用户名: 密码: 验证码:
MicroRNA在辐射致癌中的作用及其辐射生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNA (miRNA)亦称微小RNA,是一类内源性非编码的小RNA,它主要通过与其靶基因mRNA 3'-UTR区(mRNA的3’非翻译区)互补配对,从而发挥沉默特定靶基因作用。越来越多的研究证据显示,miRNA广泛存在于各种动物、植物和病毒中,在人类等哺乳动物中至少有三分之一的基因(大约1万多条基因)受miRNA调控。研究结果显示,miRNA在生物体的发育、增殖、分化、凋亡、寿命、免疫反应特别是肿瘤发生等方面发挥着极为重要且必不可少的调节功能。随着研究的深入,越来越多的miRNA被发现和报道,其中,大量研究结果发现miRNA表达与多种肿瘤的发生、发展、转移及预后密切相关。有很多学者认为miRNA的改变可能在大量,乃至所有人类(及小鼠)肿瘤的病理生理中发挥着极为关键性的作用,甚至有人提出miRNA的异常是最重要肿瘤起源之因。
     辐射致癌效应是电离辐射严重的远后效应之一,也是广大涉核职业人员和民众十分关心的问题。本实验室从1999年开始进行了辐射诱导肿瘤的机理研究,我们通过改良分次照射诱导小鼠发生胸腺T淋巴瘤型白血病,成功建立了辐射致癌的Balb/c(和C57)小鼠模型,并研究了辐射诱导肿瘤过程中许多表达差异基因和差异蛋白的改变。然而以上研究主要是某些已经功能明确的癌基因抑制基因在辐射致癌组织中的表达验证研究,离完全阐明辐射致癌发生的分子机制还有很大的距离。这里还要特别指出的是,电离辐射是已知的重要物理致癌因子,其诱导肿瘤发生的分子机制远未阐明,对辐射致癌机理的研究不仅具有重要的军事应用价值,还有助于放射线的和平利用和我国核能事业的大发展,因此有必要利用当代生命科学的新发现、新理论、新技术对辐射致癌机理进行深入探索。特别是,关于miRNA在辐射致癌发生、发展中作用及通过调控]miRNA表达的方法预防和治疗辐射诱导的肿瘤的研究目前尚未见报道,本文将就这一重要问题进行初步探讨。
     第一部分辐射致癌中差异表达miRNA的筛选及验证
     为探讨辐射致癌组织与正常组织之间的miRNA表达谱差异,我们以辐射致癌的Balb/c小鼠模型为研究对象,首先利用Affymetrix miRNA芯片检测的方法检测了不同辐射致癌组织与正常胸腺组织的miRNA表达情况。应用聚类分析法发现,辐射致癌组织与正常组织的总体miRNA表达谱有非常明显的差异;进而应用SAM软件统计分析发现在各样本中表达重复性较好、表达丰度高、差异2倍以上且P<0.001的miRNA共68条,其中辐射致癌组织中表达上调的miRNA有48条,下调20条。最后,我们通过扩大样本Real Time-PCR方法验证获得了20条左右差异表达的miRNA。与对照正常胸腺组织相比,辐射致癌T淋巴瘤组织中上调最明确的miRNA是miR-762, miR-21, miR-17-92簇,niR-106-363簇和miR-23a/b等;而辐射致癌T淋巴瘤组织中下调最明确的miRNA是niR-200c, miR-486, miR-199a/b, miR-143, miR-152, miR-125b, miR-31, miR-26, miR-100和let-7等。本部分实验结果表明,辐射致癌组织有众多miRNA的表达异常,且miRNA可能参与了辐射致癌的发生。
     第二部分辐射致癌相关miRNA的作用初步探索
     鉴于大量研究结果表明,miRNA主要通过特异性抑制其靶基因3'UTR的方式来发挥其功能。因此靶点的鉴定研究是miRNA研究的核心工作之一,本部分工作中我们对部分辐射致癌相关miRNA的新靶点进行了试探性的研究工作。
     1. miRNA23,辐射致癌发病与诊断相关的新的miRNA分子标签
     首先我们选择miRNA23进行研究,这是因为它在所有辐射致癌组织中上调表达的miRNA中表达丰度最高并且上调倍数较高,且其在肿瘤中的功能不明,特别是miRNA23在多种肿瘤中表达下调而在辐射致癌组织中表达特异性上调,是辐射致癌相关的潜在特异性miRNA;另外关于其功能靶点目前国内外也未见系统报道。
     首先利用生物信息学预测技术分析探讨miRNA23在辐射致癌中的潜在靶点。预测结果显示:miR-23a和miR-23b可能靶向小鼠的细胞凋亡自杀相关蛋白FAS (Factor associated suicide)的3'UTR。接下来DLR(双荧光报告基因技术)实验发现,miR-23a和miR-23b可以明确抑制小鼠FAS 3'UTR报告基因活性,且miR-23a对FAS 3'UTR报告基因活性的抑制作用显著强于miR-23b。同样,流式细胞术的实验也发现了miR-23a和miR-23b可以显著抑制NIH3T3细胞的FAS蛋白的表达,且miR-23a对FAS蛋白的抑制作用也显著强于miR-23b。最后,我们通过对FAS 3'UTR多点突变的实验体系证明miR-23 a和niR-23b对FAS 3'UTR的抑制作用主要取决于其种子序列;而miR-23a所特有的与FAS 3'UTR互补的种子外序列可能增强了miR-23 a对FAS的抑制作用,这从位点特异性上部分解释了miR-23 a对FAS的抑制作用强于miR-23b的分子机制。这些实验结果表明,miRNA23可能通过靶向辐射致癌相关蛋白FAS的方式参与辐射致癌的发病过程。最后我们还发现,miR-23在辐射诱导T淋巴瘤小鼠血清中明显上调,以上结果说明miRNA-23可能是新的辐射致癌发病及诊断相关的重要的miRNA分子标签。
     2. miR-21对抑癌基因Big-h3的影响及其对TGF通路的调节作用
