用户名: 密码: 验证码:
蒙古羊BMPR-IB、FSHβ基因克隆与表达及卵巢组织差异表达基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绵羊的繁殖性状一般分为受胎率、多胎率及羔羊存活率三类性状,繁殖性能的高低直接关系到养羊业生产成本和生产效率,具有重大的经济意义。蒙古羊是我国最古老的地方绵羊品种之一,乌珠穆沁系蒙古羊是在当地生态环境条件下,经长期选育形成的一个优良类群,具有许多优良特性,主要以抗病力强、产肉率高和繁殖性能高而闻名。为了揭示蒙古羊高繁殖性能,使蒙古羊这一宝贵资源能得到有效利用,本研究以乌珠穆沁系蒙古羊为实验材料,首先以BMPR-IB和FSHβ基因作为蒙古羊高繁殖力候选基因,对其进行了克隆及序列分析,并采用实时荧光定量PCR(RQ-PCR)的相对定量方法对BMPR-IB和FSHβ基因在单羔蒙古羊非发情期、发情期及产双羔蒙古羊怀孕后期的卵巢、子宫、输卵管、下丘脑和垂体组织进行了差异表达研究;其次采用抑制性消减杂交技术(SSH)对经产单、双羔蒙古羊的卵巢组织差异表达基因进行了筛选并采用电子克隆加RT-PCR方法对部分差异表达基因进行了克隆和验证。通过以上研究,为提高我国肉用绵羊繁殖力及加快肉羊新品种选育提供了重要的理论依据,并获得以下主要研究结果:
     (1)采用RT-PCR方法分别从蒙古羊卵巢组织中扩增出BMPR-IB、FSHβ基因的cDNA序列。蒙古羊BMPR-IB基因全长1567bp,包括完整的1509bp开放读码框(ORF),共编码502个氨基酸。通过对单、多胎蒙古羊BMPR-IB基因测序结果分析发现,在单、多胎蒙古羊BMPR-IB基因编码区第746位和第1113位碱基相一致,分别为“A”和“C”,并没有发生同多胎Booroola羊相同的A→G突变和C→A突变。蒙古羊FSHβ基因全长1021bp,包括完整的390bp ORF,共编码129个氨基酸。
     (2)采用相对定量的双标准曲线法建立了蒙古羊β-Actin、BMPR-IB和FSHβ基因的RQ-PCR反应体系。以非发情期单羔蒙古羊的卵巢组织定量结果为对照,计算得到FSHβ基因在单羔蒙古羊发情期下丘脑组织中表达量最高,在发情期的输卵管组织中表达量最低;BMPR-IB基因在单羔蒙古羊发情期卵巢组织中表达量最高,在发情期的子宫组织中表达量最低。在卵巢组织中,FSHβ基因在发情期卵巢组织中的表达量是非发情期的1.31倍,双羔羊是单羔羊的0.70倍;BMPR-IB基因在发情期卵巢组织中的表达量是非发情期的2.65倍,双羔羊是单羔羊的2.16倍。证明BMPR-IB基因是蒙古羊多胎主要候选基因,FSHβ基因虽然在绵羊繁殖过程中具有重要的作用,但并非蒙古羊多胎主效基因,可能与多胎性状的主基因或QTL相连锁。
     (3)采用SSH技术成功构建了单、双羔蒙古羊卵巢组织的正、反向消减cDNA文库,并从两个消减cDNA质粒文库中筛选得到768个有效阳性克隆,插入片段长度主要分布于150~1000bp之间。结合斑点杂交技术获得到差异克隆373个,通过测序和同源性检索获得已知基因序列185条,10条已知的差异表达EST和4条未知的EST序列。
     (4)对差异表达基因功能分析表明,本实验所获得的基因主要由以下几大类组成:机体和细胞防御、免疫类14个,代谢类53个,物质运输类20个,核酸修饰类12个,细胞发育类18个,信号传导类12个,细胞结构类9个,未分类47个,其中代谢类基因占据了最大部分占28.65%。将这些差异表达基因和已报道的与繁殖性状相关的基因比较发现,经过初步筛选得到12个差异表达基因与已报道的繁殖性状相关基因相一致,这些基因分别为ITGB1、BMP6、MHC-I、ACVRL1、IGFBP5、SPON1、FABP5、ADAMTS1、FAM46A、THY1、ARP3和Id3基因。
     (5)分别以SSH获得的差异表达ADAMTS1和Id3基因序列片段为种子序列在绵羊的EST数据库中进行blastn同源性检索,得到相应的UniGene编号分别为Oar.7453和Oar.5068,经过序列拼接分别得到2418bp和1099bp的蒙古羊ADAMTS1、Id3基因电子克隆cDNA序列。采用RT-PCR方法实验克隆得到2420bp的蒙古羊ADAMTS1基因序列和1045bp的蒙古羊Id3基因序列,经同源性比对发现,实验所得序列与电子延伸序列的同源性分别为99.4%和99.3%,并将序列提交至GenBank获得注册号分别为:GU437212和GU437213。
The reproduction traits of ovine are generally divided into conception rate, prolificacy and lambs survival, it is directly related to production cost and efficiency of sheep industry and it has a great economic significance. The Mongolian Sheep is one of the ancient indigenous sheep breeds in our country. Ujumuqin sheep is a good group of Mongolian Sheep through a long breeding under the local ecological environment and it has many fine characteristics, it is especially famous for its high disease resistance, dressing percentage and reproductive performance. In order to reveal its high reproductive performance and to make an effective utilization of the Mongolian Sheep precious resource, this research used Ujumuqin sheep as the experiment material. First, as candidate genes for prolificacy, the BMPR-IB and FSHβgene were cloned, sequence analyzed and differentially expressed in ovary, uterus, oviduct, hypothalamus, pituitary tissues of normal and estrus