用户名: 密码: 验证码:
糖蛋白质组学分析肝癌相关血清糖蛋白岩藻糖基化异常
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究目的]
     我国是乙型肝炎病毒(HBV)高感染的国家之一。由HBV导致的肝癌死亡率高,手术治疗后5年生存率较低。显著提高治疗效果的有效手段是早期诊断。目前常用的肝癌实验初检方法是血清AFP含量测定。虽然AFP测定方法简单,但是一些慢性肝病AFP值也升高,使得AFP检测肝癌的特异性不高。研究发现,肝癌血清AFP蛋白发生高度岩藻糖基化,并且特异性高。检测这部分AFP(AFP-L3)可以大大提高肝癌诊断水平。因此,2005年美国FDA批准AFP-L3为肝癌诊断的唯一标志物。但是,鉴于约有一半肝癌患者血清AFP值为阴性,有必要进一步建立其他实验方法用来早期诊断肝癌。
     AFP-L3的发现提示我们,糖蛋白的岩藻糖基化与肝癌发生、发展相关。糖基化是最重要的蛋白质翻译后修饰之一,在许多疾病的发生、发展过程中,糖蛋白的糖基化程度或糖链结构都发生了改变,导致糖蛋白及其所在细胞的功能障碍,甚至出现恶性表型。而在肝癌中,岩藻糖基化变化可能不仅仅限于AFP。研究者发现,血清转铁蛋白、高尔基蛋白73等在肝癌中也发生了岩藻糖基化变化。说明肝癌血清中存在着许多岩藻糖基化异常的蛋白,而这些蛋白可能作为新的肝癌诊断标志物。
     根据小扁豆凝集素可以专一性捕获岩藻糖基化糖蛋白的原理,本研究应用基于小扁豆凝集素亲和的糖蛋白质组学技术,分析和鉴定肝癌血清中岩藻糖基化异常的糖蛋白质组,并验证其诊断肝癌的潜能。
     [研究方法]
     1应用基于小扁豆凝集素亲和的双向电泳技术分离鉴定肝癌相关血清岩藻糖基化糖蛋白:将肝癌组、慢性肝病组和健康人组血清标本各10例分别混合后,通过小扁豆凝集素微小亲和层析柱富集血清岩藻糖基化糖蛋白。应用双向电泳技术分离富集的蛋白,通过分析比较,找出差异蛋白点,然后应用质谱技术鉴定差异蛋白点,最后通过Western blot验证其中几个蛋白在各组血清中的岩藻糖基化情况。
     2应用基于小扁豆凝集素亲和的CLINPROT系统建立肝癌相关血清岩藻糖基化蛋白质指纹图谱模型:应用小扁豆凝集素磁珠富集肝癌组、肝硬化组、慢性肝炎组和健康人组血清标本中岩藻糖基化蛋白,通过飞行时间质谱技术检测富集的蛋白,建立各组岩藻糖基化蛋白质指纹图谱模型,软件分析后建立诊断模型,并进行盲法验证。
     3应用基于小扁豆凝集素亲和的CLINPROT系统建立肝癌相关血清岩藻糖基化肽指纹图谱模型:应用小扁豆凝集素磁珠富集肝癌组、肝硬化组、慢性肝炎组和健康人组血清标本中岩藻糖基化蛋白,取部分富集的蛋白进行胰酶酶解,然后将酶解后的多肽通过飞行时间质谱技术进行检测,建立各组岩藻糖基化肽指纹图谱模型,软件分析后建立诊断模型,并进行盲法验证。
     [结果]
     1差异蛋白鉴定和分析:通过双向电泳分离鉴定出22种血清蛋白质,其岩藻糖基化程度在肝癌组、慢性肝病组和健康人组中有明显差异。其中α-1-B糖蛋白、激肽原1、血液结合素等岩藻糖基化程度在肝癌组、慢性肝病组和健康人组中依次降低;相反,载脂蛋白H、补体因子H相关蛋白1等岩藻糖基化程度则在肝癌组、慢性肝病组和健康人组中依次升高。另外,肝癌组中角蛋白9、角蛋白10等岩藻糖基化程度高于慢性肝病组和健康人组;而健康人组中抗凝血酶Ⅲ、富含组氨酸糖蛋白、α-1-微球蛋白前体等岩藻糖基化程度高于肝癌组和慢性肝病组;补体C7和ATP依赖的RNA解旋酶DDX41岩藻糖基化程度则是肝癌组和慢性肝病组高于健康人组;RNA结合蛋白12岩藻糖基化程度则是慢性肝病组和健康人组高于肝癌组;α-2巨球蛋白和细小白蛋白a岩藻糖基化程度则是肝癌组和健康人组高于慢性肝病组。通过Western blot验证,α-1-B糖蛋白和岩藻糖基化α-1-B糖蛋白表达在肝癌组、慢性肝病组和健康人组之间没有显著差异(P>0.05)。而载脂蛋白H和岩藻糖基化载脂蛋白H表达在肝癌组、慢性肝病组和健康人组之间有显著差异(P<0.05),岩藻糖基化载脂蛋白H表达在三组之间差异更为明显(1:1.56:3.83)。
     2肝癌相关血清岩藻糖基化糖蛋白质指纹图谱模型建立和应用:将4组血清蛋白质指纹图谱模型进行各种配对的比较,建立一系列分类模型。分析模型后发现血清糖蛋白岩藻糖基化异常与肝癌发生、发展相关。经过盲法检测,从所有血清标本、慢性肝病和肝硬化中分别检出肝癌的灵敏度依次为74.07%、81.48%和88.89%,特异性依次为76.81%、83.72%和86.36%。将该系列诊断模型与AFP检测联用,肝癌诊断的灵敏度和特异性都得到显著提高,检测灵敏度依次为81.48%、88.89%和92.59%,特异性依次为88.41%、90.70%和95.45%。
     3肝癌相关血清岩藻糖基化肽指纹图谱模型建立和应用:将4组血清多肽指纹图谱模型进行各种配对的比较,建立一系列分类模型。分析模型后同样发现血清糖蛋白岩藻糖基化异常与肝癌发生发展相关。经过盲法检测,从所有血清标本、慢性肝病和肝硬化中分别检出肝癌的灵敏度依次为70.37%、77.78%和81.48%,特异性依次为69.57%、74.42%和81.82%。将该系列诊断模型与AFP检测联用,肝癌诊断的灵敏度和特异性都得到显著提高,则检测灵敏度依次为77.78%、85.19%和88.89%,特异性依次为88.41%、88.37%和90.91%。
     [结论]
     1血清糖蛋白岩藻糖基化异常与肝癌发生、发展有关。并且在肝癌发生、发展过程中,不同糖蛋白岩藻糖基化异常的表现形式不同,包括逐渐升高和逐渐降低等。
     2岩藻糖基化α-1-B糖蛋白不适合作为肝癌诊断候选标志物。
     3岩藻糖基化载脂蛋白H可作为潜在的肝癌早期诊断标志物。
     4肝癌相关血清岩藻糖基化蛋白质/肽指纹图谱模型具有肝癌早期诊断临床应用潜能。
[Objective]