     miR-21是具有癌基因样作用的明星oncomiR并在辐射致癌组织中表达上调.我们首先进行了生物信息学和DLR等分子生物学实验,鉴定出了miR-21在辐射致癌组织中潜在的新靶点:TGF-β诱导性蛋白Big-h3。鉴于我们曾经发现辐射成瘤小鼠中重要细胞亚群Tregs、MDSC和TGFβ水平明显高于对照小鼠,但Big-h3在辐射致癌组织中表达却下调的实验结果,本实验试图从miRNA的途径探讨部分肿瘤高表达TGFβ却低表达Big-h3的部分机制。结果发现miR-21可以被TGFβ所诱导并反馈调节TGFβ通路;更有意思的是,miR-21既可以抑制TGFβ诱导Big-h3负反馈调节TGFβ通路,miR-21还可以在某些情况下诱导TGFβ分泌正反馈调节TGFβ通路,具有双向调节TGFβ通路的作用。此结果为部分临床肿瘤病人和荷瘤小鼠中,miR-21和TGFβ有高度正相关性的原因提供了新的解释。同时也为TGFβ同时具有抑癌基因和癌基因样的双向作用提供了新的实验支持。即一方面,TGFβ可以通过诱导抑癌基因Big-h3进而发挥其抑癌基因功能;另一方面,TGFβ在不同条件下还可以快速上调oncomiR miR-21表达进而负反馈抑制Big-h3并发挥其癌基因样作用。
     3.靶向小鼠P16基因的microRNA的探索
     p16是近年来发现的一个重要的抑癌基因并在辐射致癌组织中表达下调,亦有报道显示miR-24可以特异性的靶向人P16基因的3'UTR区;然而,我们却未能检索到国内外有关靶向小鼠P16基因的miRNA的相关报道。通过生物信息学预测结果显示:miR-126-5p是最可能特异性靶向小鼠p16 mRNA的miRNA。此外,miR-762, miR-693-5p,miR-760,miR-742,miR-127, miR-185和miR-193也具有小鼠p16 3'UTR区的互补序列。应用分子生物学实验发现,miR-126-5p以及miR762可以明确抑制小鼠P16 3'UTR报告基因活性和P16蛋白表达,其中miR-126-5p在体外靶向小鼠P16基因的作用最强:而特异性靶向人P16基因的miR-24对小鼠P16 3'UTR报告基因活性和P16蛋白表达均未见明确影响。最后我们发现miR-762是辐射成瘤中上调倍数最高的miRNA,而miR-126-5p在辐射成瘤组织与对照胸腺组织中相比没有显著差异。此结果提示miR-762很可能通过特异性抑制抑癌基因P16蛋白的方式参与辐射致癌的发病过程。
     4. miR-125和DNTT在辐射致癌过程中的作用
     我们应用免疫学细胞亚群的研究方法发现辐射致癌组织为一群CD4+CD8+ DNTT+的异常增生的T细胞亚群。在此基础上初步追踪了此异常DNTT阳性T细胞亚群的来源,发现DNTT阳性细胞亚群在辐射致癌发生过程中有非常独特的变化方式,且DNTT分子的抑制和启动均是辐射致癌发生的必要条件。同时支持本实验结果的另一文献佐证是,大量文献结果显示,DNTT在TCR基因重排过程中是必须的,并且DNTT在TCR重排后受抑制而消失同样也是T细胞发育的必要条件,然而有关DNTT的具体启动和消失机制目前十分不清楚,也是重要的科研盲点之一。为了探讨这一问题,我们从miRNA角度初步发现miR-125可以靶向小鼠DNTT并在辐射致癌过程中发挥着一定的作用。
     第三部分调控miRNA表达治疗肿瘤的初步探讨
     采用先体外后体内的实验方法探讨了部分miRNA对肿瘤细胞的杀伤效应。本部分实验中,我们针对辐射致癌组织中下调表达的部分miRNA(例如miR-200c、miR-486、miR-199、miR-193b、miR-143、miR-145、miR-125a/b、miR-31、miR-26a、miR-99a、miR-152、miR-29a和let-7e等),通过对NIH 3T3/A549/U87MG等细胞过表达以上部分miRNA的方法,探讨上调miR-200c、miR-486、miR-125b、miR-199b、miR-193b、miR-143、miR-145和let-7e等miRNA对细胞凋亡和增殖等功能的影响。结果显示,这些miRNA中有数条可以明确抑制肿瘤细胞的生长增殖,促进细胞凋亡,诱导细胞周期紊乱,增强DNA损伤Foci水平和抑制细胞的克隆形成率。进而从中筛选出4条体外杀伤肿瘤细胞效果较强且有一定创新性的miRNA,即:miR-200c、miR-486、miR-143和miR-125b。构建了过表达以上4条miRNA的腺病毒载体,计划对荷瘤裸鼠的体内抑瘤效果进行检测,部分体内实验正在进行中。
     第四部分miRNA在放射生物学其它方面意义的初步探索
     本部分研究主要初步探索miRNA与辐射敏感性、辐射防护、肿瘤辐射增敏及放射损伤生物标志物等方面的意义。初步结果有:miR-34a表达水平与正常细胞、组织及个体的电离辐射敏感性密切正相关;过表达miR-34a表达可以对肿瘤细胞U87产生显著的辐射增敏效果,而抑制miR-34a表达可以对正常细胞293起到比较较好的辐射防护的效应;且miR-34a在辐射损伤后12小时的小鼠血清中表达上调,提示其可能成为新的福射损伤相关的诊断指标。我们还对辐射致癌组织的辐射敏感性进行了初步探讨,发现辐射致癌组织对电离福射有一定的抗性,且其福射抗性与miR-34a无关,却与其高表达癌基因Ras有关;并且可特异性靶向Ras的miR-143和LET7也可以对U87MG细胞起到辐射增敏的效果。
     本课题的主要创新点:
     1.首次探讨miRNA在辐射致癌中的作用并获得了辐射致癌组织的总体niRNA表达谱,发现并验证了部分辐射致癌组织差异表达的miRNA。
     2.首次对部分辐射致癌相关miRNA的功能进行了初步研究;并首次克隆了多个辐射致癌相关重要基因的3'UTR区,构建了以上3'UTR报告基因载体和部分点突变3'UTR报告基因载体。
     3.首次鉴定出靶向小鼠FAS 3'UTR的miRNA miR-23,并对miR-23a和miR-23b对FAS的抑制作用差异性的分子机制进行探讨;首次鉴定出靶向小鼠P16 3'UTR的miRNA,并发现体外和体内靶向P163'UTR的miRNA差异;首次鉴定出靶向小鼠Big-h3 3'UTR的miRNA;首次鉴定出靶向小鼠B7H1 3'UTR的miRNA.