physiological stage of single Mongolian Sheep, late pregnancy physiological stage of biparous Mongolian Sheep by relative quantitative Real-time Quantitative PCR (RQ-PCR). Secondly, differentially expressed genes between ovaries from single and biparous Mongolian sheep were selected by suppression subtractive hybridization (SSH) technique and some differentially expressed genes were further cloned and verified by silicon cloning and RT-PCR. Given all the above research, important theoretical basis were provided for improving fecundity and breeding new varieties of meat sheep in our country, and the following mainly results were obtained:
     (1) The BMPR-IB and FSHβgene cDNA sequence were amplified from Mongolian Sheep ovary tissues by RT-PCR respectively. The full-length of Mongolian Sheep BMP-IB gene is 1567bp, including complete 1509bp open reading frame (ORF) and encoding 502 amino acids. The bases were“A”and“C”in the 746 and 1113 sites of coding region, not occurred the same mutations (A→G) and (C→A) of BMPR-IB gene in Booroola Sheep by the sequence analysis of single and biparous Mongolian Sheep BMPR-IB gene. The full-length of Mongolian Sheep FSHβgene is 1021bp, including complete 390bp ORF and encoding 129 amino acids.
     (2) Theβ-Actin, BMPR-IB and FSHβgene RQ-PCR reaction systems were established by relative quantitative double standard curve method. Calculated with ovary tissue quantitative result of normal physiological stage of single Mongolian Sheep, the FSHβ gene expression was the highest in hypothalamus and the lowest in oviduct of estrus physiological stage of single Mongolian Sheep, the BMPR-IB gene expression was the highest in ovary and lowest in uterus of estrus physiological stage of single Mongolian Sheep. For the ovary tissue, the expression of FSHβgene in estrus physiological stage was 1.31 times than that in normal physiological stage and biparous sheep was 0.70 times than that in single sheep; the expression of BMPR-IB gene in estrus physiological stage was 2.65 times than that in normal physiological stage and biparous sheep was 2.16 times than that in single sheep. The results proved that the BMPR-IB gene was the mainly prolificacy candidate gene of Mongolian Sheep. Although the FSHβgene have an important role in reproduction, but it’s not the prolificacy candidate gene of Mongolian Sheep and may be linkage with the prolificacy major genes or QTL.
     (3) Forward and reverse subtracted cDNA libraries between ovaries from single and biparous Mongolian sheep were constructed by SSH technology, and 768 masculine clones from the two subtracted cDNA libraries were obtained. The Length of inserted fragments were between 150~1000bp. Combined with dot blot technology 373 differentially clones were obtained and 185 genes sequence, 10 ESTs, 4 unknown ESTs were obtained from the differentially clones by sequencing and homology blast.