     Hepatitis B virus (HBV) infection is high in China. Infection with HBV is the major etiology of hepatocellular carcinoma (HCC). The high mortality associated with HCC is partly due to unresponsiveness to treatment, with a low 5-year survival rate after diagnosis. As therapeutic options increase, early detection of HCC is important to improving the prognosis. Determination of AFP levels is often included as a serum marker of HCC. However, AFP can be produced under many circumstances, including other liver diseases, and is not present in all those with HCC. Therefore, the use of AFP as a primary screen for HCC has been questioned. Specifically, AFP becomes fucosylated and this alteration is called AFP-L3. AFP-L3 is a more specific marker of HCC than is the total AFP protein level. Indeed, AFP-L3, gained approval from the US FDA in 2005 as the only diagnostic assay for HCC.
     AFP-L3 discovery prompted us fucosylated glycoproteins associated with the occurrence and development of HCC. Glycosylation is the most important post-translational modification of proteins. In many diseases, the development process, the glycan level of protein glycosylation or glycan structures have changed. This has led to glycoproteins and their host cells dysfunction, and even a malignant phenotype. The fucosylation change is not limited to AFP in HCC. The researchers found other glycoproteins such as serotransferrin, Golgi protein 73 also become fucosylated with the development of HCC and a recent study has proposed that these glycoforms may be valuable biomarkers of HCC.
     Because of lens culinaris agglutinin (LCA) can specifically capture fucosylated glycoproteins, we will use proteomics technology based on LCA affinity separation attempt to look for other serum fucosylated glycoproteins in HCC and verify the potential of the diagnosis of HCC.
     [Methods]
     1 Application isolation and identification two-dimensional gel electrophoresis based on LCA affinity separation fucosylated glycoproteins associated with HCC:The HCC group, chronic liver disease group and the healthy control group of 10 cases of serum samples were mixed by LCA-enriched fucosylated glycoproteins. Through the two-dimensional electrophoresis separation of these proteins, then analyzed and compared to identify differences in protein spots by mass spectrometry identification of differences in protein spots. Finally detected by Western blot, several of which protein in the serum of each group of fucosylation conditions.
