急性缺血缺氧小鼠大脑代谢物的变化过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血缺氧脑病是世界范围的第二大致死因素,椐统计每年死于中风的人群占总死亡人数的9.5%,达到五百万。如此高流行、高病死率给整中国乃至世界带来沉重的病痛及经济负担。但脑缺氧缺血具有极其复杂的病理生理过程,急性缺氧缺血可造成脑损伤,并导致脑能量代谢的改变。因此探索此类疾病的发病机理及寻找治疗方法及预防的手段极为必要。
     本课题旨在揭示超急性期/急性期脑缺氧缺血过程中乳酸及其他主要脑代谢物随时间的变化规律。研究结果有助于了解超急性期/急性期脑缺氧缺血的损伤机理和发病机制,还有助于探索准确、有效、方便的测定脑代谢物的方法。
     在本研究中,作者以小鼠缺氧缺血性脑损伤模型为研究对象,使用乳酸试剂盒、HPLC和高场磁共振频谱三种不同方法,以秒为单位分别观察了急性缺血缺氧小鼠大脑的乳酸、磷酸肌酸、乙酰-门冬氨酸四种代谢物随时间的变化过程,改进了脑代谢物的HPLC的检验方法,并比较了三种方法的相关性,为进一步准确稳定的检测大脑代谢物奠定了基础。
     本实验结果揭示了乳酸、磷酸肌酸N-乙酰门冬氨酸和胆碱在急性脑缺血缺氧中随时间的变化规律:乳酸在缺血发生20秒钟时即升至到最高4.16μmol/g(wet)并随缺血缺氧的时间的延长而上升;磷酸肌酸浓度水平在缺血缺氧20秒钟时就大幅降低至6.17±0.39μmol/g(wet),5分钟时最低;N-乙酰门冬氨酸的变化趋势是在缺血缺氧的早期5分钟开始下降9.43±0.18μmol/g(wet),10分钟降低到最低8.32±0.29μmol/g(wet);胆碱的变化则无显著性差异(P>0.05),与一些文献报道不符。三种方法的相关性为:乳酸试剂盒与HPLC测定乳酸的相关系数为0.814;9.4T磁共振频谱与HPLC的相关系数为0.900。
     总之,乳酸、N-乙酰门冬氨酸和磷酸肌酸是急性缺血缺氧的敏感指标,而胆碱的变化则无显著性差异(P>0.05)。通过三种检测乳酸方法的相关性比较,说明高场9.4 1H-MRS是测定离体生物样本乳酸浓度更为可靠的方法。
Hypoxic-ischemic encephalopathia is the second leading cause of mortality worldwide. It is estimated to be responsible for 9.5% of all deaths and 5.1 million of the 16.7million cardiovascular disease deaths. In China, hypoxic-ischemic encephalopathia is the leading cause of mortality and it is threating life of people worldwide. Hypoxic-ischemic encephalopathia, however, is most complicated process and its procedure occurs in brain will result in multineurodisfunction, including: failure of energy metabolitic produce, changes in multiactive compound in brain and serious sequelae. So it is necessary to reveal the pathological mechanism of hypoxic-ischemic encephalopathia and find effective approach for prevention and treatment.
     At present study we induced rat model to mimic the procedure of hyperacute hypoxic-ischemi encephalopathia to study the time courses of multimetabolic(Choline, NAA, P-Cr, Lac)dynamic changes in rat brains model of hyperacute global cerebral ischemia within 20 min.
     A total of 80 rats were randomized into five different groups, the normal (n=5), the hyperacute global cerebral ischemic groups (n=5). A rat model of acute global cerebral ischemia was induced by cutting the rat heads. The lactate concertrations were measured by lactate kit, the four brain metabolitics were measured by HPLC and 9.4T 1HMRS.
     In the normal group and the ischemic group, the time course of metabolites were revealed, significant differences in Lac, NAA and P-Cr concentration were found between two groups(P<0.05). The marked increase in Lac, and declined in P-Cr and NAA (P<0.05). However, Choline concentration was not significant change in all groups within 20 min after cerebral ischemia period(P>0.05). The earliest detection of lactate was at 20 seconds within the ischemic period, the lactate concentration elevated and peaked at 20s and declined with development of ischemia at 5min reached the ebb, after the ebb lactate began to rise. Methods were compaired between Lac kit and HPLC, the coefficient of correlation is r=0.814; and the methods between HPLC and 1H-MRS, the coefficient of correlation is r=0.900.
     In conclusion, the time courses of multimetabolites in ischemic rat brains were depict in early stage: abnormalities in acute stage of cerebral ischemia in rats could also be detected by 1H-MRS and another two methods. The study shows that 1H-MRS is a reliable and gave important information for evaluating hypoxic and ischemic pathologic procedure.
引文
1. Dietrich W D, R Busto, S Yoshida and M D Ginsberg. Histopathological and hemodynamic consequences of complete versus incomplete ischemia in the rat. J. Cereb. Blood Flow Metab.1987; 7: 300-308.
    2. Eleff S Y, Maruki L H, Monsein R J Traystman and R C Koehler. Sodium, ATP and intracellular pH transients during reversible compression ischemia of dog cerebrum. Stroke 1991; 22: 233-241.
    3. Ouyang Y B, Q P He, P A Li and B K Siesjo. Secondary mitochondrial damage and delayed neuronal death in hyperglycemic rats. Neurosci.Res. Commun. 1998; 22: 31-38.
    1. Brooks GA, Gladden LB.The metabolic systems: anaerobic metabolism (glycolytic and phosphagen). In Exercise Physiology. People and Ideas(2000), ed. Tipton CM, chap. 8, pp322–360. Oxford University Press, New York.
    2. Meyerhof O Die Energieumwandlungen im Muskel. I.über die Beziehungen der Milchsaure zur Warmebildung and Arbeitsleistung des Muskels in der Anaerobiose. Pflugers Arch Ges Physiol Mensch Tiere(1920).182, 232–283.
    3. Hunt TK, Conolly WB, Aronson SB, Goldstein P. Anaerobic metabolism and wound healing: a hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg (1978) 135, 328–332.
    4. Miller BF,Lindinger MI,Fattor JA, Jacobs KA, Leblanc PJ,Brooks GA. Hematological and acid-base changes in men during prolonged exercise with and without sodium-lactate infusion. J. Appl Physiol. 1998; 856-865.
    5. Brooks GA. Lactate shuttles in nature.Biochem. Soc. Trans. (2002a).30, 258-264.
    6. Gladden LB. Lactate metabolism during exercise. In Principles of Exercise. Biochemistry, 3rd (2003).pp:152–196.
    7. Carr G P.J Pharm Biomed Anal 1990; 8: 613-620.
    8.卫生部药品评审办公室.中国临床药理学杂志1992;8(3):189-193.
    9. WU XA, Fmuiyoshi Y, Mitsuer H, ChenXq,HuZD. Talanta 2002;59:965-971.
    10. Meyer JR. Embolia pulmonar amnio caseosa. [J]. Brasil Med, 1986; 2: 301-303.
    12. Tsai TH,Chen YF,Shum AYC,Chen CF. J Chromatogr A. 2000;870:443-448.
    13. Berssoll F,Bormet.Petit M,Audnar M. J. Chromatigr B 1996,683:3-9.
    14.Ye Q Li YZ,Li YY,Guo HZ,GuoDA.[J] Pharm Biomed Anal. 2003;33(3): 521-527.