     (4) According to the analysis of the differentially expressed genes function, genes obtained from the experiment were mainly grouped into the following groups: cell/body defense or immune, 14 genes, metabolism, 53 genes, transporters, 20 genes, modified nucleic acid, 12 genes, cell development, 18 genes, signaling transduction, 12 genes, cell structure, 9 genes and the unknown or unclassed, 47 genes. The metabolism genes was the biggest clusters and the percentage was 28.65%. There were 12 differentially expressed genes consistent with the reproduction traits related to the genes that had been reported by comparing and screening, and the gene were ITGB1、BMP6、MHC-Ⅰ、ACVRL1、IGFBP5、SPON1、FABP5、ADAMTS1、FAM46A、THY1、ARP3 and Id3.
     (5) The UniGene number Oar.7453 and Oar.5068 were obtained by homology blastn in the ovine EST database using the differentially expressed ADAMTS1 and Id3 gene fragment obtained in SSH as seed sequence, the length of Mongolian Sheep ADAMTS1 and Id3 gene silicon cloning cDNA sequence were 2418bp and 1099bp respectively by sequence assembly. The length of Mongolian Sheep ADAMTS1 and Id3 gene were 2420bp and 1045bp respectively by RT-PCR of experimental cloning, the homology were 99.4% and 99.3% respectively with the silicon cloning sequence. The sequence has been registered in the GenBank and the accession were GU437212 and GU437213.
引文
1张利平. Booroola羊多胎基因FecB的研究进展[C].中国草食动物, 2004专集(全国养羊生产与学术研讨会议论文集): 48-50.
    2柳淑芳,等. BMPR-IB和BMP-15基因作为小尾寒羊多胎性能候选基因的研究[J].遗传学报, 2003, 30(8): 755-760.
    3姜运良,吴常信. Booroola Merino绵羊多胎基因FecB的研究进展[J].中国畜牧杂志, 1999, 5 (4): 51-53.
    4王根林. DNA分析发现我国湖羊和小尾寒羊存在Booroola(FecB)多胎基因[J].南京农业大学学报, 2003, 26(1): 104-106.
    5李广录,张小梅,赵宗胜.绵羊繁殖性状相关候选基因的研究进展[J].草食家畜, 2008, 138(1): 13-16.
    6赵洪波,鲁绍雄,连林生.绵羊多胎性的遗传机制及其育种改良研究进展[J].云南畜牧兽医, 2006, 2: 1-4.
    7王栋,朱化彬,程金华,冯金梅,郝海生.家畜高繁殖力性状遗传机制的研究进展[J].遗传, 2005, 27 (3) : 487-491.
    8秦应和.反刍家畜卵泡发育机理的研究进展[J].国外畜牧科技, 1999,5:30-32.
    9 Ravindra J P, Rawlings N C, Evans A C, Adams G P. Ultrasonographic study of ovarian follicular dynamics in ewes during the oestrous cycle [J]. Reprod Fertil, 1994, 101(2): 501-509.
    10 Garcia A, Van der Weijden G C, Colenbrander B, Bevers M M. Monitoring follicular development in cattle by real-time ultrasonography: a review [J]. Vet Rec, 1999, 145(12): 334-340.
    11 Evans A C, Duffy P, Hynes N, Boland M P. Waves of follicle development during the estrous cycle in sheep [J]. Theriogenology, 2000, 53(3): 699-715.
    12 Ginther O J, Kot K, Wiltbank M C. Associations between emergence of follicular waves and fluctuations in FSH concentrations during the estrous cycle in ewes [J]. Theriogenology, 1995, 43(3):689-703.
    13 Schally A V, Arimura A, Kastin A J, et al. Gonadotropin-releasing hormone: one polypeptide regulates secretion of luteinizing and follicle-stimulating hormones [J]. Science, 1971, 173(4001): 1036-1038.
    14 Guillemin R, Amoss M, Blackwell R, et al. Polypeptides antagonists of the hypothalamic luteinizing hormone releasing factor [J]. Gynecol Invest, 1971, 2(1): 2-12.
    15 Montaner A D, Mongiat L, Lux Lantos V A, et al. Guinea pig gonadotropin-releasing hormone: expression pattern, characterization and biological activity in rodents[J]. Neuroendocrinology, 2002, 75(5): 326-338.
    16 Dubois E A, Zandbergen M A, Peute J, Goos H J. Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates [J]. Brain Research Bulletin, 2002, 57(3-4): 413-418.