     2 Application CLINPROT system based on LCA affinity separation, the establishment of HCC-related fucosylation of serum protein fingerprinting model: Application of LCA-magnetic beads were enriched HCC group, liver cirrhosis group, chronic hepatitis group and the healthy control group serum samples fucosylated proteins. Time of flight mass spectrometry technology was used to detect these proteins. Collecting relevant data to establish groups of fucosylated proteins fingerprint model. Through software analysis, establish the diagnosis model and use it to blind test.
     3 Application CLINPROT system based on LCA affinity separation, the establishment of HCC-related fucosylation of serum peptide fingerprinting model: Application of LCA-magnetic beads were enriched HCC group, liver cirrhosis group, chronic hepatitis group and the healthy control group serum samples fucosylated proteins. Use trypsin digestion part of these proteins. Then time of flight mass spectrometry to detect the peptides after trypsin digestion. Collecting relevant data to establish groups of fucosylated peptides fingerprint models. Through software analysis, establish the diagnosis models and use them to blind test.
     [Results]
     1 Identification and analysis of differentially expressed proteins:Isolated and identified 22 differentially expressed proteins from serum of the HCC group, chronic liver disease group and the healthy control group. The extent of fucosylation ofα-1-B glycoprotein, kininogen 1, hemopexin, etc. in HCC group, chronic liver disease group and healthy group in turn lower; in contrast, apolipoprotein H, complement factor H-related protein 1, etc. in turn increase; keratin 9, keratin 10 etc. in HCC group is higher than chronic liver disease group and healthy group; anti-thrombin 3, histidine-rich glycoprotein,α-1-microglobulin precursors in healthy group is higher than HCC group and chronic liver disease group; complement C7, and ATP-dependent RNA helicase DDX41 in healthy group is lower than HCC group and chronic liver disease group; RNA-binding protein 12 in HCC group is lower than chronic liver disease group and healthy group; a-2-macroglobulin and parvalbumin alpha in chronic liver disease group is lower than HCC group and healthy group.
     By Western blot test,α-1-B glycoprotein(A1BG) and fucosylatedα-1-B glycoprotein (Fc-A1BG) expression in the serum of each group:A1BG and Fc-A1BG expression in the HCC group, chronic liver disease group and the healthy control group were not significantly different (P>0.05).
     By Western blot test, Apolipoprotein H(APOH) and fucosylated apolipoprotein H (Fc-APOH) expression in the serum of each group:APOH and Fc-APOH expression in the HCC group, chronic liver disease group and the healthy control group were significantly different (P<0.05). Fc-APOH expression more obvious differences among three groups of serum samples (1:1.56:3.83).
     2 Establishment and application of HCC-associated fucosylation of serum protein fingerprinting model:Four groups of serum protein fingerprint model were compared to establish a series of various classification model. Analysis model found that serum glycoprotein fucosylation abnormalities associated with the occurrence and development of HCC. At the same time, diagnosis of HCC classification model through blind testing, HCC samples could be distinguished from all serum samples, the liver disease samples and liver cirrhosis samples with a sensitivity/specificity of 74.07%/76.81%,81.48%/83.72% and 88.89%/86.36% respectively. Combined with the AFP test, the sensitivity/specificity increased to 81.48%/88.41%,88.89%/90.70% and 92.59%/95.45% respectively.
     3 Establishment and application of HCC-associated fucosylation of serum peptide fingerprinting model:Four groups of serum peptide fingerprint model were compared to establish a series of various classification model. Analysis model found that serum glycopeptide fucosylation abnormalities associated with the occurrence and development of HCC. At the same time, diagnosis of HCC classification model through blind testing, HCC samples could be distinguished from all serum samples, the liver disease samples and liver cirrhosis samples with a sensitivity/specificity of 70.37%/69.57%,77.78%/74.42% and 81.48%/81.82% respectively. Combined with the AFP test, the sensitivity/specificity increased to 77.78%/88.41%,85.19%/88.37% and 88.89%/90.91% respectively.
     [Conclusions]
     1 Serum glycoproteins fucosylation abnormalities associated with the occurrence and development of HCC, but also in the process of occurrence and development of HCC, different glycoproteins fucosylation unusual manifestation of different forms, including increased gradually and decreased gradually.
     2 Fucosylatedα-1-B glycoprotein is not suitable as a candidate diagnostic marker for HCC.
     3 Fucosylated apolipoprotein H can be used as a potential marker of HCC for early diagnosis.
     4. HCC-associated fucosylation of serum protein/peptide fingerprinting early diagnosis of HCC model has the potential for clinical application.
引文
[1]Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell,2006, 126(5):855-867.
    [2]Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem,2004, 73:491-537.
    [3]Brooks SA, Carter TM, Royle L, Harvey DJ, Fry SA, Kinch C, Dwek RA, Rudd PM. Altered glycosylation of proteins in cancer:what is the potential for new anti-tumour strateges. Anticancer Agents Med Chem,2008,8(1):2-21.
