用户名: 密码: 验证码:
UASB-MBR工艺短程硝化—同时甲烷化反硝化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源紧缺,全球气候变暖的情况下,节能减碳和高效的污水治理技术已经成为研究的热点与重点。本研究采用UASB-MBR组合工艺系统试图在实现同时有机碳与氮去除的前提下,最大化保证厌氧产甲烷的功能,目的在于为新加坡新生水厂提供可靠的进水来源,同时也为低浓度市政污水处理开辟一条高质、高效、产能的新路径。
     本研究中,MBR被选为UASB出水的后处理设施,在保障高效稳定的出水质量的前提下,实现污水中NH_4~+-N的氨氧化-硝化过程;而前置的UASB系统既要实现水体中反硝化的去除氮的功能,又要最大限度的保证UASB产甲烷的优势。鉴于甲烷化与反硝化是由两类相互独立的厌氧微生物完成,并且反硝化的底物以及中间产物对甲烷化有较大的抑制与毒害作用。因此,在组合系统操作前,首先采用批试验的方法研究反硝化对甲烷化的抑制作用和甲烷菌的适应能力。试验结果显示:当底物中的NO_2~--N浓度高于15mg/L时,能对有机碳的降解速率产生一定的抑制作用;而当以NO_3~--N为反硝化底物时,显著的抑制作用发生在底物浓度高于60 mg/L时;NO_2~--N比NO_3~--N对厌氧条件下有机碳的降解具有更强的抑制作用。但是以NO_2~--N为底物的反硝化过程具有较快的反应速率,相对抑制作用时间短,且对于环境pH和温度的适应范围更广。
     为了进一步验证同时甲烷化/反硝化的长期稳定性与可行性,本试验中以不同浓度的反硝化底物NO_2~--N为代表,进行了长期抑制或适应性实验研究。结果显示:在较低的NO_2~--N浓度条件下,厌氧系统能够很好的实现有机碳与氮去除,并且甲烷的产生与回收利用仅受到较小的影响;而在较高NO_2~--N浓度条件下,尽管有机碳与氮的去除效率不变,但是产生的气体中以N_2为主,破坏了厌氧产能的功能。DGGE指纹图谱也证明高NO_2~--N浓度条件下,系统中菌群分布以及优势菌群发生了显著的变化。因此,要想在厌氧系统中实现反硝化的同时回收利用甲烷,就只能在相对较低的NO_2~--N浓度下进行,换言之,这种脱碳、脱氮、产能的一体化过程只适用于处理低氮负荷的废水。
     因此,UASB-MBR组合工艺的操作适用于低浓度生活污水处理,不同运行条件的调查结果显示:随着循环比从50%增加到800%的过程中,TN的去除效率从48.1%增加到82.8%;在系统实现较高的有机碳与氮去除的同时,甲烷生成没有因为反硝化的引入而受到显著的影响,这主要是系统中实现了短程硝化反硝化的结果,在确保较低碳源竞争的同时,缩短了对甲烷菌的抑制时间;但当循环比从400%增加到800%时,TN的去除效率仅轻微增加,较大的上流速率和较高的DO条件却破坏了UASB系统运行的稳定性。因此建议根据进水中氮含量将循环比控制在200-400%之间能够达到比较满意的效果。同时,研究了MBR中曝气强度对系统运行的稳定性的影响:在较低的曝气速率条件下,能够维持系统中较高的甲烷产量,但是较低的硝化速率抑制了系统中TN的去除表现;在曝气速率高于2.5 L/min时,系统中TN去除能够达到80%,并且UASB中存在的部分好氧菌,对厌氧环境起到了一定的保护作用,使得甲烷的产生量随着DO浓度的升高仅轻微的降低。因此,在控制适当的循环比和曝气强度的条件下,这种技术在处理生活污水中是可行的,在完成有机碳与氮去除的同时实现了甲烷气的回收利用,并且系统污泥产量较低,后处理费用降低。
     经过进一步的实验验证:这种伴随着甲烷产生的高氮去除过程主要是由于系统中实现了短程硝化反硝化。MBR中NO_2~--N的累积现象主要是由于活性污泥混合液在厌氧与好氧环境下的内循环模式,较高的pH值以及较低的C/N比加速了对硝酸盐氧化菌(NOB)的抑制和淘洗作用而实现的,从而使UASB-MBR组合工艺在处理低浓度生活污水中实现了高出水质量、高处理效率和较高的甲烷能源回收。
     最后,针对本UASB-MBR组合工艺中MBR的膜污染形成过程、膜污染物主要成份以及膜污染控制方法进行了初步的研究与探讨,结果显示:该运行条件下MBR的膜污染速率较高,几乎呈线性增长趋势,胶体粒子和溶解性有机物,尤其是分子量与膜孔径相当的物质,比大的污泥絮体更容易沉积到膜表面,形成过滤凝胶层,加速膜污染进程;同时注意到当悬浮液中蛋白质为EPS主要成分时,多糖确是膜污染物中EPS的主要成分,尤其是在污染物形成的初期,多糖是构成污染物的主要物质。试验也同时证明了间歇运行模式和气体曝气剪切力模式都是有效的减缓膜污染的方法。间歇运行时,膜污染速率随着闲置时间的延长而降低,尤其是在高通量条件下,间歇运行对膜污染的改善更加明显;但当采用气体曝气模式时,存在最佳曝气强度。
The energy crisis and environment deterioration are two of the main problems the world is facing today.Hence,the simultaneous bio-energy production and nutrient removal has been given much attention in the wastewater treatment techniques during the last decade.The aim of this study is to establish a feasible method of treating municipal wastewater in an UASB coupled with an aerobic MBR.The pre-UASB was designed to retain a high carbon level for denitrification via nitrite and for methanogenesis and to proved the low C/N ratio effluent feeding to the MBR to perform the partial nitrification step while the MBR performed the nitrification step and improved the effluent quality.Therefore,the focus of this work was to investigate simultaneous carbon and nitrogen removal by shortcut nitrification and denitrification with a methane production process treating low strength synthetic wastewater in a combined UASB-MBR system.
