 2003~2011
    [83]Sharmistha Das and Amlan J. Pal, Layer-by-layer self-assembling of a low molecular weight organic material by different electrostatic adsorption processes. Langmuir, 2002, 18 (2): 458~461
    [84]Poh-Hui Chua, Koon-Gee Neoh, En-Tang Kang et al, Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008, 29(10): 1412~1421
    [85]Yihong Gong, Yabin Zhu, Yunxiao Liu, Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(l-lactic acid) porous scaffolds to enhance their chondrogenesis. Acta Biomaterialia, 2007, 3(5): 677~685
    [86]M. E. Grant, F. S. Steven, D. S. Jackson, Carbohydrate content of insoluble elastins prepared from adult bovine and calf ligamentum nuchae and tropoelastin isolated from copper-deficient procine aorta. Biochem., 1971, 121: 197~202
    [87]沈家骢等,超分子层状结构——组装与功能,北京:科学出版社,2003:16~20
    [88]姚康德,尹玉姬,组织工程相关生物材料,北京:化学工业出版社,2003:254~267
    [89]Huiguang Zhu, Jian Ji, Qinggang Tan et al. Surface Engineering of Poly(DL- lactide) via Electrostatic Self-Assembly of Extracellular Matrix-like Molecules. Biomacromolecules 2003, 4, 378~386
    [90]Alina Sionkowska , Joanna Skopinska, Marcin Wisniewski et al. Spectroscopic studies into the influence of UV radiation on elastin hydrolysates in water solution. Journal of Photochemistry and Photobiology B: Biology, 2006, 85, 79~84
    [91]Matthew J. Smith, Michael J. McClure, Scott A. Sell, Suture-reinforced electrospun polydioxanone–elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study. Acta Biomaterialia, 2008, 4(1): 58~66
    [92]Qian Feng, Gucheng Zeng, Peihui Yang, Self-assembly and characterization of polyelectrolyte complex films of hyaluronic acid/chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005, 5, 885~88
    [93]姚康德,尹玉姬,组织工程相关生物材料,北京:化学工业出版社,2003:301~320
    [94]丑修建,陈庆华,组织工程支架材料的研究进展,中国陶瓷,2004,40(6):10~18
    [95]Zhang R., Ma .P X., Poly (alpha-hydroxyl acids)/hydroxyapatite porous composi- tes for bone-tisuue engineering Preparation and morphology. J. Biomed. Mater. Res, 1999, 44(4): 446~455
    [96]Jianbiao Ma, Hongjun Wang, Binglin He et al, A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001, 22(4): 331~336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700