     4.首次对Tregs, MDSC和DC等重要细胞亚群在辐射致癌小鼠中的变化情况进行研究。
     5.首次发现miR-21可以正反两方向反馈调节TGFβ通路。
     6.首次发现DNTT分子的被抑制和启动均是辐射致癌发生的必要条件。
     7.首次探讨过表达部分miRNA对DNA损伤Foci水平的影响。
     8.首次构建部分过表达特定miRNA的腺病毒载体并应用于辐射致癌的体外、体内治疗和预防实验。
     9.首次探讨miRNA23和作为辐射致癌的血清学诊断指标。
     10.首次对辐射致癌组织的辐射敏感性及部分分子机制进行探讨。
     以上实验结果说明,microRNA在辐射致癌的发生中发挥着重要作用,在放射生物学其它方面也有重要的研究意义;microRNA可为辐射致癌诊断、预防和治疗的研究提供重要的新靶点、新方法、新思路。
MicroRNA (miRNA) are noncoding RNA 18-25nt in length, first discovered in worms, that regulate a variety of biological processes by silencing specific target genes.Several studies have shown that miRNA play important roles in essential processes, such as differentiation, cell growth, and cell death. These miRNA can downregulate various gene products by translational repression when partially complementary sequences are present in the 3'untranslated regions (3'UTR) of the target mRNAs or by directing mRNA degradation. Using these posttranscriptional control mechanisms, mammalian miRNA appear to target a diversity of cellular functions, including cell proliferation and differentiation. Moreover, it has been shown that miRNA are aberrantly expressed or mutated in cancers, suggesting that they may play a role as a novel class of oncogenes or tumor suppressor genes, depending on the targets they regulate. In the last few years, it has become evident that miRNA expression is deregulated in human cancer, resulting in specific oncogenic events.
     Radiation therapy is now a routine treatment for certain types of cancer and over 20 percent of cancer patients will require radiation therapy during the treatment of their disease. However, Ionizing radiation is a well-known carcinogen for various human tissues and a complete carcinogen that is able to initiate and promote neoplastic progression. Studies show that radiation can cause many types of cancers, especially leukemia and lymphoma, and of the mechanism of this radiation carcinogenesis is still not very clear. It is true that there are differences between mice and humans, however the well established mouse model of radiation induced thymic lymphoma can help us understand more about this. Indeed, studies of radiation induced mouse thymic lymphomas, one of the classic models in radiation carcinogenesis, demonstrated that multi-steps and many factors, like oncogene ras and tumor suppressor gene pten or p53, were involved in radiation carcinogenesis. We previously found that expression changes of ERK1/2, STAT3 and SHP-2 in Bone Marrow Cells is highly associated with y-ray Induced Leukemia Mice. However, the mechanism of radiation carcinogenesis is still poorly understood. Specifically, the possible role of microRNA that participates in radiation carcinogenesis is still unknown.
     Here in this study, by using of radiation-induced mouse thymic lymphoma model, we explored the possibility that microRNA may be involved in adiation carcinogenesis
     Part 1:Identification of in radiation carcinogenesis associated miRNAs in BALB/c mice.
     The use of miRNA microarray technologies has been used as a powerful tool to recognize miRNA differentially expressed between normal and tumor samples and also to identify miRNA expression signatures associated with well-defined clinicopathologic features and disease outcome Several studies have also investigated the molecular mechanisms leading to an aberrant miRNA expression, identifying the presence of genomic abnormalities in miRNA genes. In this study, By miRNA microarray technology and cluster assay, we find that miRNA profiles are aberrantly expressed in split radiation induce thymic lymphoma tissues in comparison to normal thymic tissue. The overall miRNA expression could clearly separate normal versus cancer tissues. We next use q-PCR methods to validate that The most significantly overexpressed miRNA in thymic lymphoma were miR-762, miR-17-92 cluster, miR-106-363 cluster and miR-23a/b; whereas miR-200c, miR-486, miR-199a, miR-143, miR-145, miR-125b, miR-31, miR-26, miR-100 and let-7 were among the most down-modulated miRNA.
     Part 2:Role of selected microRNA in radiation carcinogenesis.
     1. miR-23, A novel miRNA signature assoiated with pathogenesis and diagnosis of radiation carcinogenesis.
     In this study, using bioinformatics methods and radiation induced thymic lymphoma model in balb/c mice, we identified the microRNA23 could directly targeting proapoptosis molecular FAS, which may also play an important role in radiation carcinogenesis.Our data also indicates that miR-23a could repress FAS much more potent than miR-23b and the additional region besides conserved seed pairing enables miR-23a's higher regulation.Besides, miR-23 can be detected in the serum of radiation leukemia mice. This results indicate that miRNA23 is a novel microRNA signature assoiated with pathogenesis and diagnosis of radiation carcinogenesis.
     2. miR-21 play an important role in radiation carcinogenesis by directly targeting the tumor suppressor gene Big-h3
     Deregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, only functions and targets of few mammalian miRNAs was known. Specifically, the miRNA that participates in radiation carcinogenesis and the miRNA that targets tumor suppressor gene Big-h3 are still unknown. Using a radiation induced thymic lymphoma model in balb/c mice, we identified that miR-21 could directly target tumor suppressor gene Big-h3, which may also play an important role in radiation carcinogenesis. We also found that miR-21 could be induced by TGF. and has both positive and negative effects on regulating TGF. signaling. In conclusion, this data strongly suggests that miR-21 also participates in radiation carcinogenesis and TGF. signaling regulation.
     3. Identification of microRNA targeting tumor suppressor gene P16.
     Then we focused on studying another tumor suppressor gene P16/INK4a and it's potential role in radiation carcinogenesis. We firstly found that significant downregulation of 16 protein expression was closely related to radiation induced thymic lymphoma. Next by using bioinformatics methods, we found that both miR-126-5p and miR-762could target murine p16 mRNA in vitro. Furthuemore, we found that miR-762 was enhanced significantly in radiation induced thymic lymphoma tissues when compared to normal thymus tissues. However we didn't find an obvious enhancement of miR-126-5p expression between thymic lymphoma tissues. Finally, there was an inverse correlation between P16 protein and miR-762 expression found in different radiation induced thymic lymphoma tissues and normal thymus tissues. Taken together, our data indicates that miR-762 may play an important role in radiation induced thymic lymphoma by directly targeting tumor suppressor gene P16. This work also demonstrates the difference between in vivo and in vitro.
     4. Citical role of DNTT and miR-125 in radiation induced thymic leukemia.
     Next we use FACS assay to Identify that the thymic leukemia/lymphoma cells are CD4+CD8+ and DNTT+. This is important because Dntt(Deoxynucleotidyl Transferase, Terminal)is also a marker of Pro and Pre-T. Studies also show that DNTT play critical role in TCR recomposition. Next we find that Dntt play critical role in radiation carcinogenesis and both silence and induction of DNTT are required for radiation carcinogenesis. Last, we find that miR-125 may target DNTT and play critical role in radiation carcinogenesis.