    [4]Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immuno-therapy of tumours. Immunol Cell Biol,2005,83(4):429-439.
    [5]Peracaula R, Barrabes S, Sarrats A, Rudd PM, de Llorens R. Altered glycosylation in tumours focused to cancer diagnosis. Dis Markers,2008,25(4-5):207-218.
    [6]Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, Murata K, Ohigashi H, Yokoyama S, Eguchi H, Ishikawa O, Ito T, Kato M, Kasahara A, Kawano S, Gu J, Taniguchi N, Miyoshi E. Fucosylated haptoglobin is a novel marker for pancreatic cancer:a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer,2006, 118:2803-2808.
    [7]Barrabes S, Pages-Pons L, Radcliffe CM, Tabares G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, De Llorens R, Peracaula R. Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology, 2007,17:388-400.
    [8]Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M, Uozumi N, Ihara S, Lee SH, Ikeda Y, Yamaguchi Y, Aze Y, Tomiyama Y, Fujii J, Suzuki K, Kondo A, Shapiro SD, Lopez-Otin C, Kuwaki T, Okabe M, Honke K, Taniguchi N. Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose deficient mice. Proc Natl Acad Sci USA,2005,102:15791-15796.
    [9]Geng F, Shi BZ, Yuan YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients:prognostic implications. Cell Res,2004,14:423-433.
    [10]Saldova R, Royle L, Radcliffe CM, Abd Hamid UM, Evans R, Arnold JN, Banks RE, Hutson R, Harvey DJ, Antrobus R, Petrescu SM, Dwek RA, Rudd PM. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology,2007,17:1344-1356.
    [11]Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Aleixandre RN, Hoesel W, Dwek RA, Rudd PM, Peracaula R de, Llorens R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology,2006,16:132-145.
    [12]Blomme B, Steenkiste CV, Callewaert N, Vlierberghe HV. Alteration of protein glycosylation in liver diseases. J Hepatol,2009,50(3):592-603.
    [13]殷正丰.甲胎蛋白异质体作为肝癌标志物的临床应用.实用肿瘤杂志,2004,19(1):1-4.
    [14]Sterling RK, Jeffers L, Gordon F, Venook AP, Reddy KR, Satomura S, Kanke F, Schwartz ME, Sherman M. Utility of Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein and des-gamma-carboxy prothrombin, alone or in combination, as biomarkers for hepatocellular carcinoma. Clin Gastroenterol Hepatol,2009,7(l):104-113.
    [15]Norton PA, Comunale MA, Krakover J, Rodemich L, Pirog N, D'Amelio A, Philip R, Mehta AS, Block TM. N-linked glycosylation of the liver cancer biomarker GP73. J Cell Biochem,2008,104(1): 136-149.
    [16]Lee EY, Kang JH, Kim KA, Chung TW, Kim HJ, Yoon DY, Lee HG, Kwon Dh, Kim JW, Kim CH, Song EY. Development of a rapid, immunochromatographic strip test for serum asialo alphal-acid glycoprotein in patients with hepatic disease. J Immunol Methods,2006,308(1-2):116-123.
    [17]Naitoh A, Aoyagi Y, Asakura H. Highly enhanced fucosylation of serum glycoproteins in patients with hepatocellular carcinoma. J Gastroenterol Hepatol,1999,14(5):436-445.
    [18]Yamashita K, Tokaui K, Iwaki K, Takamisawa I, Tateishi N, Higashi T, Sakamoto Y, Kobata A. Comparative study of the sugar chain of y-glutamyltranspeptidases purified from human hepatocellular carcinoma and from human liver. J Biochem (Tokyo),1989,105(5):728-735.
    [19]Ang IL, Poon TC, Lai PB, Chan AT, Ngai SM, Hui AY, Johnson PJ, Sung JJ. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma:a glycoproteomic approach. J Proteome Res,2006,5(10):2691-2700.
    [20]Matsumoto K, Maeda Y, Kato S, Yuki H. Alteration of asparagine-linked glycosylation in serum transferrin of patients with hepatocellular carcinoma. Clin Chim Acta,1994,224(1):1-8.
    [21]Mita Y, Aoyagi Y, Suda T, Asakura H. Plasma fucosyltransferase activity in patients with hepatocellular carcinoma, with special reference to correlation with fucosylated species of alpha-fetoprotein. J Hepatol,2000,32(6):946-954.
    [22]Food and Drug Administration, HHS. Medical devices; immunology and microbiology devices; classification of AFP-L3% immunological test systems. Fed Regist,2005,70(191):57748-57750.
    [23]Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, Evans AA, Hann HW, Block TM, Mehta AS.Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res,2006,5:308-315.