    15. Choi IY, Seaquist ER, Gruetter R. Effect of hypoglycemia on brain glycogen metabolism in vivo. [J] Neurosci Res 2003; 72: 25–32.
    16. Aldridge WN, Street BW, Skilleter DN. Halide-dependent and halide-independent effects of triorganotin and triorganolead compounds on mitochondrial functions. [J]. Biochem. 1977;168: 353-364.
    17. Cardell M, Koide T, Wieloch T. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia. [J]. Cereb.Blood Flow Metab.1989;9: 350-357.
    18. Pulsinelli, WA,. Duffy TE. Regional energy balance in rat brain after transient forebrain ischemia. J. Neurochem. 1983;40: 1500-1503.
    19. Crumrine, RC, Bergstrand K, Cooper AT, Faison WL,.Cooper BR. Lamotrigene protects hippocampal neurons from ischemic damage after cardiac arrest. Stroke 1997;28: 2230-2237.
    20. Kataoka, A, Kubota M, Wakazono Y.Association of high molecular weight DNA fragmentation with apoptotic or non-apoptotic cell death induced by Caionophore. FEBS Lett. 1995;364: 264-267,
    21. Nicotera P, Zhivotovsky B, Orrenius S.Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium 1994;16: 279-288.
    22. Back T, ZHAO W, Ginsberg MD. Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion.J.Cereb Blood Flow Metab. 1995; 15: 566-577.
    23. Nedergaard M, Giedde A, Diemer NH. Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content and blood flow.J.Cereb.Blood Flow Metab. 1986; 6: 414-424.
    24. YAO H, Ginsberg, Eveleth DD, Lamanna JC, Watson BD, Busto R. Local cerebral glucose utilization and cytoskeletal proteolysis as indices of evolving focal ischemic injury in core and penumbra. J. Cereb. Blood Flow Metab. 1995; 15: 398-408.
    25. Katsura KE, Rodriguez B, Turco DE, Folbergova J, Bazan NG, Siesjo BK. Coupling among energy failure, loss of ion homeostasis and phospholipase A2 and C activation during ischemia. J. Neurochem. 1993; 61: 1677-1684.
    26. Lipton P, Whittingham TS. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus.J. Physiol.(Lond.) 1982; 325: 51-65.
    27. Brown AW, Brieriley JB. Anoxic-ischemic cell change in rat brain: light microscopic and fine-structural observations. J. Neurol. Sci. 1972; 16: 59-84.
    28. McGee-Russell SM, Brown AW, Brierly JB. A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res1970;20: 193-200.
    29. Rehncrona SR, Ishd Ssiesjo BK. Effects of Phenobarbital in Cerebral Ischemia. Acta Physiol.Scand. (1980)110:435-437.
    30. Siesjo BK. Mechanisms of ischemic brain damage.Crit Care Med. 1988; 16:954-963.
    31.Farooqui AA, Haun SE, Horrocks LA. Ischemia and hypoxia. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, eds.Basic Neurochemistry. New York, NY: Raven Press, Publishers; 1993:867-883.
    32.Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science.1988; 240: 1326-1328.
    33. Petroff OA, Shulman RG, Prichard JW.Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke, Vol 23, 333-340.
    34.Luc Pellerin, Giovanni Pellegri, Jean-Luc Martin, and Pierre J. Magistretti.Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Neurobiology March 31, 1998.Vol. 95, Issue 7, 3990-3995.
    35.Frank AP, Ralph DS, Edwin MN, Hypothermic cardiopulmonary bypass alters oxygen/glucose uptake in the pediatric brain. J Thorac Cardiovasc Surg 2001; 121: 366-373.
    36.Siesj? BK. Brain Energy Metabolism and catecholaminergic activity in hypoxia, hypercapnia and ischemia. J Neural Transm Suppl 1978; (14):17-22.
    37.Avital Schurr, James JM, Ralphiel SP, Benjamin MR. An Increase in Lactate Output by Brain Tissue Serves to Meet the Energy Needs of Glutamate-Activated Neurons. The Journal of Neuroscience, January 1,1999;19(1):34-39.
    38.Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation.Science 1988; 240:1326-1328.
    39.Lesiuk H, Suther LG, Pelling J.Effect of 740067 on brain ischemia in rats. Stroke, 1991; 22:896.
    40.Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM. Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons.J.Cereb.Blood Flow Metab. 1996;16: 1137-1142.
    1. Wu x a,Fmuiyoshi Y,Mitsuer H,ChenXq,Hu ZD. Pharmacokinetics of sophoridine,sophcarpine and Matrine in Rabbit by High Performance Liquid Chromatography/Mass. Talanta 2002; 59: 965-971.
    2. Blusztajn JK. Developmental neuroscience: enhanced choline, a vital amine. Science.1998;281:794-795.
    3. Sheard NF, Zeisel SH. Choline: an essential dietary nutrient? Nutrition 1989;5: 1-5.
    4. Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport-a role for organic cation transporter 2 expressed in choroids plexus. J Biol Chem 2001;276: 41611–41619.
    5. Blusztajn JK, Wurtman RJ. Choline and cholinergic neurons. Science. 1983;221: 614–620.
    6. Wessler I, Kilbinger H, Bittenger F, Kirkpatrick CJ.The biological role of non-neuronal acetylcholine in plants and humans. J Pharmacol.2001. 85:2–10.
    7. Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol.2004;160: 102–109.
    8. Zeisel SH, Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF and Beiser A. Choline: an essential nutrient for humans. J FASEB 1991;5: 2093–2098,
    9.22. Levin ED. Nicotinic systems and cognitive function. [J].Psychospharmacology, 1992, 108:417-431.
    10. Flink KMT, Atchison WD. Ca2 + channels as target sofneurological disease: Lambert-Eaton syndrome and other Ca2+channelopathies. [J] J Bioenerg B iomemb, 2003, 35:69-72.
    11. Saccoka, Bannonkl, George T P. Nicotinic receptormechanisms and cognition in normal states and neuropsychiatric disorders. [J].J Psychopharmacol, 2004; 18: 45-72.
    12. Raskind M A, Sadowsky C H, Sigmund W R et al. Effect of tacrine on language, praxis, and noncognitive behavioral problems in Alzheimer disease. [J] Arch Neuro,1997;54: 836-840.
    13.朱永钳等. The Biodistribution and PET Imaging of 11C-Choline. The Journal of Evidence-Based Medicine Dec. 2006; Vol. 6; pp: 6.
    14.. Moore J, Baldisseri MR. Amniotic fluid embolism. [J]. Crit CareMed, 2005;33(10 Suppl), 52: 79-85.
    15. Meck WH, Williams CL. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats.J. Neuroreport 1997; 8: 3045–3051.
    16. Meck WH, Williams CL. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. Neuroreport 1997. 8:3045-3051,
    17.Meck WH, Smith RA, Williams CL. Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. [j]. Behav Neurosci. 1989;103: 1234–1241.
    18. Zeisel SH. Choline: an important nutrient in brain development, liver function and carcinogenesis. J Am Coll Nutr 1992; 11: 473–481.
    19. Rye DB, W ainer BH, M esulam MM et al. Cortical projections arising from the basal fore brain: a study of cholinergic and noncholinergic components employing combined retrograde tracingand immuno ischemical localization of cholineacetyl transferase. J.Neuro science, 1984; 13: 627.