    17 Neill J D, Duck L W, Sellers J C, Musgrove L C. A gonadotropin-releasing hormone (GnRH) receptor specific for GnRH II in primates [J]. Biochem Biophys Res Commun, 2001, 282(4): 1012-1018.
    18 Kaiser U B, Conn P M, Chin W W. Studies of gonadotropin-releasing hormone (GnRH) action using GnRH receptor-expressing pituitary cell lines [J]. Endocr Rev, 1997, 18(1): 46-70.
    19 Fan N C, Jeung E B, Peng C, et al. The human gonadotropin-releasing hormone (GnRH) receptor gene: cloning, genomic organization and chromosomal assignment [J]. Mol Cell Endocrinol, 1994, 103(1-2): 1-6.
    20 Montgomery G W, Penty J M, Lord E A, Brooks J, McNeilly A S. The gonadotrophin-releasing hormone receptor maps to sheep Chromosome 6 outside of the region of the FecB locus [J]. Mammalian Genome, 1995, 6(6): 436-438.
    21 Campion C E, Turzillo A M, Clay C M. The gene encoding the ovine gonadotropin-releasing hormone (GnRH) receptor: cloning and initial characterization [J].Gene, 1996, 170(2): 277-280.
    22 Ruf F, Fink M Y, Sealfon S C. Structure of the GnRH receptor-stimulated signaling network: insights from genomics [J]. Frontiers in neuroendocrinology, 2003, 24(3): 181-199.
    23 Fortune J E. Ovarian follicular growth and development in mammals [J]. Biol Reprod, 1994, 50(2): 225-232.
    24 Robker R L, Richards J S. Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation [J]. Biology of Reproduction, 1998, 59(3): 476-482.
    25 Hegele H C, Kuhnke J, Lessl M, et al. Nuclear and cytoplasmic maturation of mouse oocytes after treatment with synthetic meiosis-activating sterol in vitro [J]. Biology of Reproduction, 1999, 61(5): 1362-1372.
    26 Dufourny L, Warembourg M. Estrogen modulation of neuropeptides: somatostatin, neurotensin and substance P, in the ventrolateral and arcuate nuclei of the female guinea pig [J]. Neurosci Res, 1999, 33(3): 223-228.
    27 Hallbeck M, Hermanson O, Blomqvist A. Distribution of preprovasopressin mRNA in the rat central nervous system [J]. Comp Neurol, 1999, 411(2): 181-200.
    28 Braden T D, Farnworth P G, Burger H G, Conn P M. Regulation of the synthetic rate of gonadotropin-releasing hormone receptors in rat pituitary cell cultures by inhibin [J]. Endocrinology, 1990, 127(5): 2387-2392.
    29 Lin S Y, Morrison J R, Phillips D J, de Kretser D M. Regulation of ovarian function by the TGF-beta superfamily and follistatin [J]. Reproduction, 2003, 126(2): 133-148.
    30 Bachelot A, Monget P, Imbert-BolloréP, et al. Growth hormone is required for ovarian follicular growth [J]. Endocrinology, 2002, 143(10): 4104-4112.
    31 Rivera G M, Fortune J E. Proteolysis of insulin-like growth factor binding proteins -4 and -5 in bovine follicular fluid: implications for ovarian follicular selection and dominance [J]. Endocrinology, 2003, 144(7): 2977-2987.
    32 Martinez-Chequer J C, Stouffer R L, Hazzard T M, et al. Insulin-like growth factors-1 and -2, but not hypoxia, synergize with gonadotropin hormone to promote vascular endothelial growth factor-A secretion by monkey granulosa cells from preovulatory follicles [J]. Biol Reprod, 2003, 68(4): 1112-1118.
    33赵海波,罗丽兰,刘义.胰岛素样生长因子-1在体外对人卵巢颗粒细胞雌二醇和孕酮产生量及超微结构的影响[J].中华妇产科杂志, 1998, 33(9): 546-548.
    34 LeRoith D, Werner H, Beitner-Johnson D, Roberts C T Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor [J]. Endocr Rev, 1995, 16(2): 143-163.
    35 Monget P, Monniaux D, Pisselet C, Durand P. Changes in insulin-like growth factor-I (IGF-I), IGF-II, and their binding proteins during growth and atresia of ovine ovarian follicles [J]. Endocrinology, 1993, 132(4): 1438-1446.