    [24]Xu Z, Zhou X, Lu H, Wu N, Zhao H, Zhang L, Zhang W, Liang YL, Wang L, Liu Y, Yang P, Zha X. Comparative glycoproteomics based on lectins affinity capture of N-linked glycoproteins from human Chang liver cells and MHCC97-H cells. Proteomics,2007,7(14):2358-2370.
    [25]Dai Z, Liu YK, Cui JF, Shen HL, Chen J, Sun RX, Zhang Y, Zhou XW, Yang PY, Tang ZY. Identification and analysis of altered alphal,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics,2006,6(21):5857-5867.
    [26]Chang JT, Chen LC, Wei SY, Chen YJ, Wang HM, Liao CT, Chen IH, Cheng AJ. Increase diagnostic efficacy by combined use of fingerprint markers in mass spectrometry--plasma peptidomes from nasopharyngeal cancer patients for example. Clin Biochem,2006,39(12):1144-1151.
    [27]Tolson JP, Flad T, Gnau V, Dihazi H, Hennenlotter J, Beck A, Mueller GA, Kuczyk M, Mueller CA. Differential detection of S100A8 in transitional cell carcinoma of the bladder by pair wise tissue proteomic and immunohisto-chemical analysis. Proteomics,2006,6(2):697-708.
    [28]De Silva SS, Payne GS, Thomas V, Carter PG, Ind TE, Desouza NM. Investigation of metabolite changes in the transition from pre-invasive to invasive cervical cancer measured using (1) H and (31) P magic angle spinning MRS of intact tissue.NMR Biomed,2008,22(2):191-198.
    [29]Freed GL, Cazares LH, Fichandler CE, Fuller TW, Sawyer CA, Stack BC Jr, Schraff S, Semmes OJ, Wadsworth JT, Drake RR. Differential capture of serum proteins for expression profiling and biomarker discovery in pre-and posttreatment head and neck cancer samples. Laryngoscope,2008,118(1):61-68.
    [30]Kojima K, Asmellash S, Klug CA, Grizzle WE, Mobley JA, Christein JD. Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer. J Gastrointest Surg, 2008,12(10):1683-1690.
    [31]著译者:黄培堂.原著:[美]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南[M].第三版,北京:科学出版社,2002.
    [32]钱海华,殷正丰,崔贞福,康晓燕,吴孟超.凝集素亲和电泳-免疫印迹法检测甲胎蛋白变异体.中华检验医学杂志,2001,24(6):369-370.
    [33]El-Serag HB, Mason AC, Key C. Trends in survival of patients with hepatocellular carcinoma between 1977 and 1996 in the United States. Hepatology,2001,33(1):62-65.
    [34]Hoofnagle JH, di Bisceglie AM. The treatment of chronic viral hepatitis. N Engl J Med,1997, 336(5):347-356.
    [35]Buamah PK, Gibb I, Bates G, Ward AM. Serum alpha fetoprotein heterogeneity as a means of differentiating between primary hepatocellular carcinoma and hepatic secondaries. Clin Chim Acta, 1984,139(3):313-316.
    [36]Shiraki K, Takase K, Tameda Y, Hamada M, Kosaka Y, Nakano T. A clinical study of lectin-reactive alpha-fetoprotein as an early indicator of hepatocellular carcinoma in the follow-up of cirrhotic patients. Hepatology,1995,22(3):802-807.
    [37]Oka H, Tamori A, Kuroki T, Kobayashi K, Yamamoto S. Prospective study of alpha-fetoprotein in cirrhotic patients monitored for development of hepatocellular carcinoma. Hepatology,1994,19(1):61-66.
    [38]Dai Z, Fan J, Liu Y, Zhou J, Bai D, Tan C, Guo K, Zhang Y, Zhao Y, Yang P. Identification and analysis of alphal,6-fucosylated proteins in human normal liver tissues by a target glycoproteomic approach. Electrophoresis,2007,28(23):4382-4391.
    [39]Mehta A, Block TM. Fucosylated glycoproteins as markers of liver disease. Dis Markers,2008, 25(4-5):259-265.
    [40]Noda K, Miyoshi E, Uozumi N, Yanagidani S, Ikeda Y, Gao C, Suzuki K, Yoshihara H, Yoshikawa K, Kawano K, Hayashi N, Hori M, Taniguchi N. Gene expression of alphal-6 fucosyltransferase in human hepatoma tissues:a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology,1998,28(4):944-952.
    [41]Mehta AS, Long RE, Comunale MA, Wang M, Rodemich L, Krakover J, Philip R, Marrero JA, Dwek RA, Block TM. Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J Virol,2008,82(3):1259-1270.
    [42]Wang M, Long RE, Comunale MA, Junaidi O, Marrero J. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev,2009, 18(6):1914-1921.