    20. Nilsson O G, Shapiro ML , Gage FH, et al. Spatial learning and memory fo lowing fimbrie fornix transection and grafting of fetal septal neurons into the hippocampus, Exp Brain Res, 1987; 67:195.
    21. Saridakis V, Shahinas D, Xu X. Structural Insight on the Mechanism of Regulation of the MarR Family of Proteins: High-Resolution Crystal Structure of a Transcriptional Repressor from Methanobacterium thermoautotrophicum.J Mol Biol. 2008 Jan 11: 23.
    22. Guo WX, Pye QN, Williamson KS, Stewart CA, Hensley KL, Kotake Y, Floyd RA, Broyles RH. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes. Free Radic Biol Med 2005; 39: 641–650.
    23. Kass I S, and P Lipton. Protection of hippocampal slices from young rats against anoxic transmission is due to better maintenance of ATP. J. Physiol. (Lond.) 1989; 413: 1-11.
    24. Schurr A R S, Payne J ,J Miller and B. M. Rigor.Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J. Neurochem. 1997; 69: 423-426.
    25. Peeling, D Wong and G.R. Sutherland MD FRCS(C). Nuclear Magnetic Resonance Study of Regional Metabolism After Forebrain Ischemia in Rats. Stroke.1989; 20: 633-640.
    26. Joanna M, Wardlaw, MRCP. Early time course of N-acetylaspartate, creatine and phosphocreatine and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke, Vol 23, 1566-1572,
    27. Studies of Acute Ischemic Stroke with Proton Magnetic Resonance Spectroscopy Stroke. 1998; 29: 1618-1624.
    28. Degradation of phospholipid molecular species during experimental cerebral ischemia in rats.Neuroradiology, Vol 17, Issue 5: 873-886.
    29. Francesco Federico, Isabella Laura Simone. Prognostic Value of Proton Magnetic Resonance Spectroscopy in Ischemic Stroke. Arch Neurol.1998; 55: 489-494.
    30. Scremin OU, Jenden DJ. Effects middle cerebral artery occlusion on cerebral cortex choline and acetylcholine in rats. Stroke, 1989; 20: 1524-1530.
    31. VP Mathews, PB Barker, SJ Blackband. Cerebral metabolites in patients with acute and subacute strokes: concentrations determined by quantitative proton MR spectroscopy. Roentgenology, Vol 165: 633-638,
    32 Ce′line Demougeot, Christine Marie, Maurice Giroud and Alain Beley. N-Acetylaspartate: a literature review of animal research on brain Ischaemia. Journal of Neurochemistry, 2004; 90: 776–783.
    33. Frahm J, Bruhn H, Gyngell M L, Merboldt, K D, Hanicke W and Sauter R. Magn. Reson. Med. 1989; 11: 47–63.
    34. Patel T B and Clark J B. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbontransport.Biochem. J. 1979; 184:539–546.
    35. Madhavarao C N, Chinopoulos C, Chandrasekaran K and Namboodiri M A. Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J. Neurochem. 2003; 86: 824–835.
    36. Moffett J R, Namboodiri M A and Neale J H. Enhanced carbodiimide fixation for immunohistochemistry: application to the comparative distributions of N-acetylaspartylglutamate and N- acetylaspartate immunoreactivities in rat brain .J. Histochem. Cytochem. 1993;41:559-570.
    37. Van Zijl PCM, Moonen CTW. In situ changes in purine nucleotide and N-acetyl con centrations upon inducing global ischemia in cat brain. J Magn Reson Med 1993; 29: 381-385.
    38. Gido G T, Kristian and Siesjo B K. Extracellular potassium in a neocortical core area after transient focal ischemia Stroke 1997; 28: 206-210.
    39. Ce′line Demougeot, Christine Marie, Maurice Giroud and Alain Beley. N-Acetylaspartate: a literature review of animal research on brain ischaemia. Journal of Neurochemistry 2004; 90: 776–783.
    40. Peres M, Bourgeois D, Roussel S et al. Two-dimensional 1H spectroscopic imaging for evaluating the local metabolic response to focal ischemia in the conscious rat. (1992) 5: 11–19.
    41. Higuchi T, Fernandez E J, Maudsley A. Mapping of lactate and N-acetyl-L-aspartate predicts infarction during acute focal ischemia: in vivo 1H magnetic resonance spectroscopy in rats. Neurosurgery 2003; 8: 121-129.
    42. Graham GD, Kalvach P, Blamire AM, Brass LM, Fayad PB and Prichard JW. Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction. Stroke. 1995; 26: 225-229.
    43. Joanna M, Wardlaw MRCP, FRCR Ian ,Marshall MA. Studies of Acute Ischemc stroke with Proton Magnetic Resonance Spectroscopy.Stroke.1998; 29: 1618-1624.
    44. Van Zijl PCM, Moonen CTW. In situ changes in purine nucleotide and N-acetyl concentrations upon inducing global ischemia in cat brain. Magn Reson Med 1993; 29: 381-385.
    45. Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982 239: 57-69.
    46. Kugel H, Lanfermann H, Pietrzyk U, Herholz K, Heindel W, Heiss WD, Lackner K. NAA decrease in acute and subacute infarcts measured with MRSI correlates with cerebral blood flow measured with PET. Proc Soc Magn Reson Med. 1995; 3: 18-20.
    47. Harris R J, L Symon. Extracellular pH, potassium and calcium activities in progressive ischaemia of rat cortex. J. Cereb. Blood Flow Metab. 1984; 4: 178-186.
    48. Y Xie, G Mies, KA Hossmann. Regional ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke Vol 20: 620-626.
    49. Chin J Radiol, November 2006, Vol 40, No11.
    40. Nakano M, Ueda H, Li J YMatsumoto M and Yanagihara T. Measurement of regional N-acetylaspartate after transient global ischemia in gerbils with and without ischemic tolerance: an index of neuronal survival. Ann. Neurol. (1998) 44: 334-340.
    51. Sager T N, Hansen A J and Laursen H. Correlation between N-acetylaspartate levels and histopathologic changes in cortical infarcts of mice after middle cerebral artery occlusion. J. Cereb. Blood Flow Metab(2000)20: 780-788.
    52.Demongeot C, Gamier P, Mossiat C et al. N-acetylaspartate a marker of both cellular function and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 2001; 77: 408-415.
    53. Saunder DE, Howe FA, Pereira A et al. The use of quantitative MRS in the prediction of clinical outcome in MCA infarct patients.[J] Proc Soc Magn Reson Med, 1997; 40: 23-26.
    54. Federico F, Simone IL, Conte C, Lucivero V, Giannini P and Liguori M. Prognostic significance of metabolic changes detected by proton magnetic resonance spectroscopy in ischaemic stroke. [J] Neurol. 1996; 243: 241-247.
    55. Hanrahan JD, Sargentoni J, Azzopardi D et al. Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res, 1996; 39: 5842-5901.
    56. Schuff N, Amend D, Ezekiel F et al. Different patterns of N-acetylaspartate loss in subcortical ischemic vascular dementia and AD. Neurology.2003, 12 (61): 358-359.
    57. Brooks KJ, Hargreaves I, Bhakoo K et al. Delayed Hypothermia Prevents Decreases in N-acetylaspartate and Reduced Glutathione in the Cerebral Cortex of the Neonatal Pig Following Transient Hypoxia ischaemia. J. Neurochem Res ,2002; 27 (12): 1599-1604.