    36 Giudice L C. Insulin-like growth factor family in graafian follicle development and function [J]. Reproductive Sciences, 2001, 8(1_suppl): 26-29.
    37 Westergaard L G, Yding Andersen C, Byskov A G. Epidermal growth factor in small antral ovarian follicles of pregnant women [J]. Endocrinol, 1990, 127(2): 363-367.
    38 Das K, Phipps W R, Hensleigh H C, Tagatz G E. Epidermal growth factor in human follicular fluid stimulates mouse oocyte maturation in vitro [J]. Fertil Steril, 1992, 57(4): 895-901.
    39 Das K, Stout L E, Hensleigh H C, et al. Direct positive effect of epidermal growth factor on the cytoplasmic maturation of mouse and human oocytes [J]. Fertil Steril, 1991, 55(5): 1000-1004.
    40 Chun S Y, Eisenhauer K M, Minami S, et al. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor [J].Endocrinology, 1996, 137(4): 1447-1456.
    41 Vitt U A, Hsu S Y, Hsueh A J. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules [J]. Mol Endocrinol, 2001, 15(5): 681-694.
    42 de Caestecker M. The transforming growth factor-beta superfamily of receptors [J]. Cytokine Growth Factor Rev, 2004, 15(1): 1-11.
    43 Persson U, Izumi H, Souchelnytskyi S, et al. The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation [J]. FEBS Lett, 1998, 434(1-2): 83-87.
    44 Wang C, Roy S K. Expression of growth differentiation factor 9 in the oocytes is essential for the development of primordial follicles in the hamster ovary [J]. Endocrinology, 2006, 147(4): 1725-1734.
    45 Wang J R, Roy S K. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: Modulation by follicle-stimulating hormone [J]. Biology of Reproduction, 2004, 70 (3):577-585.
    46 Gueripel X, Brun V, Gougeon A. Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion [J]. Biology of Reproduction, 2006, 75(6): 836-843.
    47 Hanrahan J P, Gregan S M, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries) [J]. Biology of Reproduction, 2004, 70 (4): 900-909.
    48 Liu L, Rajareddy S, Reddy P, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a [J]. Development, 2007, 134(1): 199-209.
    49 Nilsson E E, Skinner M K. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition [J]. Mol Cell Endocrinol, 2004, 214(1-2): 19-25.
    50 Juenel J L, Reader K L, Bibby A H, et al. The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat [J]. Reproduction, 2006, 131(3): 501-513.
    51 Brankin V, Quinn R L, Webb R, Hunter M G. BMP-2 and -6 modulate porcine theca cell function alone and co-cultured with granulosa cells [J]. Domestic animal endocrinology, 2005, 29(4): 593-604.
    52 Fortune J E. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles [J]. Anim Reprod Sci, 2003, 78(3-4): 135-163.
    53 Shimasaki S, Zachow R J, Li D, et al. A functional bone morphogenetic protein system in the ovary [J]. Proc Natl Acad Sci USA, 1999, 96(13): 7282-7287.
    54 Piper L R, Bindon B M, Davis G H. The single gene inheritance of the high litter size of the Booroola Merino. In: Genetics of Reproduction in Sheep, Land, R.B. and D.W. Robinson (Eds.). Butterworths, London, 1985, 115-125.
    55 Souza C J, MacDougall C, Campbell B K, et al. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene [J]. Endocrinology, 2001, 169(2): 1-6.
    56 Mulsant P, Lecerf F, Fabre S, et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes [J]. Proceedings of the National Academy of Sciences of the USA, 2001, 98(9): 5104-5109.
    57 Inada M, Katagiri T, Akiyama S, et al. Bone morphogenetic protein-12 and -13 inhibit terminal differentiation of myoblasts, but do not induce their differentiation into osteoblasts [J]. Biochem Biophys Res Commun, 1996, 222(2): 317-322.
    58 Schmitt J M, Hwang K, Winn S R, Hollinger J O. Bone morphogenetic proteins: an update on basic biology and clinical relevance [J]. Orthop Res, 1999, 17(2): 269-278.
    59 Astr?m A K, Jin D, Imamura T, et al. Chromosomal localization of three human genes encoding bone morphogenetic protein receptors [J]. Mamm Genome, 1999, 10(3): 299-302.