     Firstly,a series of experiments was carried out to find out the impact factors and feasibility on a simultaneous methanogenesis and shortcut/complete denitrification process using the adapted anaerobic mixed methanogenic culture.The results suggested that the obvious inhibition of NO_X~--N addition on carbon removal rate started to be observed when the initial NO_2~--N concentration was higher than 15 mg/L and the initial NO_3~--N concentration was higher than 60 mg/L.Whereas,the less carbon requirement for denitrification and faster denitrification rate via NO_2~--N than NO_3~--N still allowed methanogenesis to proceed in the same bioreactor treating wastewater with a lower NO_2~--N concentration,but with a higher TOC/TN ratio under the optimal temperature of 30-35℃and pH of 7.0-8.0.
     Under the same optimal conditions,a long-term inhibition assay in an up-flow anaerobic sludge blanket(UASB) treating the synthetic NO_2~--N concentration wastewater indicated that the stable carbon and nitrogen removal efficiencies with an acceptable biogas production rate only could be obtained at the low NO_2~--N concentration although the varieties of dominant bacterial community composition were observed in the PCR-DGGE analysis results.At the high NO_2~--N concentration,the higher N_2,but lower CH_4 production was observed eventhough the carbon and nitrogen removal efficiencies maintaining at high level.It is indicated that the technique of simultaneous methane production and nitrogen removal only can be used to treat a low nitrogen strength wastewater.
     Secondly,a combined bioenergy production and nitrogen removal system consisting of an UASB and MBR was developed to treat synthetic municipal wastewater.The results indicated that the simultaneous methanogenesis and denitrification for treating a low strength synthetic municipal wastewater was technically feasible with more than 98.0%total TOC removal,98.0%NH_4~+-N removal and 48.1-82.8%TN removal as the recycling ratio increased from 50%to 800%.In this combined UASB-MBR system,the methane production was not affected obviously by the denitrification process.A slight reduction in the methane percentage up to a recycling ratio of 400%was observed due to an increased nitrogen production.However,at the highest recycling ratio of 800%,a rapid decrease in the methane percentage occurred.It was probably due to high DO concentration was introduced into the UASB,which restrained the activity of methanogens and induced more organic substances being converted to CO_2 instead of methane according to the anoxic or aerobic biodegradation theories.Hence,the results indicated that the recycle ratio should be controlled at the range of 200-400%considering the nitrogen concentration and the discharged criterion.
     At the same time,the effect of aeration rate in the MBR on the combined system performance was investigated.Optimal aeration rate range(2.5-5.0 L/min) was suggested based on the methane production and ratio as well as stable TOC(>98%) and TN removal efficiencies(>80%).At the low aeration rate,high methane production and ratio were achieved,but TN removal performance was restrained by the nitrification efficiencies.When the aeration rate was above 2.5 L/min,TN removal performance arrived to around 80%and could not be affected by the nitrification and denitrification efficiencies.However,the methane production decreased slightly follwong the increase in the DO concentration.
     Hence,in the combined UASB-MBR system,simultaneous methane production and denitrification was technically feasible as an energy efficiently treating way to achieve high effluent quality,minimal biosolids generation,and optimal nitrogen removal efficiencies by controlling the recycling ratio and aeration rate.
     Thirdly,the NO_2~--N accumulation was considered as the key factor to achieve simultaneous methanogenesis and denitrification using a combined UASB and MBR treating municipal wastewater.Based on analysis results,it was suggested that the internal recirculation pattern,higher pH and lower C/N ratio were the important factors leading to partial nitrification in the combined UASB-MBR.
     Lastly,membrane fouling tendency,foultant composition,fouling mechanism and the fouling control methods were investigated and researched.The higher fouling rate present in the MBR treating anaerobic digestion effluent.The membrane foulants consisted of sludge flocs,colloidal particles and solutes,especially,the small particles in sludge suspension,those diameter are similar with the membrane pore size,had a strong deposit tendency on the membrane surface.At the same time,the polysaccharide was observed as the main EPS on the membrane surface while the protein is the main contain in the suspernant EPS.
     Intermittent suction and air sparing were two kinds of effective cleaning strategies to decrease the membrane fouling rate.Under the intermittent suction mode,extending idle time benefited for reducing membrane fouling.This impact was more significant under higher flux. The results of air sparing on membrane fouling tendency showed that small or large aeration intensity had a negative influence on membrane permeability.Low aeration could not remove the membrane foulants from membrane surface effectively.However,the larger aeration intensity resulted in a severe breakup of sludge floes,and promoted the release of colloidal and soluble components from the microbial floes to the bulk solution due to microbial floc breakage,thus caused a rapid loss in membrane permeability.
引文
[1]Lettinga G.,Hulshoff Pol L.W.UASB process design for various types of wastewater.Water Science and Technology,1991.24:p.87-107.
    [2]Lettinga G.,Velsen A.F.M.v.,Hobma S.W.,Zeeuw W.D.,Klapwijk A.Use of upflow sludge blanket reactor concept for biological waste water treatment,especially for anaerobic treatment.Biotechnology Bioengineer,1980.22:p.699-734.
    [3]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1999.
    [4]Kato M.,Field J.A.,Versteeg P.,Lettinga G.Feasibility of the expanded granular sludge bed(EGSB)reactors for the anaerobic treatment of low strength soluble wastewaters.Biotechnology Bioengineer,1994 44:p.469-479.
    [5]Lettinga G.,Field J.A.,Van Lier J.B.Adbanced anaerobic wastewater treatment in the near future Water Science and Technology,1997.35:p.5-12.