    58.高维娟.大鼠脑缺血再灌注后海马组织兴奋性氨基酸含量的动态观察.承德医学院学报.2003, 20(3): 185-187.
    59. Bjorntorp P. Metabolic implications of body fat distribution. J. Diabetes Care, 1991; 14: 1132-1143.
    60. Conway MA, and Clark JF. Creatine and Creatine Phosphate: Scientific and Clinical Perspectives. Orlando FL: Academic, 1996.
    61. Funahashim M, Kato H, Shiosaka S and Nakagawa H. Formation of arginine and guanidinoacetic acid in the kidney in vivo. Their relations with the liver and their regulation. J Biochem 1981; 89: 1347-1356.
    62. Levillain O, HUS-Citharel A, Morel F and Bandir L. Arginine synthesized along the mammalian nephron. In: Guanidino Compounds in Biology and Medicine edited by P P De Deyn, B Marescau, V Stalon and I A Qureshi. London: Libbey, 1992; p: 63-70.
    63. Daly MM. Guanidinoacetate methyltransferase activity in tissues and cultured cells. Arch Biochem Biophys 1985; 236: 576-584.
    645. Daly MM and Seifter S. Uptake of creatine by cultured cells.Arch Biochem Biophys. 1980; 203: 317-324.
    65. Berlet HH, Bonsmann I and Birringer H. Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue. Biochim Biophys Acta 1976; 437: 166-174.
    66. Chistensen M, Hartmund T and Gesser H. Creatine kinase, energy-rich phosphates and energy metabolism in heart muscle of different vertebrates. J Comp Physiol B Biochem Syst Environ Physiol 1994;164: 118-123.
    67. Lempert C .The chemistry of the glycocyamidines. Chem Rev 59: 667-736, 1959.
    68. FA Welsh, MJ O'Connor, VR Marcy, AJ Spatacco and RL Johns. Factors limiting regeneration of ATP following temporary ischemia in cat brain. Stroke; Vol 13: 234-242.
    69. Jiang YF, Pan YS, Huang QF et al. The effect of herbs oncerebral energymetabolism in cerebral ischemia– reperfusion mice.J .ChinMed J, 2001; 114 (8): 881-883.
    70. DL Friedman, R Roberts. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain. J. Comp. Neurol. 1994; 343: 500-511.
    71. Del Bigio MR, Massicotte EM. Protective effect of nimosdipine on behavior and white matter of rats with hydrocephalus J. Neurosurg, 2001; 94 (4): 788-794.
    72. Veltkamp R, Siebing DA, Sun L et al. Hyperbaric oxygen reduces blood-brain barrier damage and edema after transient focal cerebral ischemia J.Stroke 2005; 36 (9):1679-1683.
    73. Seppet EK, Adoyaan AJ, Kallikorm AP, Chernousova GB and Saks VA. Hormone regulation of cardiac energy metabolism I creatine transport across cell membranes of euthyroid and hyperthyroid rat heart. Biochem Med 34: 267-279.
    74. Jennings RB and Steenbergen C. Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol 1985; 47: 727-749.
    75. Altrchuld RA, Gamelin LM, Kelley RE, Lambert MR, Apel LE and Brierley GP. Degradation and resynthesis of adenine nucleotides in adult rat heart myocytes. J Biol Chem 1987; 262: 13527-13533.
    76. Savabi F and Bessman SP. Postanoxic recovery of spontaneously beating isolated atria: pH related role of adenylate kinase. Biochem Med Metab Biol 1986; 35: 345-355.
    77.Peeling J,Shoemaker L,Gauthier T et al. Cerebral metabolic and histological effects of thioacetamide-induced liver failure. J. Am J Physiol. 1993; 265: 65-72.
    78. Flameng W, Andres J, Ferdinade P, Mattheussen M and VAN Belle H. Mitochondrial fuction in myocardial stunning. J Mol Cell Cardiol.1991; 23: 1-11.
    79. Holtzman D, Meyers R, Khait I, and Jensen F. Brain creatine kinase reaction ratesand reactant concentrations during seizures in developing rats. Epilepsy Res 1997; 27: 7-11.
    80. Polacheck I and Kwon-Chung KJ. Creatinine metabolism in Cryptococcus neoformans and Cryptococcus bacillisporus. J Bacteriol 1980; 142: 15-20.
    81. Defalco AJ and Davies RK. The synthesis of creatine by the brain of the intact rat. J Neurochem.1961; 7: 308-312.
    82.Sandberg AA, Hecht HH, AND Tyler.Studies in disorders of muscle X The site of creatine synthesis in the human. Metabolism 1953;2:22-29.
    83.Zhu X. P, Du AT , Jahng GH , et al .Magnetic resonance spectroscopic imaging reconstruction with deformable shape-intensity models. Magn Reson Med 2003, 50 (1): 474
    84.Camicioli RM, Korzan JR , Foster SL , et al . Posterior cingulate metabolic changes occur in Parkinson’s disease patients without dementia. Neurosci 2004 , 354 (1): 177.
    85.Martinez , Bisbal M. C , et al .Cognitive impairment: classification by 1Hmagnetic resonance spectroscopy. Eur - J– Neurol 2004, 11 (1) : 187.
    86. Choi IY, Seaquist ER and Gruetter R. Effect of hypoglycemia on brain glycogen metabolism in vivo. [J] Neurosci Res 2003; 72: 25–32.
    87. Aldridge W N, B W Street and D N Skilleter. Halide-dependent and halide-independent effects of triorganotin and triorganolead compounds on mitochondrial functions. [J]. Biochem. 1977;168: 353-364.
    88. Cardell M, T Koide and T Wieloch. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia. [J]. Cereb.Blood Flow Metab.1989;9: 350-357.
    89. Pulsinelli W A and T E. Duffy Regional energy balance in rat brain after transient forebrain ischemia. J. Neurochem. 1983;40: 1500-1503.
    90. Crumrine R C K, Bergstrand A T Cooper, W L Faison and B RCooper. Lamotrigene protects hippocampal neurons from ischemic damage after cardiac arrest. Stroke 1997;28: 2230-2237.
    91. Kataoka A M, Kubota and Y Wakazono. Association of high molecular weightDNA fragmentation with apoptotic or non-apoptotic cell death induced by Ca ionophore. FEBS Lett. 1995;364: 264-267.
    92. Nicotera P, B Zhivotovsky and S. Orrenius. Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium. 1994; 16: 279-288.
    93. Back T, W ZHAOand MD. Ginsberg.Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion.J. Cereb Blood Flow Metab. 1995; 15: 566-577.
    94. Nedergaard M, A Giedde and N H Diemer. Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content and blood flow.J. Cereb.Blood Flow Metab. 1986;6: 414-424,
    95.YAO H, M D Ginsberg DD Eveleth and R Busto. Local cerebral glucose utilization and cytoskeletal proteolysis as indices of evolving focal ischemic injury in core and penumbra. J. Cereb. Blood Flow Metab. 1995;15: 398-408,
    96. Katsura K, EB Rodriguez DE Turco, J Folbergova N G Bazan and B K Siesjo. Coupling among energy failure, loss of ion homeostasis and phospholipase A2 and Cactivation during ischemia. J. Neurochem. 1993; 61: 1677-1684.
    97. Lipton P and T S Whittingham. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J. Physiol.(Lond.) 1982; 325: 51-65.
    98.Brown A W and J B Brieriley. Anoxic-ischemic cell change in rat brain: light microscopic and fine-structural observations. J. Neurol. Sci. 1972; 16: 59-84.