    60 Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches [J]. Bone, 1998, 22(6): 591-603.
    61 Lord E A, Lumsden J M, Dodds K G, et al. The linkage map of sheep Chromosome 6 compared with orthologous regions in other species [J]. Mamm Genome, 1996, 7(5): 373-376.
    62 Wilson T, Wu X Y, Juengel J L, Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells [J]. Biol Reprod, 2001, 64(4): 1225-1235.
    63 Mishina Y, Suzuki A, Ueno N, Behringer R R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis [J]. Genes Dev, 1995, 9(24): 3027-3037.
    64王启贵,等.绵羊BMRP-IB基因多态性与其产羔数的相关研究[J].草食家畜, 2003, (2): 20-23.
    65管峰.绵羊多产性状的DNA分子标记及相关研究[D].南京农业大学博士学位论文, 2005.
    66史洪才,武坚,朱二勇,张志峰,郭志勤. BMPR-IB基因作为新疆多浪羊多胎性能候选基因的研究[J].中国草食动物, 2006, 26(2): 12-14.
    67苟德明,李文鑫,黄健,等.人绒毛促性腺激素α、β亚基cDNA的筛选与序列分析[J].中国生物化学与分子生物学学报. 1999, 15(6): 899-902.
    68 Gharib S D, Wierman M E, Shupnik M A, Chin W W. Molecular biology of the pituitary gonadotropins [J]. Endocr Rev, 1990, 11(1): 177-199.
    69 Sairam M R, Bhargavi G N. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones [J]. Science, 1985, 229(4708): 65-77.
    70 Hirai T, Takikawa H, Kato Y. The gene for the beta subunit of porcine FSH: absence of consensus oestrogen-responsive element and presence of retroposons [J]. Mol Endocrinol, 1990, 5(2): 147-158.
    71 Samaddar M, Babu P S, Catterall J F, Dighe R R. Identification of an attenuating region in the bovine follicle-stimulating hormone beta subunit mRNA that decreases its expression in E. coli [J]. Gene, 1999, 228(1-2): 253-260.
    72赵要风.控制猪高繁殖率的主基因定位[D].中国农业大学博士学位论文. 1998.
    73 Guzman K, Miller C D, Phillips C L, Miller W L. The gene encoding ovine follicle-stimulating hormone beta: isolation, characterization, and comparison to a related ovine genomic sequence [J]. DNA Cell Biol, 1991, 10(8): 593-601.
    74 Hediger R, Johnson S E, Hetzel D J. Localization of the beta-subunit of follicle stimulating hormone in cattle and sheep by in situ hybridization [J]. Anim Genet, 1991, 22(3): 237-244.
    75 Keene J L, Matzuk M M, Otani T, et al. Expression of biologically active human follitropin in Chinese hamster ovary cells [J]. Biol Chem, 1989, 264(9): 4769-4775.
    76赵要风,李宁,陈永福等.猪FSHβ亚基基因5′端调控区的PCR克隆测序及变异分析[J].自然科学进展—国家重点实验室通讯, 1996, 6(3): 351-356.
    77赵要风,李宁,肖璐等.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究[J].中国科学(C辑), 1999, 29(l): 81-86.
    78陈杰,姜志华,刘红林,等.二花脸猪FSHβ亚基位点PCR-SSCP标记与产仔数关系初探[J].南京农业大学学报, 1999, 22 (2): 55-58.
    79朱猛进,丁家桐,姜勋平,等.母猪FSHβ亚基基因多态与产仔数的关系研究[J].江苏农业研究, 2001, 22(2): 44-47.
    80王继卿. FSHβ基因和FSHR基因多态性及其对小尾寒羊产羔数的遗传效应[D].甘肃农业大学硕士学位论文. 2008.
    81杜林.山羊FSHβ基因多态性及其与产羔数相关性分析[D].四川农业大学硕士学位论文.2008.
    82梁琛,储明星,张建海,刘文忠,方丽,叶素成. FSHβ基因PCR-SSCP多态性及其与济宁青山羊高繁殖力关系的研究[J].遗传, 2006, 28(9): 1071-1077.