    [6]Bachmann A,Beard VL,PL.M.Comparison of fixed film reactors with a modified sludge blanketreactor,pollution technology 1993.10:p.384-402.
    [7]Bachmann A.,Beard V.L.,McCarty P.L.Performance characteristics of the anaerobic baffled reactor.Water research,1985.19(1):p.99-106.
    [8]Barber W.P.,Stuckey D.C.Review paper:The use of anaerobic baffled reactor(ABR) for wastewater treatment Water Research,1999.33(7):p.1559-1578.
    [9]Grobicki A.M.W.,Stuckey D.C.The role of formate in the anaerobic ba,ed reactor.Water Research,1989.23(12):p.1599-1602.
    [10]Nachalyasit S.,Stuckey D.C.The effect of low temperature on the performance of an anaerobic ba,ed reactor(ABR).Journal of chemical technology and biotechnology,1997.69:p.276-284.
    [11]Nachalyasit S.,Stuckey D.C.The effect of shock loads on the performance of an anaerobic baffled reactor(ABR),1.Step changes in feed concentration at constant retention time.Water Research,1997.31:p.2737-2747.
    [12]Nachaiyasit S.,Stuckey D.C.The effect of shock loads on the performance of an anaerobic baffled reactor(ABR),2.step and transient hydraulic shocks at constant feed strength.Water Research,1997.31:p.2747-2755.
    [13]Dague RR,McKinney RE,Pfeffer JT.Anaerobic activated sludge.Journal of water pollution control,1996.38(2):p.220-226.
    [14]Metcalf,Eddy.Wastewater Engineering Treatment,Disposal and Reuse.1991.
    [15]李东伟,尹光志.废水厌氧生物处理技术原理与应用.重庆:重庆大学出版社,2006.
    [16]PD Z.,MR G.,P G.Anaerobic treatment of domestic wastewater in temperate climates areatment plant modeling with economic considerations,water Research,2001.35(17):p.4137-4149.
    [17]Aiyuk S.,Forrez I.,Lieven D.K.,Van Haandel A.,Verstraete W.Anaerobic and complementary treatment of domestic sewage in regions with hot climates--A review.Bioresouree Technology,2006.97(17):p.2225-2241.
    [18]Green M.,Shaul N.,Beliavski M.,Sabbah I.,Ghattas B.,Tarre S.Minimizing land requirement and evaporation in small wastewater treatment systems.Ecological Engineering,2006.26(3):p.266-271.
    [19]Mara D.Domestic wastewater treatment in developing countries.UK.olk.:Earthscan,2004.
    [20]Uludag-Demirer S.,Demirer G.N.,Frear C.,Chen S.Anaerobic digestion of dairy manure with enhanced ammonia removal.Journal of Environmental Management,2008.86(1):p.193-200.
    [21]Noike T.,Goo I.S.,Matsumoto H.,Miyahara T.Development of a new type of anaerobic digestion process equipped with the function of nitrogen removal.Water Science and Technology,2004(49):p.173-179.
    [22]Fricke K.,Santen H.,Wallmann R.,Huttner A.,Dichtl N.Operating problems in anaerobic digestion plants resulting from nitrogen in MSW.Waste Management,2007.27(1):p.30-43.
    [23]Hanaki K.,Polprasert C.Contribution of methanogenesis to denitrification with an upflow filter.Control Fed,1989.61:p.1604-1611.
    [24]Hanne V.H.,Birgitte K.A.Integrated Removal of Nitrate and Carbon in an Upflow Anaerobic Sludge Blanket(UASB) Reactor:Operating Performance Water Research,1996.30(6):p.1451-1458.
    [25]闵航.厌氧微生物学.杭州:浙江大学出版社,1993.
    [26]陈莉莉,左剑恶,楼俞,缪冬塬.同时产甲烷反硝化在UASB反应器中的实现.中国沼气,2006.24(2):p.3-7.
    [27]ZHANG D.,VERSTRAETE W.The anaerobic treatment of nitrite containing wastewater using an expanded granular sludged bed(EGSB) reactor.Environmental Technology,2001.22:p.905-913.
    [28]Hanaki K.,Polprasert C.Contributions of methanogenesis to denitrification with an upflow filter.Journal of Water Pollution,1989.61(1604-1611).
    [29]Lin Y.F.,Chen K.C.The relationship between denitrification bacteria and methanogenic bacteria in a mixed culture system of acclimated sludge.Water Research,1993.27:p.1749-1759.
    [30]jenicek P.,Zabranska J.,Dohanyos M.Adaption of the methanogenic granules to denitrification in anaerobic-anoxic USSB reactor.Water science and technology,2002.45(10):p.335-340.
    [31]迟文涛,赵雪娜,江瀚,王凯军.厌氧同时反硝化产甲烷工艺研究进展.中国沼气,2006.24(4):p.6-8.
    [32]Hendriksen H.V.,Ahring B.K.Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket(UASB)reactor:operating performance,water Research,1996.30(6):p.1451-1458.
    [33]Lin Y.F.,Chen K.C.Denitfification and methanogenesis in a coimmobilized mixed culture system.Water Research,1995.29(1):p.35-43.
    [34]HD K.,R C.Inhibitory effects of nitrate,nitrite,NO and N_2O on methanogenesis by Methanosarcina barked and Methanobacterium bryantii.FEMS Microbiology Ecology,1998.25:p.331-339.
    [35]HD K.,R C.Effects of nitrate,nitrite,NO and N20 on methanogenesis and other redox processes in anoxic rice field soil.FEMS Microbiology Ecology,1998.25:p.301-318.
    [36]Evren Tugtas A.,Pavlostathis S.G.Inhibitory effects of nitrogen oxides on a mixed methanogenic culture.Biotechnology and Bioengineering,2007.96(3):p.444-455.