    99.McGee-Russell S M, A W Brown and J B Brierly. A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res. 1970; 20: 193-200.
    100. Rehncrona S Rosen, I shdsiesjo BK. Effects of Phenobarbital in Cerebral Ischemia. Acta Physiol.Scand. 1980;110:435-437.
    101. Siesjo BK. Mechanisms of ischemic brain damage. Crit Care Med. 1988; 16: 954-963.
    102. Farooqui AA, Haun SE, Horrocks LA. Ischemia and hypoxia. In: Siegel GJ,Agranoff BW, Albers RW, Molinoff PB Editors. Basic Neurochemistry. New York,16:954-963.
    103. Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science.1988; 240: 1326-1328.
    104. OA Petroff, RG Shulman and JW Prichard.Proton magnetic resonance spectroscopy of cerebral lactate and other metabolites in stroke patients. Stroke. Vol 23: 333-340.
    105. Luc Pellerin, Giovanni Pellegri, Jean-Luc Martin and Pierre J. Magistretti. Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Neurobiology March 31, 1998.Vol. 95, Issue 7, 3990-3995.
    106. Frank A Pigula, Ralph D Siewers, Edwin M Nemoto. Hypothermic cardiopulmonary bypass alters oxygen/glucose uptake in the pediatric brain. J Thorac Cardiovasc Surg 2001; 121: 366-373.
    107. Siesj? BK. Brain Energy Metabolism and catecholaminergic activity in hypoxia, hypercapnia and ischemia. J Neural Transm Suppl 1978; (14):17-22.
    108. Avital Schurr, James J Miller, Ralphiel S Payne and Benjamin M Rigor. An Increase in Lactate Output by Brain Tissue Serves to Meet the Energy Needs of Glutamate-Activated Neurons. J Neuroscience, January 1, 1999; 19(1): 34-39.
    109. Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation.Science 1988; 240:1326-1328.
    110. Lesiuk H, Suther L, G Pelling J. Effect of 740067 on brain ischemia in rats. Stroke. 1991; 22: 896.
    111.Ohtsuki T C, A Ruetzler, K Tasaki and J M Hallenbeck. Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J. Cereb.Blood Flow Metab. 1996; 16: 1137-1142.
    1.《Acquisition Reference Guide》Chapter 2 2.4 Acquisition (eda) parameters.
    2.《Acquisition Reference Guide》beginner guide
    3.《Acquisition Reference Guide》basic pulse programming page 5.
    4. Vitlino Tugnoli, Luisa Schenetti, Adelemucci, et al. Ex vivo HR-MAS MRS of human meningiomas:A comparison with in vivo 1H MR spectra. International Journal of Molecular Medicine 2006,18:859-869.
    5.Moreno,A.;Arus,et al. Quantitative and qualitative characterization of 1HMRS spectra of colon tumors,normalmucosa and their Perchloric acid extracts:decreased levels of lyoinositolin tumor can be deteeted in intact biospies.Biomed. 1996,8:33-42.
    6. Bollard,M.E,Holmes,E.,Undon,J.C.,Mitchell,S.C.Branstetter.Investigations into biochemical changes due to diurnal variation and estruse cycle in female rats using high-resolution 1HNMR spectroscopy of urine and pattern recognition, AnaL.BIOchem.,2001,295,194-202.
    7.L.Bollard,M.E.Keun,H.Antti,H.:Beckonert,0·Ebbels,T.M·:Lindon, J.C.Holmes,E.;Tang,H.R.;Nicholson,J.K.Spectral editing and pattern recognition methods applied to high-resolution magic angle spinning 1H nuclear Magnetic resonance spectroscopy of liver tissues. Anal.Biochem. 2003.223:26-32.
    8. Kobayashi M, Lust WD, Passonneau JV: Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. J. Neurochem 1977, 29:53-59.
    9. Siesjo BK: Cell damage in the brain: A speculative synthesis.J Cereb Blood Flow Metab. 1981,1:155-1856.
    10.Siesjo BK.Mechanisms of ischemic brain damage.Crit Care Med. 1988;16:954-963.
    11.Farooqui AA, Haun SE, Horrocks LA. Ischemia and hypoxia. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, eds.Basic Neurochemistry. New York, NY: Raven Press, Publishers; 1993:867-883.
    12.Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rathippocampal slice preparation. Science.1988;240:1326-1328.
    13. Rehncrona.S.,Rosen, I.shd /siesjo,BK. Excessive cellular acidosis:An important mechanism of neuronal damage in the brain?(1980)Acta Physiol. Scand.110,435-437.
    14.Katrura, K., E. B. Rodriguez DE Turco, J. Folbergova, N. G. Bazan, and B. K. Siesjo.Coupling among energy failure, loss of ion homeostasis and phospholipase A2 and C activation during ischemia. J. Neurochem. 1993. 61: 1677-1684.
    15.Lipton, P., and T. S. Whittingham.Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J. Physiol. (Lond.) 1982. 325: 51-65.
    16,Brown, A. W., and J. B. Brierley. Anoxic-ischemic cell change in rat brain: light microscopic and fine-structural observations. J. Neurol. Sci. 1972.16: 59-84.
    17.Mc Gee-Russell, S. M., A. W. Brown, and J. B. Brierly.A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res. 1970.20: 193-200.
    18.Petto, C. K.,and W. A. Pulsinelli.Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J. Neuropathol. Exp. Neurol. 1984.43: 141-153.
    19. Aldridge W. N., B. W. Street, and D. N. Skilleter.Halide-dependent and halide-independent effects of triorganotin and triorganolead compounds on mitochondrial functions. J. Biochem.1977. 168: 353-364.
    20. Wallimann, T., M. Wyss, D. Brdiczka, and K. Nicolay. Intracellular compartmentation, structure and function of creatine kinase isozymes in tissues with high and fluctuating energy demands: the "phosphocreatine circuit" for cellular energy homeostasis.Biochem. J. 1992.281: 21-40.
    21.Luc Pellerin, Giovanni Pellegri, Jean-Luc Martin, and Pierre J. Magistretti. Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Neurobiology March 31, 1998.Vol. 95, Issue 7, 3990-3995.
    22.Frank A. Pigula, MD, Ralph D. Siewers, MD, Edwin M. Nemoto, Hypothermiccardiopulmonary bypass alters oxygen/glucose uptake in the pediatric brain. J Thorac Cardiovasc Surg 2001;121: 366-373.
    23. Siesj? BK. Brain Energy Metabolism and catecholaminergic activity in hypoxia, hypercapnia and ischemia. J Neural Transm Suppl 1978; (14):17-22.
    24.Avital Schurr1 , James J. Miller2 , Ralphiel S. Payne 1, and Benjamin M. Rigor.An Increase in Lactate Output by Brain Tissue Serves to Meet the Energy Needs of Glutamate-Activated Neurons. J. Neuroscience, January 1, 1999, 19(1):34-39.
    25.Lesiuk H, Suther L, G, Pelling J.Effect of 740067 on brain ischemia in rats. Stroke, 1991, 22:896.
    26.Ohtsuki,T,C.A.Ruetzler,K.Tasaki,and J. M.Hallenbeck. Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons.J.Cereb.Blood Flow Metab. 1996.16: 1137-1142.
    27. Ferrer, I., M. A. Soriano, A. Vidal, and A. M. Planas. Survival of parvalbumin-immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction. Brain Res. 1995.692: 41-46.