    [43]Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, Long RE, Junaidi O, Bisceglie AM, Block TM, Mehta AS. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res,2009,8(2):595-602.
    [44]Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, Evans AA, Hann HW, Block TM, Mehta AS. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res,2006,5(2):308-315.
    [45]Zhou H, Liu Y, Chui J, Guo K, Shun Q, Lu W, Jin H, Wei L, Yang P. Investigation on glycosylation patterns of proteins from human liver cancer cell lines based on the multiplexed proteomics technology. Arch Biochem Biophys,2007,459(1):70-78.
    [46]J Lee HJ, Na K, Choi EY, Kim KS, Kim H, Paik YK. Simple method for quantitative analysis of N-linked glycoproteins in hepatocellular carcinoma specimens. J Proteome Res,2010,9(1):308-318.
    [47]Chio LF, Oon CJ. Changes in serum alpha 1 antitrypsin, alphal acid glycoprotein and beta 2 glycoprotein I in patients with malignant hepatocellular carcinoma. Cancer,1979,43(2):596-604.
    [48]Gries A, Putz-Bankuti C, Stauber RE, Haditsch B, Stojakovic T. Beta2-glycoprotein-I plasma levels in liver cirrhosis. Clin Chim Acta,2009,403(1-2):257-258.
    [49]Liotta LA, Petricoin EF.Serum peptidome for cancer detection:spinning biologic trash into diagnostic gold. J Clin Invest,2006,116(1):26-30.
    [50]Schwegler EE, Cazares L, Steel LF, Adam BL, Johnson DA, Semmes OJ, Block TM, Marrero JA, Drake RR. SELDI-TOF MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma. Hepatology,2005,41(3):634-642.
    [51]Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet,2002,359(9306):572-577.
    [52]Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL Jr. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res, 2002,62:3609-3614.
    [53]Cazares LH, Adam BL, Ward MD, Nasim S, Schellhammer PF, Semmes OJ, Wright GL Jr. Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res,2002, 8:2541-2552.
    [54]Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem,2002,48:1296-1304.
    [55]Vlahou A, Laronga C, Wilson L, Gregory B, Fournier K, McGaughey D, Perry RR, Wright GL Jr, Semmes OJ. A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer,2003,4:203-209.
    [56]Paradis V, Degos F, Dargere D, Pham N, Belghiti J, Degott C, Janeau JL, Bezeaud A, Delforge D, Cubizolles M, Laurendeau I, Bedossa P. Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology,2005,41(1):40-47.
    [57]Kanmura S, Uto H, Kusumoto K, Ishida Y, Hasuike S, Nagata K, Hayashi K, Ido A, Stuver SO, Tsubouchi H. Early diagnostic potential for hepatocellular carcinoma using the SELDI ProteinChip system. Hepatology,2007,45(4):948-956.
    [58]Zinkin NT, Grall F, Bhaskar K, Otu HH, Spentzos D, Kalmowitz B, Wells M, Guerrero M, Asara JM, Libermann TA, Afdhal NH. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clin Cancer Res,2008,14(2):470-477.
    [59]Poon TC, Yip TT, Chan AT, Yip C, Yip V, Mok TS, Lee CC, Leung TW, Ho SK, Johnson PJ. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem,2003,49(5):752-760.
    [60]Ward DG, Cheng Y, N'Kontchou G, Thar TT, Barget N, Wei W, Martin A, Beaugrand M, Johnson PJ. Preclinical and post-treatment changes in the HCC-associated serum proteome. Br J Cancer,2006, 95(10):1379-1383.
    [61]Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech,2005, 16(4):407-413.
    [62]Baggerly KA, Morris JS, Wang J, Gold D, Xiao LC, Coombes KR. A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples. Proteomics,2003,3(9):1667-1672.
    [63]Colombo M, de Franchis R, Del Ninno E, Sangiovanni A, De Fazio C, Tommasini M, et al. Hepatocellular carcinoma in Italian patients with cirrhosis. N Engl J Med,1991,325:675-680.
    [64]Pateron D, Ganne N, Trinchet JC, Aurousseau MH, Mal F, Meicler C, Coderc E, Reboullet P, Beaugrand M. Prospective study of screening for hepatocellular carcinoma in Caucasian patients with cirrhosis. J Hepatol,1994,20:65-71.
    [65]Sparbier K, Wenzel T, Kostrzewa M. Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci,2006,840(1):29-36.
    [66]Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, Stein G, Vorwerg L, Suckau D, Kostrzewa M. Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech, 2007,18(4):252-258.
    [1]Ding S J, Li Y, Shao X X, et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics,2004,4(4):982-984.
    [2]Sun W,Xing B,Sun Y, et al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis:novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics,2007,6(10):1798-1808.