    [37]Akunna J.C.,Bizeau C.,Moletta R.Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations-ammonification-denitrification and methanogenie activities.Environmental Technology,1994.15:p.41-49.
    [38]祖波,张代钧,张萍,白玉华.影响厌氧氨氧化与甲烷化反硝化耦合的因素.应用与环境生物学报,2007.13(3):p.438-442.
    [39]Roy R.,Conrad R.Effect of methanogenic precursors(acetate,hydrogen,propionate) on the suppression of methane production by nitrate in anoxic rice field soil.FEMS Microbiology Ecology,1999.28:p.49-61.
    [40]Kluber H.D.,Conrad R.Inhibitory effects of nitrate,nitrite,NO and N_2O on methanogenesis by Methanosarcina barkeri and Methanobacterinm bryantii.FEMS Microbiology Ecology,1998.25:p.331-339.
    [41]沈耀良,王宝贞.废水生物处理新技术一理论与应用.北京:中国环境科学出版社,1999,6.
    [42]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002.
    [43]陈坚.环境生物技术.北京:中国轻工业出版社,1999.
    [44]Abeling U.,Seyfried C.F.Anaerobic-aerobic treatment of high-strength ammonium wastewater-Nitrogen removal via nitrite..Water Science and Technology,1992.26(5-6):p.1007-1015.
    [45]徐亚同.废水氮磷的处理.上海:华东师范大学出版社,1996.
    [46]章非娟.生物脱氮技术.北京:中国环境科学出版社,1992.
    [47]张逸飞,钟文辉,王国祥.微生物在污染环境生物修复中的应用.中国生态农业学报,2007.15(3).
    [48]施永生.亚硝酸型生物脱氮技术.2006.
    [49]任延丽,靖元孝.反硝化细菌在污水处理作用中的研究.微生物学杂志,2005.25(2):p.88-92.
    [50]Buttiglieri G.,Malpei F.,Daverio E.Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor.Desalination,2005.178(1-3):p.211-218.
    [51]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷工艺评述.环境科学,1999.20(1):p.110-112.
    [52]俞辉群.水和废水技术研究.北京:中国建筑工业出版社,1992,457-485.
    [53]Siebritz I.P.A parametric model for biological excess phsphorus removal.Water science and technology,1983.15(3-4):p.12-17.
    [54]刘健,李哲.氨氮废水的处理技术及发展.矿冶工程,2007.27(4):p.54-60.
    [55]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000,1(06):11-18.1(6):p.11-18.
    [56]Collivignarelli C.,Bertanza G.Simultaneous nitrification and denitrification process in activated sludge plants:performance and applicability.Water Science and Technology,1999.40(4-5):p.187-194.
    [57]W.V.,S P.Environmental Pollution.1998,Nitrification-denitrification processes and technologies in new contexts.102(1):p.717-722.
    [58]Hellinga C.,Schellen A.A.J.C.,Mulder J.W.The sharon process:An innovative method for nitrogen removal from ammonium-rich waste water.Water Science and Technology,1998.37(9):p.135.
    [59]Mosquera-Corral A.,Gonzalez F.,Campos J.L.Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds.Process Biochemistry,2005.40(9):p.3109-3118.
    [60]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水,2000.16(2):p.29-31.
    [61]吕锡武,李峰,稻森悠平.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000.26(4):p.17-20.
    [62]Robertson L.A.,Kuenen J.G.Aerobic denitrification:a controversy revived.Arch.Microbiol.,1984.139(5):p.351-354.
    [63]Huang H.K.,Tseng S.K.Nitrate reduction by Citrobacter diversusunder aerobic envimment.Appl Microbiol Bioteehnol,2001.55(1):p.90-94.
    [64]吴永华,王劲,崔力明.硝化—厌氧氨氧化组合反应器的运行和评价.工业用水与废水,2004.35(2):p.10-13.
    [65]汪慧贞,吴俊奇,高志明.半硝化-厌氧氨氧化脱氮新工艺环境工程,2001.19(5):p.7-9.
    [66]Mulder A.,van de Graaf A.A.,Robertson L.A.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor.FEMS Microbiology Ecology,1995.16(3):p.177-183.
    [67]Strous M.,Van G.E.,Zheng P.Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(anammox) process in different reactor configurations..Water Research,1997.31(8):p.1955-1962.
    [68]Ho C.M.,Tseng S.K.,Chang Y.J.Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor.Letters Applied Microbiology,2002.35(6):p.481-485.
    [69]Katie A.T.,Natalie B.,Ralf C.R.Simultaneous nitrification and denitrification using stored substrate (pHB) as the electron donor in an SBR.Biotechnology and bioengineering,2003.83(6):p.706-720.
    [70]Robertson L.A.,Van Nell E.W.J.Simultaneous Nitrification and Dcnitrification in Aerobic Chemostat Cultures of Thiosphaera Pantotropha.Applied Environmental Microbiology,1988.54(1):p.2812-2818.
    [71]吕锡武,李从娜,稻森悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响.城市环境与城市生态,2001.14(1):p.33-35.
    [72]Zhao H.W.,Mavinic D.S.Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage.Water Research,,1999.33(4):p.961-970.
    [73]Dfigger G.T.,LiRleton H.X.Orbal-氧化沟同时硝化/反硝化及生物除磷的机理研究.中国给水排水,1999.15(3):p.1-7.
    [74]Masuda S.,Watanable Y.,Ishiguro M.Biofilm Properties and Simultaneous Nitrification and Denitrification in Aerobic Rotating Biological Contaetors.water science and technology,1991.23(12):p.1355-1363.
    [75]Rittmann B.E.,Langeland W.E.Simultaneous denitrification with nitrification in single-channel oxidation ditches.Journal of the Water Pollution Control Federation,1985.57(4):p.300-308.