    28. Martin, R. L., H. G.E. Lloyd, and A. I. Cowan. The early events of oxygen and glucose deprivation: setting the scene for neuronal death.Trends Neurosci. 1994.17: 251-257.
    29.高维娟.大鼠脑缺血再灌注后海马组织兴奋性氨基酸含量的动态观察.承德医学院学报.2003,20(3):185-187.
    30. Bjorntorp P.Metabolic implications of body fat distribution.[J].Diabetes Care, 1991;14: 1132-1143.
    31.Frahm, J., Bruhn, H., Gyngell, M. L., Merboldt, K. D., Hanicke, W. & Sauter, R. Cerebral metabolism in man after acute stroke: new observation using localized proton NMR spectro-scopy.(1989) Magn Reson. Med. 11:47-63.
    32.Sager TN, Laursen H, Hansen AJ. Changes in N-acetyl-aspartate content during focal and global brain ischemia of the rat.J Cereb Blood Flow Metab 1995; 15:639-646.
    33.van Zijl PCM, Moonen CTW.In situ changes in purine nucleotide and N-acetylconcentrations upon inducing global ischemia in cat brain.Magn Reson Med 1993; 29:381-385.
    34.Gido, G, T. Kristian, and B. K. Siesjo.Extracellular potassium in a neocortical core area after transient focal ischemia.Stroke1997. 28: 206-210.
    35. Ce′line Demougeot,* Christine Marie,* Maurice Giroud and Alain Beley*.N-Acetylaspartate: a literature review of animal research on brain ischaemia. J. Neurochem.2004;90, 776-783.
    36.Peres M., Bourgeois D., Roussel S. et al.Two-dimensional 1H spectroscopic imaging for evaluating the local metabolic response to focal ischemia in the conscious rat.Stroke (1992) 5, 11-19.
    37. Higuchi T., Fernandez E. J., Maudsley A. Mapping of lactate and N-acetyl-L-aspartate predicts infarction during acute focal ischemia: in vivo 1H magnetic resonance spectroscopy in rats. Neurosurgery 38, 121-129.
    38.Graham GD, Kalvach P, Blamire AM, Brass LM, Fayad PB, Prichard JW.Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction. Stroke.1995; 26: 225-229.
    39. Sheard NF, Zeisel SH. Choline: an essential dietary nutrient? Nutrition 1989. 5:1-5.
    40. Sweet DH, Miller DS, Pritchard JB.Ventricular choline transport a role for organic cation transporter 2 expressed in choroids plexus. J Biol Chem 2001;276: 41611-41619.
    41. Blusztajn JK, Wurtman RJ.Choline and cholinergic neurons.Science.1983; 221:614-620.
    42.Wessler I, Kilbinger H, Bittenger F, Kirkpatrick CJ.The biological role of non-neuronal acetylcholine in plants and humans. J Pharmacol 2001.85:2-10.
    43. Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring.Am J Epidemiol .2004.160:102–109.
    44. Zeisel SH, da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, Beiser A.Choline: an essential nutrient for humans. J FASEB 1991.5:2093-2098.
    45. Nilsson O G, Shapiro ML , Gage FH, et al. Spatial learning and memory fo lowing fimbrie fornix transection and grafting of fetal septal neurons into the hippocampus. Exp Brain Res, 1987, 67:195.
    46. Saridakis V, Shahinas D,Xu X,Christendat. Structural Insight on the Mechanism of Regulation of the MarR Family of Proteins: High-Resolution Crystal Structure of a Transcriptional Repressor from Methano bacterium thermoautotrophicum.J Mol Biol. 2008 Jan 11.
    47.Guo WX, Pye QN, Williamson KS, Stewart CA, Hensley KL, Kotake Y, Floyd RA, Broyles RH.Mitochondrial dysfuction in choline deficiency-induced apoptosis in cultured rat hepatocytes. Free Radic Biol Med 2005.39: 641-650.
    48. Kass, I. S., and P. Lioton. Protection of hippocampal slices from young rats against anoxic transmission is due to better maintenance of ATP. J. Physiol. (Lond.) 1989.413: 1-11.
    49. Schurr, A., R. S. Payne, J. J. Miller, and B. M. Rigor. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J. Neurochem. 1997. 69: 423-426.
    50. Peeling, PhD, D. Wong, and G.R. Sutherland, MD, FRCS(C) Nuclear Magnetic Resonance Study of Regional Metabolism After Forebrain Ischemia in Rats Stroke1989;20;633-640.
    51. Joanna M. Wardlaw, MRCP.Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke .A proton magnetic resonance spectroscopy study.Stroke, Vol 23, 1566-1572.
    52. JH Gillard, PB Barker, PC van Zijl, RN Bryan, and SM Oppenheimer.Degradation of phospholipid molecular species during experimental cerebral ischemia in rats.Neuroradiology, Vol 17, Issue 5:873-886.
    53. Francesco Federico, MD; Isabella Laura Simone, MD; Vincenzo Lucivero, MD; Paolo Giannini, MD; Giuseppe Laddomada, MD; Domenico Maria Mezzapesa, MD; Carla Tortorella, MD.Prognostic Value of Proton Magnetic Resonance Spectroscopy in Ischemic Stroke.Arch Neurol.1998; 55: 489-494.
    54.17Shockcor JP, Holmes E.Metabonomic applications in toxicity screening anddisease diagnosis.Curr Top Med Chem.2002; 2(1):35–51.
    55.Lindon JC,Nicholson JK,Everett JR.NMR spectroscopy of biofluids.In: Annual Reports of NMR Spectroscopy.1999;38:2-88.
    1.赵喜平.2003.磁共振成像,P:6-55.
    2. Ando I. Webb GA1983.Theory of NMR parameters .London: Academic press.
    3. Hendrick R Edward.1994.Basic phydics of MR imaging: an introduction. RadioGraphics, 14:829-846.
    4. Cousings J P. 1995. Clinical MR spectroscopy: fundanentals, current appicationns and future potrntial. AJR, 164: 1337-1347.
    5.Slichtre CP.1978.Principles of magnetic resonance ,Second revised and expanded edition. New York: Spiringer-Cerlag Berlin Heidlberg.
    6.Hendrick R Edward 1994.Basic of physics of MR imaging :an introducrion. RadioGraphics, 14:829-846.
    7.Peggy Woodward, Roger Freimarsck.1995.MRI for technologists. New York; McGraw-Hill information Servvices Company.
    8. Philips .basic principles of MR imaging. Philips Medical Systmes.
    9.Moriel NesdAiver.All you really need to know about MRI physics, Baltimore MD Uinited States:1997.Simply Physics.
    10.Young Ian R. 2000.Methods in biomedical magnetc resonance imaging and spectroscopy. Chichester UK: Wiley and sons Ltd.
    11.Henrksen O. Multivariate analysis of regional metabolic differences in normal ageing on localised quantitative proton MR spectroscopy.1994 Acta Radiologica, 35:96.
    12.Mahmood Ymar. Magnetic resonance spectroscopy an imaging in radiology.Medical Physics, 1995 22:1935-1940
    13.北丸龟三,1991。和磁共振的基础与原理.朱清仁译,北京:中国科学技术出版社.
    14.方虹,郭庆林等,1997.磁共振波谱技术的工作原理.