    [3]Yi X, Luk JM, Lee NP, et al. Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics,2008,7(2):315-325.
    [4]Takashima M, Kuramitsu Y, Yokoyama Y, et al. Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics,2006,6(13):3894-3900.
    [5]Feng JT, Liu YK, Song HY, et al. Heat-shock protein 27:a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics,2005,5(17):4581-4588.
    [6]Block TM, Comunale MA, Lowman M, et al. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A, 2005,102(3):779-784.
    [7]Paradis V, Degos F, Dargere D, et al. Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology,2005,41(1):40-47.
    [8]Schwegler EE, Cazares L, Steel LF, et al. SELDI-TOF MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma. Hepatology,2005,41(3):634-642.
    [9]Kanmura S, Uto H, Kusumoto K, et al. Early diagnostic potential for hepatocellular carcinoma using the SELDI ProteinChip system. Hepatology,2007,45(4):948-956.
    [10]Zinkin NT, Grail F, Bhaskar K, et al. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clin Cancer Res,2008,14(2):470-477.
    [11]Poon TC, Yip TT, Chan AT, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem,2003,49(5):752-760.
    [12]Ward DG, Cheng Y, N'Kontchou G, et al. Preclinical and post-treatment changes in the HCC-associated serum proteome. Br J Cancer,2006,95(10):1379-1383.
    [13]Goldman R, Ressom HW, Abdel-Hamid M, et al. Candidate markers for the detection of hepatocellular carcinoma in low-molecular weight fraction of serum. Carcinogenesis,2007, 28(10):2149-2153.
    [14]Li C, Hong Y, Tan YX, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics,2004, 3(4):399-409.
    [15]Lee IN, Chen CH, Sheu JC, et al. Identification of human hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. J Proteome Res, 2005,4(6):2062-2069.
    [16]Lee IN, Chen CH, Sheu JC, et al. Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach. Proteomics,2006,6(9):2865-2873.
    [1]Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell,2006, 126(5):855-867.
    [2]Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem,2004, 73:491-537.
    [3]Brooks SA, Carter TM, Royle L, Harvey DJ, Fry SA, Kinch C, Dwek RA, Rudd PM. Altered glycosylation of proteins in cancer:what is the potential for new anti-tumour strategies. Anticancer Agents Med Chem,2008,8(1):2-21.
    [4]Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immuno-therapy of tumours. Immunol Cell Biol,2005,83(4):429-439.
    [5]Peracaula R, Barrabes S, Sarrats A, Rudd PM, de Llorens R. Altered glycosylation in tumours focused to cancer diagnosis. Dis Markers,2008,25(4-5):207-218.
    [6]Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, Murata K, Ohigashi H, Yokoyama S, Eguchi H, Ishikawa O, Ito T, Kato M, Kasahara A, Kawano S, Gu J, Taniguchi N, Miyoshi E. Fucosylated haptoglobin is a novel marker for pancreatic cancer:a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer,2006,118: 2803-2808.
    [7]Barrabes S, Pages-Pons L, Radcliffe CM, Tabares G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, De Llorens R, Peracaula R. Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology, 2007,17:388-400.
    [8]Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M, Uozumi N, Ihara S, Lee SH, Ikeda Y, Yamaguchi Y, Aze Y, Tomiyama Y, Fujii J, Suzuki K, Kondo A, Shapiro SD, Lopez-Otin C, Kuwaki T, Okabe M, Honke K, Taniguchi N. Dysregulation of TGF-(31 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose deficient mice. Proc Natl Acad Sci USA,2005,102:15791-15796.
    [9]Geng F, Shi BZ, Yuan YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients:prognostic implications. Cell Res,2004,14:423-433.
    [10]Saldova R, Royle L, Radcliffe CM, Abd Hamid UM, Evans R, Arnold JN, Banks RE, Hutson R, Harvey DJ, Antrobus R, Petrescu SM, Dwek RA, Rudd PM. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology,2007,17:1344-1356.
    [11]Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Aleixandre RN, Hoesel W, Dwek RA, Rudd PM, Peracaula R de, Llorens R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology,2006,16:132-145.
    [12]Blomme B, Steenkiste CV, Callewaert N, Vlierberghe HV. Alteration of protein glycosylation in liver diseases. J Hepatol,2009,50(3):592-603.
    [13]Aoyagi Y, Isokawa O, Suda T, Watanabe M, Suzuki Y, Asakura H. The fucosylation index of alpha-fetoprotein as a possible prognostic indicator for patients with hepatocellular carcinoma. Cancer, 1998,83(10):2076-2082.
    [14]Mehta A, Block TM. Fucosylated glycoproteins as markers of liver disease. Dis Markers,2008, 25(4-5):259-265.