    [76]Tam N.F.Y.,Wong Y.S.,Leung G.Significance of external carbon sources on simultaneous removal of nutrients from wastewater.Water Science and Technology,1992.26(5-6):p.1047-1055.
    [77]Satoh H.,Okabe S.,Yamaguchi Y.Evaluation of the impact of bioaugrnentation and biostimulation by in situ hybridization and microelectrode.Water Research,2003.37(9):p.2206-2216.
    [78]Pochana K.,Keller J.Study of factors affecting simultaneous nitrification and denitdfication(SND).Water Science and Technology,1999.39(6):p.61.
    [79]Voets J.P.,Vanstanen H.,Verstraete W.Removal of nitrogen from highly nitrogenous wastewater.Journal of Wat.Pollution Control Federation.Journal of water pollution control federation,1975.47:p.394-398.
    [80]Peng Y.,Zhu G.Biological nitrogen removal with nitrification and denitrification via nitrite pathway.Applied Microbiology and Biotechnology,2006.73(1):p.15-26.
    [81]Van Kempen R.,Mulder J.W.,Uijterlinde C.A.,Loosdrecht M.C.M.Overview:Full scale experience of the SHARON[registered trademark]process for treatment of rejection water of digested sludge dewatering.Water Science and Technology,2001.44(1):p.145-152.
    [82]王亚宜,张隽超,胡跃城.亚硝酸型硝化的控制途径.中国给水排水,2002.18(6):p.29-31.
    [83]Lopez-Fiuza J.,Buys B.,Mosquera-Corral A.,Omil F.,Mendez R.Toxic effects exerted on methanogenic,nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory.Enzyme and Microbial Technology,2002.31(7):p.976-985.
    [84]Surmacz-Gorska J.,Cichon A.,Miksch K.Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification.Water Science and Technology,1997.36(10):p.73-78.
    [85]Van Dongen U.,Jetten M.S.M.,Van Loosdrecht M.C.M.The SHARON[registered trademark]-Anammox[registered trademark]process for treatment of ammonium rich wastewater.2001:IWA Publishing.
    [86]刘秀红,王淑莹,高大文.短程硝化的实现维持与过程控制的研究现状.环境污染治理技术与设备,2004.51(2):p.7-10.
    [87]Laanbroek H.J.,Gerards S.Competition for limiting amounts of oxygen between Nitrosomanas europaea and Nitrobacteria winogradskyi grown in mixed continuous cultures.Archives of microbilogy,1993.159:p.453-459.
    [88]Kuai L.,Verstraete W.Ammonium Removal by the Oxygen-Limited Autotrophic Nitdfication-Denitrification System.Applied and Environmental Microbiology,1998.64(11):p.4500-4506.
    [89]Mulder J.W.,Van Kempen R.N-removal by Sharon.Water Quality International,1997.3(4):p.30-31.
    [90]Jetten M.S.M.,Horn S.J.,van Loosdrecht M.C.M.Towards a more sustainable municipal wastewater treatment system.Water science and technology,1997.35(9):p.171-180.
    [91]Ahn Y.-H.Sustainable nitrogen elimination biotechnologies:A review.Process Biochemistry,2006.41(8):p.1709-1721.
    [92]Hippen A.,Rosenwinkel K.H.,Baumgarten G.Aerobic deammonification:A new experience in the treatment ofwastewaters.Water Science and Technology,1997.35(10):p.111-120.
    [93]Baumgarten G.,Seyfried C.F.Experiences and new developments in biological pretreatment and physical post-treatment of landfill leachate.Water Science and Technology,1996.34(7-8):p.445-453.
    [94]Helmer C.,Kunst S.Simultaneous nitfification/denitrification in an aerobic biofilm system.Water Science and Technology,1998.37(4-5):p.183-187.
    [95]Van de Graaf A.A.,Mulder A.,De Bruijn P.,Jetten M.S.M.,Robertson L.A.,Kuenen J.G.Anaerobic oxidation of ammonium is a biologically mediated process.Applied and Environmental Microbiology,1995.61:p.1246-1251.
    [96]Van de Graaf A.A.,De Bruijn P.,Robertson L.A.,Jetten M.S.M.,Kuenen J.G.Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidzed bed reactor.Microbiology,1996.142:p.2187-2196.
    [97] YH A., IS H., KS M. Anammox and partial denitritation in anaerobic nitrogen removal from piggery waste. Water science and technology, 2004.49(5): p. 145-153.
    [98] Strous M., Kuenen J.G., Jetten M.S.M. Key physiology of anaerobic ammonia oxidatioa Applied and Environmental Microbiology, 1999.65: p. 3248-3250.
    [99] Strous M., Heijnen J.J., Kuenen J.G., Jetten M.S.M. The sequencing batch aeactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 1998. 50: p. 589-596.
    [100]Sliekers A.O., Derwort N., Campos Gomez J.L. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, 2002.36: p. 2475-2482.
    [101]Nielsen M., Bollmann A., Sliekers O. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiology Ecology, 2005. 51(2): p. 247-256.
    [102]Helmer C., Tromm C., Hippen A., Rosenwinkel K.H., Seyfried C.F., Kunst S. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems. Water Science and Technology, 2001.43(1): p. 311-320.
    [103]Schmidt I., Hermelink C., Van de Pas-Schoonen K., Strous M., Camp H.J., Kuenen J.G. Anaerobic ammonia oxidation in the presence of nitrogen oxides (NOx) by two different lithotrophs. Applied and Environmental Microbiology, 2002.68: p. 5351-5357.
    [104]Schmidt I., Sliekers O., Schmid M., Bock E., Fuerst J., Kuenen J.G. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology, 2003. 27: p. 481-492.
    [105]Marrot B., Barrios-Martinez A., Moulin P. Industrial wastewater treatment in a membrane bioreactor: A review. environmental progress, 2004. 23(1): p. 59-68.