    15.饶海冰、吴仁华.磁共振氢频谱及其在脑疾病中的应用价值.汕头大学医学院学报.2003. Vol 116 No12:118-120.
    16.Preul,M.C.;Caramanos,Z.:Collins,D.L.;Villemure,J.G.Leblanc,R.;Olivier,A.;Pokrupa,R.;Arnold,D.L.Accurate,noninvasive diagnosis of human brain tumors by using Proton magnetic resonance spectroscopy, Nat.Med .1996,2,323-325.
    17.Peeling,J.:Sutherland,G.,High-resolution 1NMRspectroscopy studies of extracts of human cerebral neoplasm,Magn.Reson Med.1992,24,123-136.
    18.Fowler,A.H.; pappas A.A.; Holder J.C.; Finkbeiner A.E.; Dalrymple G.V.: Mullins,M.S ;Sprigg,J.R.: KOmoroski,R.A. Differentiation of human Prostate cancer from bengin hypertrophy by in vitro 1HMRS,Magn .Reson.Med,1992,25,140-147.
    19.Carpinelli,G.;CaraPella,C.M.;Palombi,L·;Raus,L.;Caroli,F.;Podo,F et al. Differentiation of olioblastoma Multiform trocytomas in vitro 1HMRS Analysis of Human Brain Tumors,Anticaner Res.1996,16,1559-1564.
    20.Moreno,A.;Arus,et al. Quantitative and qualitative characterization of 1HMRS spectra of colon tumors , normalmucosa and their Perchloric acid extracts: decreased levels of lyoinositolin tumor can be deteeted in intact biospies,Biomed.,1996,8:33-42.
    21.Tosi,M.R.; Tugnoli V: Bottura, G; Lucchi,P.; Battaglia,A.:Giorgianni,P. Bioehemical characterization of human renal tumor spy in vitro nuelear magnetic resonanee, J.Mole. struct.2001,565,323-327.
    22.顾兴华;王利民;贾剑国;汪洋;夏薇;余亦华.急性低氧大鼠脑31P核磁共振谱研究.波谱杂志,2001,18,105-112.
    23.Bito Y, Ebisu T, Hirata S et al. Lactate discrimination in 2 corporated into echo 2 planar spectroscopic imaging [J].Mag Reson Med, 2001, 45:568-574.
    24.赵喜平.2000.磁共振成像系统的原理及应用.北京.科学出版社.
    25.Benveniste, H., M. B. Jorgensen, N. H. Diemer,and A. J. Hansen. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol. Scand. 1988.78: 529-536.
    26.Crumrne, R. C., K. Bergstrand, A. T. Cooper, W. L. Faison, and B. R. Cooper. Lamotrigene protects hippocampal neurons from ischemic damage after cardiac arrest. Stroke 1997.28:2230-2237.
    27. Katrura, K., E. B. Rodriguez DE Turco, J. Folbergova, N. G. Bazan, and B. K. Siesjo.Coupling among energy failure, loss of ion homeostasis and phospholipase A2 and C activation during ischemia. J. Neurochem. 1993.61:1677-1684.
    28. Lipton, P., and T. S.Whittingham.Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J. Physiol. (Lond.) 1982.325:51-65.
    29. Martin, R. L., H. G. E. Lloyd and D A. I. Cowan. The early events of oxygen and glucose deprivation: setting the scene for neuronal death.Trends Neurosci. 1994;17:251-257.
    30. Brooks, G. A.(2002a).Lactate shuttles in nature. Biochem. Soc. Trans. 30,258-264.
    31.Gladden LB (2003). Lactate metabolism during exercise. In Principles of Exercise Biochemistry, 3rd edn, ed. Poortmans JR, pp. 152–196. Karger, Basel.
    32.Blusztajn JK.Developmental neuroscience: enhanced choline, a vital amine. Science1998 281:794–795.
    33.Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport a role for organic cation transporter 2 expressed in choroids plexus. J Biol Chem 2001 ;276:41611–41619.
    34. Jacobs RL, Devlin C, Tabas I, Vance DE. Targeted deletion of hepatic CTP:phospho-choline cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins. J Biol Chem 2004.279:47402–47410.
    35. Ray JG, Laskin CA. Folic acid and homocystine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss: a systematicreview. Placenta1999;20:519-529.
    36. Raskid M A ,Sadowsky C H ,Sigmund W R , et al .Effect of tacrine on language ,praxis , and noncognitive behavioral problems in Alzheimer disease [J] . Arch Neurol,1997,54 :836-840.
    37. Ce′line Demougeot*, Christine Marie,* Maurice Giroud and Alain Beley*. N-Acetylaspartate: a literature review of animal research on brain Ischaemia. Journal of Neurochemistry, 2004, 90, 776-783
    38. Frahm, J., Bruhn, H., Gyngell, M. L., Merboldt, K. D., Hanicke, W. & Sauter, R. Localized proton NMR spectroscopy in different regions of the human brain in vivo.(1989) Magn. Reson. Med. 11, 47-63.
    39. Moffett, J. R., Namboodiri, M. A. & Neale, J. H. Enhanced carbodiimide fixation for immunohistochemistry: application to the comparative distributions of N-acetylaspartylglutamate and N- acetylaspartate immunoreactivities in rat brain (1993) J. Histochem. Cytochem. 41, 559-570.
    40. Madhavarao, C. N., Moffett, J. R., Moore, R. A., Viola, R. E., Namboodiri, M. A. & Jacobowitz, D. M. Immunohistochemical localization of aspartoacylase in the rat central nervous system. (2004) J. Comp. Neurol. 472, 318-329.
    41. Hemmer, H. W., and T. Wallimann. Functional aspects of creatine kinase in brain. Dev. Neurosci. 1993. 15: 249-260.
    42.Sandgerg AA, Hecht HH, and Tyler FH.Studies in disorders of muscle.X.The site of creatine synthesis in the human. Metabolism1953;2: 22-29.
    43. Fitch CD, Hsu C, and Dinning JS.The mechanism of kidney transamidinase reduction in vitamin E-deficient rabbits. J Biol Chem 236: 490-492, 1961.
    44.Goldman R, and Moss JX.Creatine synthesis after creatinine loading and after nephrectomy. Proc Soc Exp Biol Med 105: 450-453, 1960.
    45. Levillain O, Marescau B, and DE Deynpp. Guanidino compound metabolism in rats subjected to 20% to 90% nephrectomy. Kidney Int 1995.47: 464-472.
    46. Fitch, C. D., R. P. Shields, W. F. Payne, and J. M. Dacus.Creatine metabolism in skeletal muscle. J. Biol. Chem. 243: 2024-2027.
    47. Hemmer, H. W., and T. Wallimann.Functional aspects of creatine kinase in brain.Dev. Neurosci. 1993.15: 249-260.
    48.Norfray JF,Romita T,ByTd Se,et al.Clinical impact of MR spectroscopy when MRimaging isindeterminate for pediatric brain tumors [J] AmJRoentgenol,1999:173:119-125.
    49.张伟丽,吕国蔚.腺苷对小鼠急性重复缺氧耐受的影响.基础医学与临床,1996,16(2):69.
    50.Zhnag WL,LuGW.Chnages of adenosine and its A(1) receptor in hypox-iepore conditioning.Biosignal Report,1999,8(4-5):275-280.
    51.Ikeda, J., T. Nakajima, O. C. Osborne, G. Mies, and T. S. Nowack, JR.Coexpression of c-fos and hsp70 mRNAs in gerbil brain after ischemia: induction threshold, distribution and time course evaluated by in situ hybridization. Mol. Brain Res. 26: 249-258, 1994.