     Part 3:Role of selected microRNA in cancer threapy。
     Next we used overexpression experiment to find that miR-200c, miR-486, miR-199b, miR-193b, miR-143, miR-145, miR-125a/b, miR-31, miR-26a, miR-99a, miR-100, miR-29a and let-7e could enhance the apoptosis rate of U87MG cells, A549 cells and NIH3T3 cells. We also found that these miRNA could inhibit proliferation、induce cell cycle arrest and induce DSB foci of U87MG cells and other cell types. These data indicate that miR-200c, miR-486, miR-199b,miR-193b, miR-143, miR-145, miR-125a/b, miR-31, miR-26a, miR-99a, miR-100, miR-29a and let-7e could kill cancer cells in vitro. Then we selected 4 miRNAs, namely miR-200c, miR-486, miR-143 & miR-125b for in vivo usage for the prevention and therapy of radiation induce thymic T lymphoma. Now the in vivo work is still on going.
     Part 4:Role of selected microRNA in other aspects of radiation biology MiRNA34a have shown to exert potent antiproliferative effects and induced cell apoptosis, and can be induced by irradiation in vivo and in vitro. However, the relationship between miR-34a and radiosensitivity, and its potential diagnostic significance in radiation biology, remain unclear. This study found that differing responses to radiation of young and old mice were related to miR-34a. First, we found that miR-34a could be induced in many organs by radiation of both young and old mice. However, the level of miR-34a induced by young mice was much higher when compared to old mice. Next, we found that miR-34a played a critical role in radiosensitivity variations of different tissues by enhancing cell apoptosis and decreasing cell viability. We also found that the inhibition of miR-34a could protect cells from radiodamage, however. Finally, we concluded that miR-34a could be stable in serum after IR and serve as a novel biomarker of radiation injury. Taken together, this part strongly suggests that miR-34a may be a novel biomarker, mediator and target of radiodamage, radiosensitivity and radioprotection.
     In summary, our data strongly suggests that microRNAs play a critical role in radiation carcinogenesis.
引文
[1]. Bartel, D.P. MicroRNA:Target recognition and regulatory functions. Cell 2009.136:215-233.
    [2]. RE. Lanford, Elisabeth S, Hildebrandt-Eriksen, Andreas Petrl. Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection. Science,2010,327:198-201
    [3]. Foteini Christodoulou, Florian Raible, Raju Tomer, et al.. Ancient animal MicroRNA and the evolution of tissue identity. Nature,2010,463:1084-1088
    [4]. Ambros V. The functions of animal MicroRNA. Nature,2004,431:350-355
    [5]. Lee, R., Feinbaum, R., and Ambros, V..The heterochronic gene lin-4 of C. elegans encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75:843-854
    [6]. Bartel, D.P. MicroRNA:genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297
    [7]. S.L. Ameres, J. Martinez and R. Schroeder, Molecular basis for target RNA recognition and cleavage by human RISC. Cell,2007,130:101-112
    [8]. Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark and S. Kim et al.. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003,425:415-419
    [9]. J.J. Song, S.K. Smith, GJ. Hannon and L. Joshua-Tor, et al.. Crystal structure of Argonaute and its implications for RISC slicer activity. Science,2004,305:1434-1437
    [10]. Lewis, B.P., C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005,120:15-20
    [11]. P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice, A.O. Kamphorst and M. Landthaler et al.. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell,2007,129:1401-1414
    [12]. K.C. Miranda, T. Huynh, Y. Tay, Y.S. Ang, W.L. Tam, A.M. Thomson, B. Lim and I. Rigoutsos. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell,2006,126:1203-1217
    [13]. S.N. Bhattacharyya, R. Habermacher, U. Martine, E.I. Closs and W. Filipowicz. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,2006, 125:1111-1124 ■
    [14]. K.K. Farh, A. Grimson, C. Jan, B.P. Lewis, W.K. Johnston, L.P. Lim, C.B. Burge and D.P. Bartel. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science,2005, 310:1817-1821
    [15]. S. Bagga, J. Bracht, S. Hunter, K. Massirer, J. Holtz, R. Eachus and A.E. Pasquinelli. Regulation by let-7 and lin-4 miRNA results in target mRNA degradation. Cell,2005,122:553-563
    [16]. S. Yekta, I.H. Shih and D.P. Bartel. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004,304:594-596
    [17]. R. Sandberg, J.R. Neilson, A. Sarma, P.A. Sharp and C.B. Burge. Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science,2008, 320:1643-1647
    [18]. M. Kedde, M.J. Strasser, B. Boldajipour, J.A. Oude Vrielink, K. Slanchev, C. le Sage, R. Nagel, P.M. Voorhoeve, J. van Duijse and U.A. Orom et al.. RNA-binding protein Dndl inhibits microRNA access to target mRNA. Cell,2007,131:1273-1286
    [19]. X. Li and R.W. Carthew. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell,2005,123:1267-1277
    [20]. C. Xiao, D.P. Calado, G Galler, T.H. Thai, H.C. Patterson, J. Wang, N. Rajewsky, T.P. Bender and K. Rajewsky. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell, 2007,131:146-159
    [21]. Y. Zhao, E. Samal and D. Srivastava. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005,436:214-220
    [22]. M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky and P. Rorsman et al.. A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004,432:226-230
    [23]. R.J. Johnston and O. Hobert. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature,2003,426:845-849
    [24]. J.S. Karres, V. Hilgers, I. Carrera, J. Treisman and S.M. Cohen. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell,2007,131:136-145
    [25]. Calin, G A. and Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer,2006, 6:857-866
    [26]. Calin, G A. et al.. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N.Engl.J.Med.,2005,353:1793-1801
    [27]. Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al.. MicroRNA expression profiles classify human cancers. Nature,2005,435:834-838
    [28]. Esquela-Kerscher A, Slack FJ. OncomiRs-MicroRNA with a role in cancer. Nat.Rev.Cancer,2006, 6:259-269
    [29]. Voorhoeve, P. M. et al.. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ Cell tumors. Cell,2006,124:1169-1181
    [30]. Hammond, S. M. MicroRNA as tumor suppressors. Nature Genet,2007,39:582-583
    [31]. Bonci, D. et al.. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Med,2008,14:1271-1277
    [32]. Johnson, S. M. et al.. RAS is regulated by the let-7 microRNA family. Cell,2005,120:635-647
    [33]. Yu, F. et al.. let-7 regulates self renewal and tumorigenicity of breast cancer Cells. Cell,2007, 131:1109-1123
    [34]. Mayr, C., Hemann, M. T. and Bartel, D. P.. Disrupting the pairing between let-7 and Hmga2 enhances oncogene transformation. Science,2007,315:1576-1579
    [35]. Varambally, S. et al.. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science,2008,322:1695-1699
    [36]. Rosenfeld, N. Aharonov R, Meiri E, et al.. MicroRNA accurately identify cancer tissue origin. Nature Biotechnol,2008,26:462-469
    [37]. Ma L, Teruya-Feldstein J, Weinberg RA.et al.. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature,2007,449(7163):682-688
    [38]. Gee, H. E. et al.. MicroRNA-10b and breast cancer metastasis. Nature,2008,455:E8-E9; author reply E9.