    [106]Ueda T., Horan N.J. Fate of indigenous bacteriophage in a membrane bioreactor. Water Research, 2000. 34(7): p. 2151-2159.
    [107]Ben Aim R.M., Semmers M.J. Membrane bioreactor for wastewater treatment and reuse: a success story. Water Science and Technology, 2002.47(1): p. 1-5.
    [108]Adham S., Gagliardo P., Boulos L. Feasibility of the membrane bioreactor process for water reclamation. Water science and technology, 2001.43(10): p. 203-209.
    [109]Chang I.S., Clech P.L., Jefferson B. Membrane fouling in membrane bioreactors for wastewater treatment Journal of Environmental Engineering, 2002.128(11): p. 1018-1029.
    [110]Gatenholm P., Fell C.J., Fane A.G. Influence of the membrane structure on the composition of the deposit-layer during processing of microbial suspensions. Desalination, 1988. 70: p. 363-378.
    [111]Imasaka T., Kanekuni N., So H., Yoshino S. Cross-flow filtration of methane fermentation broth by ceramic membranes. Journal of Fermentation and Bioengineering, 1989.65(3): p. 200-206.
    [112]Shimizu Y., Rokudai M., Thoya S. Effect of membrane resistance on filtration characteristics for methanogenic waste. Kakaku Kogaku Ronbunshu, 1990.16: p. 45.
    [113]Meireles M., Aimar P., Sanchez V. Effects of protein fouling on the apparent pore size distribution of sieving membranes. Journal of Membrane Science, 1991. 56(1): p. 13.
    [114]Fane A.G., Kim K.J., Hodgson P.H., Leslie G., Fell C.J.D., Franken A.C.M., Chen V., Liew K.H. Strategies to minimise fouling in the membrane processing of biofluids. Proceedings of Frontiers in Biochemistry II. Boulder, Colorado., 1990.
    [115]Futurama O., Katoh M., Takeuchi K. Organic waste water treatment by activated sludge process using integrated type membrane separation. Desalination, 1994.98: p. 17-25.
    [116]Mueller J., Davis R.H. Protein fouling of surface-modified polymeric microfiltration membranes. Journal of Membrane Science, 1996.115: p. 47-60.
    [117]Ben Aim R. Membrane bioreactors with submerged hollow fibers from lab scale to wastewater treatment plants. Proceedings Membrane Technology in Environmental Management (Tokyo) Supplement Material, 1999.
    [118]Shimizu Y., Matsushita M., Watanabe A. Influence of shear breakage of microbial cells on cross-flow microfiltration flux. Journal of Fermentation and Bioengineering, 1994.78(2): p. 170-174.
    [119]Shimizu Y., Uryu K., Okuno Y., Ohtubo S., Watanabe A. Effect of particle size distribution of activated sludges on cross-flow microfiltration flux for submerged membranes. Journal of Fermentation and Bioengineering 1997.83(6): p. 583-589.
    [120]Chang I.S., Lee C.H., Ann K.H. Membrane filtration characteristics in membrane coupled activated sludge system: the effect of floc structure on membrane fouling. Separation Science and Technology 1999. 34(9): p. 1743-1758.
    [121]Nagata N., Herouvis K.J., Dziewulski D.M., Belfort G. Cross-flow membrane microfiltration of bacterial fermentation broth. Biotechnology and Bioengineering, 1989. 34: p. 447-456.
    [122]Defrance L., Jaffrin M.Y., Gupta B., Paullier P., Geaugey V. Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresource Technology, 2000. 73: p. 105-112.
    [123]Beaubien A., Baty M., Jeannot F., Francoeur E., Manem J. Design and operation of anaerobic membrane bioreactor: development of a filtration testing strategy. Journal of Membrane Science, 1996. 109: p. 173-184.
    [124]Ross W.R., Barnard J.P., le Roux J., Villiers H.A. Application of ultrafiltration membranes for solid-liquid separation in anaerobic digestion system: the ADUF process. Water SA, 1990. 16(2): p. 85-91.
    [125]Flemming H.C., Wingender J. Relevance of microbial extracellular polymeric substances (EPS) - Part I: Structural and ecological aspects. Water science and technology, 2001.43(6): p. 1-8.
    [126]Schmidt J.E., Ahring B.K. Granular sludge formation in Upflow Anaerobic Sludge Blanket (UASB) reactors. Biotechnology and Bioengineering, 1996.49: p. 229-246.
    [127]Nagaoka H., Ueda S., Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water science and technology, 1996.34(9): p. 165-172.
    [128]Leslie G.L., Schneider R.P., Fane A.G., Marshall K.C., Fell C.J.D. Fouling of a microfiltration membrane by two Gram-negative bacteria Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994. 73: p. 165-178.
    [129]Elmaleh S., Abdelmoumni L. Crossflow filtration of an anaerobic methanogenic suspensioa Journal of Membrane Science, 1997.131: p. 263-274.
    [130]Im J.-h., Woo H.-j., Choi M.-w., Han K.-b., Kim C.-w. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Research, 2001. 35(10): p. 2403-2410.
    [131]Cao G.-m., Zhao Q.-x., Sun X.-b., Zhang T. Integrated nitrogen removal in a shell-and-tube co-immobilized cell bioreactor. Process Biochemistry, 2004. 39(10): p. 1269-1273.
    [132]Barber W.P., Stuckey D.C. Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1, denitrification. Water Research, 2000.34(9): p. 2413-2422.
    [133]Bernet N., Delgenes N., Akunna J.C., Delgenes J.P., Moletta R. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Research, 2000. 34(2): p. 611-619.
    [134]Mosquera-Corral A., Sanchez M., Campos J.L., Mendez R., Lema J.M. Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry. Water Research, 2001.35(2): p. 411-418.