    [15]Block TM, Comunale MA, Lowman M, et al. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci USA, 2005,102(3):779-784.
    [16]Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, Evans AA, Hann HW, Block TM, Mehta AS. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res,2006,5(2):308-315.
    [17]Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, Long RE, Junaidi O, Bisceglie AM, Block TM, Mehta AS. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res,2009,8(2):595-602.
    [18]Zhou H, Liu Y, Chui J, Guo K, Shun Q, Lu W, Jin H, Wei L, Yang P. Investigation on glycosylation patterns of proteins from human liver cancer cell lines based on the multiplexed proteomics technology. Arch Biochem Biophys,2007,459(l):70-78.
    [19]Xu Z, Zhou X, Lu H, Wu N, Zhao H, Zhang L, Zhang W, Liang YL, Wang L, Liu Y, Yang P, Zha X. Comparative glycoproteomics based on lectins affinity capture of N-linked glycoproteins from human Chang liver cells and MHCC97-H cells. Proteomics,2007,7(14):2358-2370.
    [20]Dai Z, Liu YK, Cui JF, Shen HL, Chen J, Sun RX, Zhang Y, Zhou XW, Yang PY, Tang ZY. Identification and analysis of altered alpha 1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics,2006,6(21):5857-5867.
    [21]Dai Z, Fan J, Liu Y, Zhou J, Bai D, Tan C, Guo K, Zhang Y, Zhao Y, Yang P. Identification and analysis of alphal,6-fucosylated proteins in human normal liver tissues by a target glycoproteomic approach. Electrophoresis,2007,28(23):4382-4391.
    [22]Tanabe K, Deguchi A, Higashi M, Usuki H, Suzuki Y, Uchimura Y, Kuriyama S, Ikenaka K. Outer arm fucosylation of N-glycans increases in sera of hepatocellular carcinoma patients. Biochem Biophys Res Commun,2008,374(2):219-225.
    [23]Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, Wang L, Zhuang H, Callewaert N, Libert C, Contreras R, Chen C. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology,2007,46(5):1426-1435.
    [24]J Lee HJ, Na K, Choi EY, Kim KS, Kim H, Paik YK. Simple method for quantitative analysis of N-linked glycoproteins in hepatocellular carcinoma specimens. J Proteome Res,2010,9(1):308-318.
    [25]Ressom HW, Varghese RS, Goldman L, Loffredo CA, Abdel-Hamid M, Kyselova Z, Mechref Y, Novotny M, Goldman R. Analysis of MALDI-TOF mass spectrometry data for detection of glycan biomarkers. Pac Symp Biocomput,2008:216-227.
    [26]Ressom HW, Varghese RS, Goldman L, An Y, Loffredo CA, Abdel-Hamid M, Kyselova Z, Mechref Y, Novotny M, Drake SK, Goldman R. Analysis of MALDI-TOF mass spectrometry data for discovery of peptide and glycan biomarkers of hepatocellular carcinoma. J Proteome Res,2008, 7(2):603-610.
    [27]Jia W, Lu Z, Fu Y, Wang HP, Wang LH, Chi H, Yuan ZF, Zheng ZB, Song LN, Han HH, Liang YM, Wang JL, Cai Y, Zhang YK, Deng YL, Ying WT, He SM, Qian XH. A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol Cell Proteomics,2009,8(5):913-923.
    [28]Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, Comunale MA, D'Amelio A, Lok AS, Block TM. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol,2005,43(6):1007-1012.
    [29]Ang IL, Poon TC, Lai PB, Chan AT, Ngai SM, Hui AY, Johnson PJ, Sung JJ. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma:a glycoproteomic approach. J Proteome Res,2006,5(10):2691-2700.
    [30]Wang M, Long RE, Comunale MA, Junaidi O, Marrero J. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev,2009, 18(6):1914-1921.
    [31]Mita Y, Aoyagi Y, Suda T, Asakura H. Plasma fucosyltransferase activity in patients with hepatocellular carcinoma, with special reference to correlation with fucosylated species of alpha-fetoprotein. J Hepatol,2000,32(6):946-954.
    [32]Noda K, Miyoshi E, Gu J, Gao CX, Nakahara S, Kitada T, Honke K, Suzuki K, Yoshihara H, Yoshikawa K, Kawano K, Tonetti M, Kasahara A, Hori M, Hayashi N, Taniguchi N. Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res,2003, 63(19):6282-6289.
    [33]Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, Hayashi N, Miyoshi E. A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology,2007,17(12):1311-1320.
    [34]Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech,2005, 16(4):407-413.
    [35]Sparbier K, Wenzel T, Kostrzewa M. Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci,2006,840(1):29-36.
    [36]Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, Stein G, Vorwerg L, Suckau D, Kostrzewa M. Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech, 2007,18(4):252-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700