    [39]. Valastyan, Ferenc Reinhardt, Nathan Benaich. et al.. A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis. Cell,2009,137:1032-1046
    [40]. Schetter, A. J. et al.. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA,2008,299:425-436
    [41]. Czech MP. MicroRNA as therapeutic targets. N.Engl.J.Med.,2006,354:1194-1195
    [42]. Tavazoie SF, Alarcon C, Oskarsson T, et al.. Endogenous human MicroRNA that suppress breast cancer metastasis. Nature,2008,451(7175):147-52
    [43]. Mark E. Davis, Jonathan E. Zuckerman, Chung Hang J. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature,2010,464:1067-1070
    [44]. Markus Hafner, Markus Landthaler, Lukas Burger, et al..Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell,2010,141:129-141
    [45]. G. Burdelya, V. I. Krivokrysenko, T. C. Tallant, E. et al.. An agonist of Toll-like receptor 5 has radioprotective activity in mouse and primate models. Science,2008,320:226-230
    [46]. Little JB. Radiation carcinogenesis. Carcinogenesis,2000,1:397-404
    [47]. Brathwaite O, Bayona W, Newcomb EW. p53 mutations in C57BL/6J murine thymic lymphomas induced by y-irRadiation and Nmethylnitrosourea. Cancer Res,1992,52:3791-5
    [48]. Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to Radiation-induced tumorigenesis. Nat Genet,1994,8:66-9
    [49]. Mao HJ, Wu D, Perez-Losada J et al.. Genetic interactions between Pten and p53 in Radiation-induced lymphoma development. Oncogene,2003,2:8379-85
    [50]. Tamura Y, Maruyama M, Mishima Y et al.. Predisposition to mouse thymic lymphomas in response to ionizing Radiation depends on variant alleles encoding metal responsive transcription factor-1 (Mtf-1). Oncogene,2005,24:399-406
    [51]. Zhichao Fu,DD Huang, JM Cai, et al.. Expression Changes of ERK1/2, STAT3 and SHP-2 in Bone Marrow Cells from y-ray Induced Leukemia Mice. Journal of Radiation Research,2006,47:121-130
    [52]. Chen, C.Z., L. Li, H.F. Lodish, and D.P. Bartel. MicroRNA modulate hematopoietic lineage differentiation. Science,2004,303:83-86
    [53]. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell,2008, 133:217-222
    [54]. He, L. et al.. A microRNA polycistron as a potential human oncogene. Nature,2005,435:828-833
    [55]. Xiao, C. et al.. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol,2008,9:405-414
    [56]. Ventura, A. G et al.. Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters. Cell,2008,132:875-886
    [57]. Krammer PH. CD95's deadly mission in the immune system. Nature,2000,407:789-795
    [58]. Watanabe-Fukunaga, R., C. I. Brannan, N. G. Copeland, N. A. Jenkins, S. Nagata. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature,1992,356:314-317
    [59]. Takahashi, T., M. Tanaka, C. I. Brannan, N. A. Jenkins, N. G Copeland, T. Suda, S. Nagata. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell, 1994,76:969-976
    [60]. Rieux-Laucat, F., F. Le Deist, C. Hivroz, I. A. Roberts, K. M. Debatin, A. Fischer, J. P. de Villartay. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science, 1995,268:1347-1349
    [61]. Fisher, G. H., F. J. Rosenberg, S. E. Straus, J. K. Dale, L. A. Middleton, A. Y. Lin, W. Strober, M. J. Lenardo, J. M. Puck. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell,1995,81:935-946
    [62]. Restifo NP. Not so Fas:re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med,2000,6:493-495
    [63]. Ng EK, Chong WW, Jin H, et al.. Differential expression of MicroRNA in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut,2009,58:1375-1381
    [64]. A.J Schetter and C. C Harris. Plasma MicroRNA:a potential biomarker for colorectal cancer? Gut, 2009,58:1318-1319
    [65]. Monya Baker. RNA interference:MicroRNAs as biomarkers. Nature,2010,464:1227
    [66]. Zhao YL, Piao CQ. and Hei TK. Downregulation of Betaig-h3 is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene,2002, 21:7471-7477
    [67]. Ye Zhang, Gengyun Wen, Genze Shao, et al.. TGFBI Deficiency Predisposes Mice to Spontaneous Tumor Development. Cancer Research,2009,37:37-44
    [68]. Zhao YL, Piao CQ. and Hei TK. Overexpression of Betaig-h3 gene downregulates integrin Alpha5Betal and suppresses tumorigenicity in radiation-induced tumorigenic human bronchial epithelial cells. British J. of Cancer,2002,86:1923-8
    [69]. Zhao Y, El-Gabry M, Hei TK. Loss of βig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Mol Carcinog,2006,45:84-92
    [70]. Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zhao Y. Epigenetic inactivation of βig-h3 gene in human cancer cells. Cancer Res,2006,66:4566-73
    [71]. Sakaguchi, S., Yamaguchi, T., Nomura, T. and Ono, M. Regulatory T cells and immune tolerance. Cell,2008,133:775-787
    [72]. Belkaid, Y. and Tarbell, K. Regulatory T cells in the control of host-microorganism interactions. Annu.Rev.Immunol,2009,27:551-589
    [73]. Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat.Immunol,2003,4:330-336
    [74]. Bluestone, J. A. and Abbas, A. K. Natural versus adapted regulatory T cells. Nature Rev.Immunol, 2003,3:253-257
    [75].Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC. Expansion of myeloid immune suppressor Gr+CD1lb+cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell,2004,6:409-21
    [76]. Hiratsuka S,Watanabe A,Aburatani H,Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol, 2006,8:1369-75
    [77]. Banchereau, J., and R. Steinman. Dendritic cells and the control of immunity. Nature,1998, 392:245-252
    [78]. Hamida Hammad, Bart N. Lambrecht. Dendritic cells and epithelial cells:linking innate and adaptive immunity in asthma. Nat.Rev.Immunol,2008,8:193-204
    [79]. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol, 2003,21:685-711
    [80]. Ardavin, C. Origin precursors and differentiation of mouse dendritic cells. Nat.Rev.Immunol, 2003,3:582-590
    [81]. MinghuiZhang, XuetaoCao. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol,2004,5:1124-1133
    [82]. Park BH. Duel nature of TGF-beta signaling:tumor suppressor vs. tumor promoter. Curr Opin Oncol,2005,1:49-54
    [83]. Derynck, R., Akhurst, R. J. and Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet,2001,29:117-129
    [84]. Brandi N. Davis, Aaron C. Hilyard, Giorgio Lagna and Akiko Hata. SMAD proteins control DROSHAmediated microRNA maturation. Nature,2008,454:56-61
    [85]. Liggett W. H., Jr., Sidransky D. Role of the p16 tumor suppressor gene in cancer. J.Clin.Oncol, 1998,16:1197-1206