    [135]Huang J.-S., Chou H.-H., Chen C.-M., Chiang C.-M. Effect of recycle-to-influent ratio on activities of nitrifiers and denitrifiers in a combined UASB-activated sludge reactor system. Chemosphere, 2007. 68(2): p. 382-388.
    [136]Percheron G., Bernet N., Moletta R. Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiology Ecology, 1999. 29(4): p. 341-350.
    [137]APHA. Standard methods for the examination of waster and wastewater. Washington, D.C: American Public Health Association, 1998.
    [138]Zhuang W.-Q., Tay J.-H., Yi S., Tay S.T.-L. Microbial adaptation to biodegradation of tert-butyl alcohol in a sequencing batch reactor. Journal of Biotechnology, 2005.118(1): p. 45-53.
    [139]Hentschel U., Usher K.M., Taylor M.W. Marine sponges as microbial fermenters. FEMS Microbiology Ecology, 2006.55(2): p. 167-177.
    [140]Kalyuzhnyi S., Gladchenko M., Mulder A., Versprille B. DEAMOX-New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Research, 2006.40(19): p. 3637-3645.
    [141]El-Mahrouki I.M.L., Watson-Craik LA. The effects of nitrate and nitrate-supplemented leachate addition on methanogenesis from Municipal Solid Waste. Journal of Chemical Technology and Biotechnology, 2004. 79(8): p. 842-850.
    [142]Payne W.J. Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev., 1973. 37: p. 409-452.
    [143]Chiu Y.-C., Chung M.-S. Determination of optimal COD/nitrate ratio for biological denitrification. International Biodeterioration & Biodegradation, 2003.51(1): p. 43-49.
    [144]Akunna J.C., Bizeau C., Moletta R. Nitrate and nitrite reductions with anaerobic sludge using glucose at various carbon sources: glucose, glycerol, acetic acid, lactic acid and Methanol. Water Research, 1993. 27: p. 1303-1312.
    [145]Akunna J.C., Bizeau C., Moletta R. Denitrification in anaerobic digesters: possibilities and influence of wastewater COD /N-NOx ratio. Environmental Technology, 1992.13: p. 825-836.
    [146]Laverman A.M., Van Cappellen P., van Rotterdam-Los D., Pallud C., Abell J. Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiology Ecology, 2006. 58(2): p. 179-192.
    [147]Boon N., De Windt W., Verstraete W., Top E.M. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. . FEMS Microbiol. Ecol. , 2002(39): p. 101-112.
    [148]Wagner M., Rath G., Amann R., Koops H.P., Schleifer K.H. In situ identification of ammonia-oxidizing bacteria system applied microbiology, 1995.18: p. 251-164.
    [149]Daims H., Nielsen J.L., Nielsen P.H., Schleifer K.H., Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. applied environmental microbiology, 2001.67: p. 5273-5284.
    [150]Amann R.I., Krumholz L., Stahl D.A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 1990. 172(2): p. 762-770.
    [151]Schramm A, Dirk De Beer, M W. Identification and activities as dominant populations in a nitrifying fluidized bed reactor. Applied and Environmental Microbiology, 1998.64(9): p. 3480-3485.
    [152]Mobarry B.K., Wagner M., Urbain V., Rittmann B.E., Stahl D.A. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria Applied and Environmental Microbiology, 1996. 62(6): p. 2156-2162.
    [153]Biesterfeld S., Figueroa L, Hernandez M. Quantification of nitrifying bacterial populations in a full-scale nitrifying trickling filter using fluorescent in situ hybridizatioa Water Environmental Research, 2001. 73(3): p. 329-338.
    [154]Mobarry B.K., Wagner M., Urbain V., Rittmann B.E., Stahl D.A. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [published erratum appears in Appl Environ Microbiol 1997 Feb;63(2):815]. Appl. Environ. Microbiol., 1996.62(6): p. 2156-2162.
    [155]Manz W., Amann R., Ludwig W. Phyfogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. System applied microbiology, 1992.15: p. 593-600.
    [156]Schmidt L., Sliekers o., M.Schmid. New concept of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol, 2003.27: p. 481-492.
    [157]Bae B.-U., Shin H.-S. Performance of an inner tube-type gas-solid separator device in a UASB reactor. Bioresource Technology, 1998. 63(1): p. 23-27.
    [158]Peng Y., Shouyou G.A.O., Wang S., Lu B.A.I. Partial Nitrification from Domestic Wastewater by Aeration Control at Ambient Temperature. Chinese Journal of Chemical Engineering, 2007. 15(1): p. 115-121.
    [159]K.Chandran, Smets B.F. Applicability of two step models in estimating nitrification kinetics from batch respirograms under dieffrent relative dynamics of ammonia and nitrite oxidation. Biotechnology Bioengineer, 2004.70(1): p. 54-64.
    [160]Grunditz C., Dalhammar G. Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Research, 2001.35: p. 433-440.
    [161]Chiu Y.-C., Lee L.-L., Chang C.-N., Chao A.C. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration & Biodegradation, 2007. 59(1): p. 1-7.
    [162]Jianlong W., Ning Y. Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry, 2004. 39(10): p. 1223-1229.
    [163]Pollice A., Tandoi V., Lestingi C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Research, 2002. 36(10): p. 2541-2546.
    [164]Peng Y.Z., Chen Y., Peng C.Y., Liu M., Wang S.Y., Song X.Q., Cui Y.W. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater. Water Science and Technology, 2004. 50(10): p. 35-43.
    [165]Hidaka T., Yamada H., Kawamura M., Tsuno H. Effect of dissolved oxygen conditions on nitrogen removal in continuously fed intermittent-aeration process with two tanks. Water Science and Technology, 2002.45: p. 181-188.
    [166]Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 1999.2(3): p. 317-322.