    52. Currik RW,elison JA,white RF,etal.Benign focal ischemic Preconditioning in induces neuronal Hes70 and prolonged astrgliosis with expression of Hes27 .Barin Res,2000,863(1-2):169-181.
    53. Katagawa K,Matsmuoto M,Kuwabara K,et al.Ischemic tolerance phenomenon deteeted in various barin regions.Barin Res 1991, 561(2): 203-211.
    54. Kane DJ,Ordt T,Anton R,et al.Expression of bel-2,inhibits necrotic neural cell death.[J]Neuronsci Res,1995,40(2):269-275.
    55. Takemoto O,Tomimoto H,Yanagihaar T. Induction of c-fos and C-jun gene products and heatshock protein at prief and prolonged cerebral ischemia in gerbils.Stroke1995,26(9):1639-l648.
    56. Shimizu,Nagayame,Jin KL,et al. Bel-2Antisense treatment prejecnts induction of toteranece to foca1 ischemia in the rats barin.J Cerel Blood Flow Mebat 2001,21(3):233-243.
    57. Malinski T,Bailey F,Zhang ZG,et al.Nirtie oxide measured by a pophyrinic micro sensor in rat brain after transient middle cerebral artery occlusion.J Cereb Blood Flow Metab,1993,13(3):355-358.
    58.Choi IY, Seaquist ER, and Gruetter R. Effect of hypoglycemia on brain glycogenmetabolism in vivo. J Neurosci Res 2003;72: 25–32.
    59.Hyman BT,Mazrloff K,Wenniger JT,et al. Relative sparing of nirtie oxide synthase conatinin gene nurones in the hippoemapal formation in Alzheimesr disease.Ann Neuorl;1992,32(6): 818-820.
    60. Chan PH,Kawase M,Murami K,et al. Overexpression of SODI in transgene rats protect vulnerable neurons against ischemic damage after global Cerebral ischemia and reperfufsion.J Neuor sci,1998,18(20):8292-8299.
    61. Takizawa, S., K. Matrushima, H. Fujita, K. Nanri, S. Ogawa, and Y. Shinohara. A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 1995,15: 611-618.
    62. Li BS,Wang H,Gonen O.Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy.[J] Nagn Reson Imaging,2003,21(8):923-928.
    63. Shimizu H, Kumabe T, Tominaga T, et al.Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR Am J Neuroradiol 1996; 17:737-747.
    64. Gadian DG, Connelly A, Duncan JS, et al. 1H magnetic resonance spectroscopy in the investigation of intractable epilepsy.Acta Neurol Scand 1994;152:116-121.
    65. Breiter SN, Arroyo S, Mathews VP, Lesser RP, Bryan RN, Barker PB.Proton MR spectroscopy in patients with seizure disorders. AJNR .1994; 15: 373-384.
    66. Kuesel, A.; kroft,T;Saunders, J;Prefontaine,M; A procedure for obtaining high-quality MNMR spectra of semiquantitative value small tissue specimens: Ceervical biopsies ,Nagn.Reson.Med.1992,27,340-343.
    67.Williams, P;Saunders, JDyne, M;Mountford C.E.Appication of T2-filtered COSY experiment to identify the origin of slowly relaxing spectra normal and malignant tissue.Magn.Reson.Med.1988,7,463-471.
    68. Robosky LC, Robertson DG, Baker JD, et al .In vivo toxicity screening programs using metabonomics[J].Comb Chem High Through put Screen, 2002, 5 (8):651.
    69.Muireann Coen ,Eva MLenz ,Jeremy KNicholson ,et al.An integratedmetabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy[J].Chem Res Toxicol ,2003 ,16: 295.
    70. Waters NJ, Holmes E, Waterfield CJ, et al. NMR and pattern recognition studies on liver extracts and intact livers from rats treated withα-naphthylisothiocyanate. [J].Biochem Pharmacol, 2002, 64 (1): 67.
    71. Reo NV .NMR-based metabolomics.[J]Drug Chem Toxicol, 2002; 25:375-382
    72. Andrew W, Nicholls JK,Nicholson JN,et al.A metabonomic approach to the investigation of druginduced phospholipidosis: an NMR spectroscopy and pattern recognition study .J Biomaker, 2005; 5: 410-423.
    73. Lindskog M, Kogner P, Ponthan F. Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy( 1H MRS) [J].Br J Cancer, 2003, 88: 478- 485.
    74. Mountford CE, Doran S, Lean CL, et al. Proton MRS can determine the pathology of human cancers with a high level of accuracy.[J].Chem Rev, 2004, 104 (8): 3677-3704.
    75.Shockcor JP,Holmes E,Mebabonomic applications in toxicity screening and disease diagnosis.Curr Top med chem, 2002,235-251.
    76. Ian CP, Smith, Stewart LC.Nagnetic resonance spectroscopy in medicine: clinical impact.prog in Magn Reson spectrosc, 2002, 40(1):1-35.
    77. Cheng L. L Lean C. L. Bogdanova A.Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic-angle spinningMagnetic resonance in medicine.1996,vol.36,pp:653-658.
    78. Lindskog M, Kogner P, Ponthan F. Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy( 1H MRS) [J].Br J Cancer, 2003, 88: 478- 485.
    79. Mountford CE, Doran S, Lean CL, et al. Proton MRS can determine the pathology of human cancers with a high level of accuracy [ J] . Chem Rev, 2004, 104(8): 3677-3704.
    80. Bezabeh T, Odlum O, Nason R. Prediction of treatment response in head and neck cancer by magnetic resonance spectroscopy [ J].AJNR, 2005, 26: 2108- 2113.
    81. Moreno Arus,et al.Quantitative and qualitative characterization of 1HNMR spectra of colon tumors normal mucosa and their perchloric acid extracts: decreased levels of myo–inositol in tumors can be detected in intact biopsies.NMR Biomed.1996, 8, 33-45.
    82. M.R;Tugnoli,V:Bottura,G;Lucchi,P.;Battaglia,A.:Giorgianni,P.Biochemical characterization of human renal tumors by in vitro nuelear magnetic resonance,J.Mole.struct.2001, 565, 323-327.
    83. Hull WE, Becker G, et al. Cytosine deaminase and thymidine kinase gene therapy in a Duaning rat prostaic tumour model: absence of bystander effects and characterization of 5-fluorocytosine metabolism with 19FNMRS.j Gene Ther, 2002, 9:1564-1575.
    84.黄建华等19F磁共振波谱分析CD基因在人体结肠癌细胞的表达.光谱学杂志,2004.vol 21 No 9:289-291。
    85. Hakumaki J, Brindle K. Techniques: visualizing apotosis using nuclear magnetic resonance[J].Trends Pharmacol Sci, 2003,24:146-149.
    86. Nicholis AW,Nortishire smith RJ. NMRspectroscopic–based metabolities studies of uninary metabolitr variation in acclimatizing gene-free rats[.J]Chem res toxicol, 2003,16(11):1395-1404.
    87. Pan J W,Bebin E M,Chu WJ,et al. Ketosis and epilepsy:31P spectroscopic imaging at 4.1T[J]Epilepsia 1999,40:703.
    88. Huppi P S,Bames P D. Magnetic resonance techniques in the evaluation of the newborn brain[J]Clin Perinatol,1997,24:693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700