    [86]. Lukas J., Parry D., Aagaard L., Mann D. J., Bartkova J., Strauss M., Peters G., Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature,1995, 375:503-506
    [87]. Ranade K., Hussussian C. J., Sikorski R. S., Varmus H. E., Goldstein A. M., Tucker M. A., Serrano M., Hannon G J., Beach D., Dracopoli N. C. Mutations associated with familial melanoma impair p16INK4 function. Nat.Genet,1995,10:114-116
    [88]. Russo A. A., Tong L., Lee J. O., Jeffrey P. D., Pavletich N. P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature,1998,395:237-243
    [89]. Brotherton D. H., Dhanaraj V., Wick S., Brizuela L., Domaille P. J., Volyanik E., Xu X., Parisini E., Smith B. O., Archer S. J., Serrano M., Brenner S. L., Blundell T. L., Laue E. D. Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature, 1998,395:244-250
    [90]. Janzen, V., Forkert, R., Fleming, H.E., Saito, Y., Waring, M.T., Dombkowski, D.M., Cheng, T., DePinho, R.A., Sharpless, N.E., and Scadden, D.T. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16/INK4a. Nature,2006,443:421-426
    [91]. Anna V. Molofsky, Shalom G Slutsky, Nancy M. Joseph, Shenghui He, et al.. Increasing p16/INK4a expressiondecreases forebrain progenitors and neurogenesis during ageing. Nature,2006, 443:448-452
    [92]. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell,2006, 127:265-275
    [93]. Ashish Lal, Hyeon Ho Kim, Kotb Abdelmohsen, et al.. p16INK4a Translation Suppressed by miR-24. PLoS ONE,2008,3(3):e1864
    [94]. Elaine Bell. Orchestrating T-cell development. Nature Reviews Immunology,2005,5:97
    [95]. Hayday, A. C., D. J. Pennington. Key factors in the organized chaos of early T cell development. Nat.Immunol,2007,8:137-144
    [96]. Von Boehmer, H.. Unique features of the pre-T-cell receptor α-chain:not just a surrogate. Nat.Rev.Immunol,2005,5:571-577
    [97]. Clements, J. L., B. Yang, S. E. Ross-Barta, S. L. Eliason, R. F. Hrstka, R. A. Williamson, G. A. Koretzky. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science,1998,281:416-419
    [98]. Pivniouk, V., E. Tsitsikov, P. Swinton, G. Rathbun, F. W. Alt, R. S. Geha. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell,1998, 94:229-238
    [99]. Zhang, L., V. Camerini, T. P. Bender, K. S. Ravichandran. A nonredundant role for the adapter protein Shc in thymic T cell development. Nat.Immunol,2002,3:749-755
    [100]. Chang, J. T., V. R. Palanivel, I. Kinjyo, F. Schambach, A. M. Intlekofer, A. Banerjee, S. A. Longworth, K. E. Vinup, P. Mrass, J. Oliaro, et al.. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science,2007,315:1687-1691
    [101]. Komori, T., A. Okada, V. Stewart, F. W. Alt. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science,1993,261:1171-1175
    [102].Gilfillan, S., A. Dierich, M. Lemeur, C. Benoist, D. Mathis. Mice lacking TdT:mature animals with an immature lymphocyte repertoire. Science,1993,261:1175-1178
    [103]. PingGao, Irina Tchernyshyov, Tsung-Cheng Chang c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature,2009,458:762-765
    [104]. Tao Yu, Xiao-yi Wang, Ren-guo Gong, et al.The expression profile of MicroRNA in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J.Exp.Clin.Cancer.Res, 2009,13:28:64
    [105].Celeste A, Petersen S, Romanienko PJ, Femandez-Capetillo O, Chen HT and Sedelnikova OA. Genomic instability in mice lacking histone H2AX. Science,2002,296(5569):922-927
    [106]. Michael-Christoher K, Jung-Ae Kim, Michael D, Jeffrey F, Dianjan C, Jacob C. H, Megumi O, et al.. A phosphatase complex that dephosphorylates yH2AX regulates DNA damage checkpoint recovery. Nature,2006,439(26):497-501
    [107]. Stewart GS, Wang B, Bignell CR, Taylor AM and Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature,2003,421(6929):961-966
    [108]. Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature,2003,421(6929):952-956
    [109]. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature,2005,434(7035):829-30
    [110]. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med,1999,5:1365-1369
    [111]. Dong H, Strome S, Salomao DR, et al.. Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion. Nat Med,2002,8:793-800
    [112]. Curiel TJ, Wei S, Dong H, et al.. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med,2003,9:562-567
    [113]. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tarik Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med,2007,13:84-88
    [114]. He and Hannon. L. He and G.J. Hannon, MicroRNA:small RNAs with a big role in gene regulation. Nat.Rev.Genet,2004,5:522-531
    [115]. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science,2005,309:1577-1581
    [116]. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al.. Silencing of MicroRNA in vivo with'antagomirs'. Nature,2005,438:685-689
    [117]. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al.. LNA-mediated microRNA silencing in non-human primates. Nature,2008,452:896-899
    [118]. Kota, J. et al.. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell,2009,137:1005-1017
    [119]. Jinyong Luo, Zhong-Liang Deng, Xiaoji Luo. et al.. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nature Protocols,2007,2:1236-1247
    [120]. Dunn, GP., Bruce, A.T., Ikeda, H., Old, L.J. and Schreiber, R.D. Cancer immunoediting:from immunosurveillance to tumor escape. Nat. Immunol,2002,3:991-998
    [121]. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance:immunoselection and immunosubversion. Nat Rev Immunol,2006,6:715-727
    [122]. Friedl P, Wolf K. Tumour-cell invasion and migration:diversity and escape mechanisms. Nat.Rev.Cancer,2003,3:362-374
    [123]. Karin M, Lawrence T, Nizet V. Innate immunity gone awry:linking microbial infections to chronic inflammation and cancer. Cell,2006,124:823-835
    [124]. Sharpe, A. H.& Freeman, G J. The B7-CD28 superfamily. Nature Rev. Immunol,2002, 2:116-126
    [125]. Chen, L. Co-inhibitory molecules of the B7—CD28 family in the control of T-cell immunity. Nature Rev. Immunol,2004,4:336-347
    [126]. Lee, K.M. et al.. Molecular basis of T cell inactivation by CTLA-4. Science,1998, 282:2263-2266
    [127]. Greenwald, R.J., Freeman, GJ. and Sharpe, A.H. The B7 family revisited. Annu.Rev.Immunol, 2005,23:515-548
    [128]. Arlene H Sharpe, E John Wherry, Rafi Ahmed and Gordon J Freeman. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nature Immunology, 2007,8:239-245