    [167]Aktan S., Salih B.A. Fluorescent in situ hybridization (FISH) for the detection of bacterial community in activated sludge from textile factories. Environmental Technology, 2006. 27(1): p. 63-69.
    [168]Tai C.S., Singh K.S., Grant S.R. Combined Removal of Carbon and Nitrogen in an Integrated UASB-Jet Loop Reactor Bioreactor System JOURNAL OF ENVIRONMENTAL ENGINEERING, 2006: p. 624-637.
    [169]Tseng C.-C., Potter T.G., Koopman B.E.N. Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process. Water Research, 1998. 32(1): p. 165-173.
    [170]Narkis N., Rebhun M., Sheindorf C. Denitrification at various carbon to nitrogen ratios. Water Research, 1979.13(1): p. 93-98.
    [171]Skrinde J.R., Bhagat S.K. Industrial wastes as carbon sources in biological denitrification. Journal Water Pollution Control Federation, 1982. 54(4): p. 370-377.
    [172]Monteith H.D., Bridle T.R., Sutton P.M. Evaluation of industrial waste carbon sources for biological denitrification. Technology Development Report EPS (Canada, Environmental Protection Service), 1979(4-WP 79-9):p.71.
    [173]Yang P.Y., Nitisoravut S., Wu J.S. Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions. Water Research, 1995.29(6): p. 1525.
    [174]Ruiz G., Jeison D., Rubilar O., Ciudad G., Chamy R. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technology, 2006. 97(2): p. 330-335.
    [175]Del Pozo R., Diez V. Organic matter removal in combined anaerobic-aerobic fixed-film bioreactors. Water Research, 2003. 37(15): p. 3561-3568.
    [176]Jun H.-B., Park S.-M., Park J.-K., Choi C.-O., Lee J.-S. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems. Water Sci. Technol., 2004. 49(5): p. 191-197.
    [177]Mahmoud N., Zeeman G., Gijzen H., Lettinga G. Solids removal in upflow anaerobic reactors, a review. Bioresource Technology, 2003. 90(1): p. 1-9.
    [178]Saravanan V., Sreekrishnan T.R. Modelling anaerobic biofilm reactors-A review. Journal of Environmental Management, 2006. 81(1): p. 1-18.
    [179]Keith Brindle T.S. The application of membrane biological reactors for the treatment of wastewaters. Biotechnology and Bioengineering, 1996. 49(6): p. 601-610.
    [180]Strathmann H. Membrane separation processes. Journal of Membrane Science, 1981. 9(1-2): p. 121-189.
    [181]Zitomer D.H. Stoichiometry of combined aerobic and methanogenic COD transformatioa Water Research, 1998.32(3): p. 669-676.
    [182]Rolfe R.D., Hentges D.J., Campbell B.J., Arret J.T. Factors related to the oxygen tolerance of anaerobic bacteria Appl. Environ. Microb., 1978.36: p. 306-313.
    [183]MARVIN L.S. S.M.B. Isolation and Characterization of an Iron-Containing Superoxide Dismutase From Water Lily, Nuphar luteuml. Plant Physiol., 1982.69: p. 161-165.1982.
    [184]Jetten M, Schmid M., van de PasSchoonen K., Sinninghe Damste J., Strous M., Jared R.L., Anammox Organisms: Enrichment, Cultivation, and Environmental Analysis, in Methods in Enzymology. 2005, Academic Press. p. 34-57.
    
    [185]Kiener A., Leisinger T. Oxygen sensitivity of methanogenic bacteria Appl. Microbiol, 1983. 4: p. 305-312.
    [186]Windey K., Bo I.D., Verstraete W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Res., 2005. 39: p. 4512-4520.
    [187]Chu L.-B., Yang F.-L., Zhang X.-W. Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB) reactor under moderate to low temperature. Process Biochemistry, 2005.40(3-4): p. 1063-1070.
    [188]Zitomer D.H. Stoichiometry of combined aerobic and methanogenic COD transformatioa Water Res., 1998. 32(3): p. 669-676.
    [189]Baloch M.I., Akunna J.C., Collier P.J. The performance of a phase separated granular bed bioreactor treating brewery wastewater. Bioresource Technology, 2006. In Press, Corrected Proof.
    [190]Zitomer D.H., Shrout J.D. Feasibility and benefits of methanogenesis under oxygen-limited conditions. Waste Management, 1998.18(2): p. 107-116.
    [191]Liu H., Fang H.H.P. Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 2002.95(3): p. 249-256.
    [192]Zhang X., Bishop P.L., Kinkle B.K. Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Science and Technology, 1999. 39(7): p. 211-218.
    [193]Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1995.28(3): p. 350-356.
    [194]Bradford M.M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976.72(1-2): p. 248-254.
    [195]Meng F.G., Zhang H.M., Yang F.L., Liu L.F. Characterization of Cake Layer in Submerged Membrane Bioreactor. Environmental Science and Tehnology, 2008. In Press.
    [196]Rosenberger S., Laabs C. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment Water Research, 2006.40: p. 710-720.
    [197]Le-Clech P., Jefferson B., Judd S.J. Impact of Aeration, Solids Concentration and Membrane Characteristics on the Hydraulic Performance of a Membrane Bioreactor. Journal of Membrane Science, 2003. 218: p. 117-129.
    [198]Gander M., Jefferson B., Judd S. Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost Considerations. Separation and Purification Technology, 2000. 18: p. 119-130.
    [199]Belfort G., Davis R.H., Zydney A.L. The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration. Journal of Membrane Science, 1994. 96: p. 1-58.
    [200]Green G., Belfort G. Fouling of ultrafiltration membranes: Lateral migration and particle trajectory model. Desalination, 1980.35: p. 129-147.
    [201]Meng F.G., Shi B.Q., Yang F.L., Zhang H.M. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities. Separation and Purification Technology 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700