    [129]. Latchman Y, Wood C, Chernova T, et al.. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol,2001,2:261-268
    [130]. Nishimura H, Okazaki T, Tanaka Y, et al.. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science,2001,29:319-322
    [131]. Daniel L. Barber, Rafi Ahmed. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature,2006,439:682-687
    [132]. Cheryl L. Day, Bruce D. Walker. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature,2006,443(7109):350-4
    [133]. Lydie Trautmann, Rafick-Pierre Sekaly. Upregulation of PD-1 expression on HIV-specific CD8(+) T cells leads to reversible immune dysfunction. Nat Med,2006,12(10):1198-1202
    [134]. He L, He X, Lim LP, de Stanchina E, et al.. A microRNA component of the p53 tumour suppressor network. Nature,2007,447:1130-1134
    [135]. Raver-Shapira, N. et al.. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol.Cell,2007,26:731-743
    [136]. Chang, T.-C. et al.. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol.Cell,2007,26:745-752
    [137]. Chia-Lin Wei,Qiang Wu,Vinsensius B et al.. A global map of p53 transcriptionfactor binding sites in the human genome. Cell,2006,124:207-219
    [138]. Crosfill ML, Lindop PS, Rotblat J. Variation of sensitivity to ionizing radiation with age. Nature, 1959,183:1729-1730
    [139]. Bernhard EJ, McKenna WG, et al.. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res,1998,58(8):1754-61
    [140]. Kirsch DG, Santiago PM, di Tomasso E, Sullivan JM, Hou WS, Dayton T, Jeffords LB, Sodha P, Mercer K, Cohen R, Takeuchi O, Korsmeyer SJ, Bronson R, Kim CF, Haigis KM, Jain RK, Jacks T. p53 Controls Radiation-induced Gastrointestinal Syndrome in Mice Independent of Apoptosis. Science, 2010,327:593-596
    [141]. Milena S. Nicoloso, Riccardo Spizzo, Masayoshi Shimizu, Simona Rossi & George A. Calin. MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer,2009, 9:293-302
    [142]. Sarah Seton-Rogers. MicroRNA:Stage-specific signatures. Nature Reviews Cancer,2009, 9:766-767
    [143]. Lin He, Xingyue He, Scott W. Lowe & Gregory J. Hannon microRNAs join the p53 network— another piece in the tumour-suppression puzzle. Nature Reviews Cancer,2007,7:819-822
    [144]. Michaela Beitzinger and Gunter Meister. MicroRNA:From Decay to Decoy. Cell,2010, 5:612-614
    [145]. Anna M. Eiring,Jason G Harb,Paolo Neviani,et al.. miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell,2010,5:652-665
    [146]. Collin Melton, Robert L. Judson and Robert Blelloch. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature,2010,463:621-626
    [1]. Collin Melton, Robert L. Judson & Robert Blelloch. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature,2010,463:621-626
    [2]. Michaela Beitzinger and Gunter Meister. MicroRNA:From Decay to Decoy. Cell,2010,5:612-614
    [3]. Anna M. Eiringl,Jason G. Harbl,Paolo Neviani,et al. miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell,2010,5:652-665
    [4]. Foteini Christodoulou, Florian Raible, Raju Tomer, et al.Ancient animal MicroRNA and the evolution of tissue identity. Nature,2010,463:1084-1088
    [5]. Bartel, D.P. MicroRNA:Target recognition and regulatory functions. Cell,2009,136:215-233
    [6]. Bartel, D.P. MicroRNA:genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297
    [7]. S.L. Ameres, J. Martinez and R. Schroeder, Molecular basis for target RNA recognition and cleavage by human RISC. Cell,2007,130:101-112
    [8]. B. Haley and P.D. Zamore, Kinetic analysis of the RNAi enzyme complex. Nat. Struct.Mol.Biol. 2004,11:599-606
    [9]. Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark and S. Kim et al., The nuclear RNase III Drosha initiates microRNA processing. Nature,2003,425:415-419
    [10]. J.J. Song, S.K. Smith, G.J. Hannon and L. Joshua-Tor, Crystal structure of Argonaute and its implications for RISC slicer activity. Science,2004,305:1434-1437
    [11]. J.G. Ruby, C. Jan, C. Player, M.J. Axtell, W. Lee, C. Nusbaum, H. Ge and D.P. Bartel. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell,2006,127:1193-1207
    [12]. P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice, A.O. Kamphorst and M. Landthaler et al., A mammalian microRNA expression atlas based on small RNA library sequencing. Cell,2007,129:1401-1414
    [13]. K.C. Miranda, T. Huynh, Y. Tay, Y.S. Ang, W.L. Tam, A.M. Thomson, B. Lim and I. Rigoutsos. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell,2006,126:1203-1217
    [14]. D. Long, R. Lee, P. Williams, C.Y. Chan, V. Ambros and Y. Ding. Potent effect of target structure on microRNA function. Nat.Struct.Mol.Biol.,2007,14:287-294
    [15]. S.N. Bhattacharyya, R. Habermacher, U. Martine, E.I. Closs and W. Filipowicz. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,2006, 125:1111-1124
    [16]. K.K. Farh, A. Grimson, C. Jan, B.P. Lewis, W.K. Johnston, L.P. Lim, C.B. Burge and D.P. Bartel. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science,2005, 310:1817-1821
    [17]. W. Filipowicz, S.N. Bhattacharyya and N. Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat.Rev.Genet.,2008,9:102-114
    [18]. S. Bagga, J. Bracht, S. Hunter, K. Massirer, J. Holtz, R. Eachus and A.E. Pasquinelli. Regulation by let-7 and lin-4 miRNA results in target mRNA degradation. Cell,2005,122:553-563
    [19]. S. Yekta, I.H. Shih and D.P. Bartel. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004,304:594-596
    [20]. A.J. Giraldez, Y. Mishima, J. Rihel, R.J. Grocock, S. Van Dongen, K. Inoue, A.J. Enright and A.F. Schier. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science,2006, 312:75-79
    [21]W.Y. Choi, A.J. Giraldez and A.F. Schier. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science,2007,318:271-274
    [22]. Lee, R., Feinbaum, R., and Ambros, V.. The heterochronic gene lin-4 of C. elegans encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75:843-854
    [23]. A. Stark, J. Brennecke, N. Bushati, R.B. Russell and S.M. Cohen. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell,2005, 123:1133-1146
    [24]. L.P. Lim, N.C. Lau, P. Garrett-Engele, A. Grimson, J.M. Schelter, J. Castle, D.P. Bartel, P.S. Linsley and J.M. Johnson. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005,433:769-773
    [25]. R. Sandberg, J.R. Neilson, A. Sarma, P.A. Sharp and C.B. Burge. Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science,2008, 320:1643-1647
    [26]. M.W. Rhoades, B.J. Reinhart, L.P. Lim, C.B. Burge, B. Bartel and D.P. Bartel. Prediction of plant microRNA targets. Cell,2002,110:513-520
    [27]. M. Kedde, M.J. Strasser, B. Boldajipour, J.A. Oude Vrielink, K. Slanchev, C. le Sage, R. Nagel, P.M. Voorhoeve, J. van Duijse and U.A. Orom et al.. RNA-binding protein Dndl inhibits microRNA access to target mRNA. Cell,2007,131:1273-1286
    [28]. E.C. Lai. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat.Genet.,2002,30:363-364
    [29]. M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul and E. Segal. The role of site accessibility in microRNA target recognition. Nat.Genet.,2007,39:1278-1284
    [30]. A. Krek, D. Grun, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin, I. da Piedade, K.C. Gunsalus and M. Stoffel et al.. Combinatorial microRNA target predictions. Nat.Genet.,2005, 37:495-500
    [31]. Baek, J. Villen, C. Shin, F.D. Camargo, S.P. Gygi and D.P. Bartel. The impact of microRNAs on protein output. Nature,2008,455:64-71
    [32]. Lewis, B.P., C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005,120:15-20
    [33]. Ambros V. The functions of animal MicroRNA. Nature,2004,431:350-355
    [34]. X. Li and R.W. Carthew. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell,2005,123:1267-1277
    [35]. C. Xiao, D.P. Calado, G. Galler, T.H. Thai, H.C. Patterson, J. Wang, N. Rajewsky, T.P. Bender and K. Rajewsky. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell,2007,131:146-159
    [36]. Y. Zhao, E. Samal and D. Srivastava. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005,436:214-220
    [37]. M.N. Poy, L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky and P. Rorsman et al.. A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004,432:226-230
    [38]. R.J. Johnston and O. Hobert. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature,2003,426:845-849
    [39]. J.S. Karres, V. Hilgers, I. Carrera, J. Treisman and S.M. Cohen. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell,2007,131:136-145
    [40]. RE. Lanford, Elisabeth S,Hildebrandt-Eriksen, Andreas Petrl. Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection. Science,2010,327:198-201
    [41]. Calin, G. A. and Croce, C. M. MicroRNA signatures inhuman cancers. Nature.Rev.Cancer.,2006, 6:857-866
    [42]. Calin, G. A. et al.. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N.Engl.J.Med.,2005,353:1793-1801
    [43]. A. Climmino et al.. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS,2005, 13944-13949
    [44]. Hammond, S. M. MicroRNA as tumor suppressors. Nature Genet,2007,39:582-583
    [45]. Esquela-Kerscher A, Slack FJ. OncomiRs-MicroRNA with a role in cancer. Nat.Rev.Cancer., 2006,6:259-269
    [46]. Johnson, S. M. et al.. RAS is regulated by the let-7 microRNA family. Cell,2005,120:635-647
    [47]. Yu, F. et al.. let-7 regulates self renewal and tumorigenicity of breast cancer Cells. Cell,2007, 131:1109-1123
    [48]. Mayr, C., Hemann, M. T. and Bartel, D. P.. Disrupting the pairing between let-7 and Hmga2 enhances oncogene transformation. Science,2007,315:1576-1579
    [49]. Gabriely, G. et al.. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol.Cell.Biol.,2008,28:5369-5380
    [50]. Meng, F. et al.. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133:647-658
    [51]. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell,2008, 133:217-222
    [52]. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature,2005,435:828-833
    [53]. Xiao, C. et al.. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol,2008,9:405-414
    [54]. Ventura, A. G. et al.. Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters. Cell,2008,132:875-886
    [55]. Bonci, D. et al.. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Med,2008,14:1271-1277
    [56]. Varambally, S. et al.. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science,2008,322:1695-1699
    [57]. Voorhoeve, P. M. et al.. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ Cell tumors. Cell,2006,124:1169-1181
    [58]. Rosenfeld, N. et al.. MicroRNA accurately identify cancer tissue origin. Nature Biotechnol,2008, 26:462-469
    [59]. Ma L, Teruya-Feldstein J, Weinberg RA.et al.. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature,2007,449(7163):682-688
    [60]. Gee, H. E. et al.. MicroRNA-lOb and breast cancer metastasis. Nature,2008,455:E8-E9; author reply E9
    [61]. Valastyan, Ferenc Reinhardt, Nathan Benaich. et al..A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis. Cell,2009,137:1032-1046
    [62]. Schetter, A. J. et al.. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA,2008,299:425-436
    [63]. Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al.. MicroRNA expression profiles classify human cancers. Nature,2005,435:834-838
    [64]. Ng EK, Chong WW, Jin H, et al.. Differential expression of MicroRNA in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut,2009,58:1375-1381
    [65]. A.J Schetter and C. C Harris. Plasma MicroRNA:a potential biomarker for colorectal cancer? Gut, 2009,58:1318-1319
    [66]. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y.,et al.. Plasma miR-208 as a Biomarker of Myocardial Injury. Clin.Chem.,2009,55:1944-1949
    [67]. Monya Baker. RNA interference:MicroRNAs as biomarkers. Nature,2010,464:1227
    [68]. Czech MP. MicroRNA as therapeutic targets. N.Engl.J.Med.,2006,354:1194-1195
    [69]. Tavazoie SF, Alarcon C, Oskarsson T, et al.. Endogenous human MicroRNA that suppress breast cancer metastasis. Nature,2008,451(7175):147-52
    [70]. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al.. Silencing of MicroRNA in vivo with'antagomirs'. Nature,2005,438:685-689
    [71]. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al..LNA-mediated microRNA silencing in non-human primates. Nature,2008,452:896-899
    [72]. Kota, J. et al.. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell,2009,137:1005-1017
    [73]. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science,2005,309:1577-1581
    [74]. Chen, C.Z., L. Li, H.F. Lodish, and D.P. Bartel. MicroRNA modulate hematopoietic lineage differentiation. Science,2004,303:83-86
    [75]. He and Hannon. L. He and G.J. Hannon. MicroRNA:small RNAs with a big role in gene regulation. Nat.Rev.Genet,2004,5:522-531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700