    83 Erickson G F, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle [J]. Reprod Biol Endocrinol, 2003, 1: 9.
    84 Shimasaki S, Moore R K, Otsuka F, Erickson G F. The bone morphogenetic protein system in mammalian reproduction [J]. Endocr Rev, 2004, 25(1): 72-101.
    85 Allen L A, Achermann J C, Pakarinen P, et al. A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotrophic hypogonadism: clinical and molecular characteristics [J]. Hum Reprod, 2003, 18(2): 251-256.
    86 Scott R T, Opsahl M S, Leonardi M R, et al. Life table analysis of pregnancy rates in a general infertility population relative to ovarian reserve and patient age [J]. Hum Reprod, 1995, 10(7): 1706-1710.
    87 Pellicer A, Ballester M J, Serrano M D, et al. Aetiological factors involved in the low response to gonadotrophins in infertile women with normal basal serum follicle stimulating hormone levels [J]. Hum Reprod, 1994, 9(5): 806-811.
    88 Miyoshi T, Otsuka F, Suzuki J, et al. Mutual regulation of follicle-stimulating hormone signaling and bone morphogenetic protein system in human granulosa cells [J]. Biol Reprod, 2006, 74(6): 1073-1082.
    89 Lekanne Deprez R H, Fijnvandraat A C, Ruijter J M, Moorman A F. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions [J]. Anal Biochem, 2002, 307(1): 63-69.
    90 Bengtsson M, Karlsson H J, Westman G, Kubista M. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR [J]. Nucleic Acids Res, 2003, 31(8): e45.
    91 Anderson K M, Cheung P H, Kelly M D. Rapid generation of homologous internal standards and evaluation of data for quantitation of messenger RNA by competitive polymerase chain reaction [J]. Pharmacol Toxicol Methods, 1997, 38(3): 133-140.
    92 Schmittgen T D, Zakrajsek B A, Mills A G, et al. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods [J]. Anal Biochem, 2000, 285(2): 194-204.
    93唐永凯,贾永义.荧光定量PCR数据处理方法的探讨[J].生物技术, 2008, 18(3): 89-91.
    94 Livak K J. ABI Prism 7700 Sequence Detection System. User Bulletin 2. 1997, PE Appplied Biosystems.
    95 Lamar E E, Palmer E. Y-encoded, species-specific DNA in mice: evidence that the Ychromosome exists in two polymorphic forms in inbred strains [J]. Cell, 1984, 37(1): 171-177.
    96 Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science, 1992, 257(5072): 967-971.
    97 Liang P, Averboukh L, Keyomarsi K, et al. Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells [J]. Cancer Res, 1992, 52(24): 6966-6978.
    98 Lisitsyn N A. Representational difference analysis: finding the differences between genomes [J]. Trends Genet, 1995, 11(8): 303-307.
    99 Lisitsyn N, Wigler M. Cloning the differences between two complex genomes [J]. Science, 1993, 259(5097): 946-951.
    100 Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA [J]. Nucleic Acids Res, 1994, 22(25): 5640-5648.
    101 Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc Natl Acad Sci USA, 1996, 93(12): 6025-6030.
    102 Diatchenko L, Lukyanov S, Lau Y F, Siebert P D. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes [J]. Methods Enzymol, 1999, 303: 349-380.
    103 PCR-SelectTM cDNA Subtraction Kit User Manual. Cat.No.637401, 2008, 6.
    104杨倩,成军,刘妍,王建军,张树林.抑制性消减杂交技术原理及应用[J].世界华人消化杂志, 2003, 11(4): 456-458.
    105刘静,赵颖.抑制性消减杂交(SSH)技术及其应用[J].河北化工, 2008, 31(7): 31-32.
    106陶金忠,张勇,杨永新,张进隆,赵兴绪.抑制性消减杂交技术及其在动物基因研究中的应用[J].动物医学进展, 2007, 28(5): 57-60.
    107 Wu W X, Zhang Q, Ma X H, Unno N, Nathanielsz P W. Suppression subtractive hybridization identified a marked increase in thrombospondin-1 associated with parturition in pregnant sheep myometrium [J]. Endocrinology, 1999, 140(5): 2364-2371.
    108 Hayashi K, Spencer T E. Estrogen disruption of neonatal ovine uterine development: effects on gene expression assessed by suppression subtraction hybridization [J]. Biol Reprod, 2005, 73(4): 752-760.
    109曹随忠.应用SSH技术筛选和克隆奶牛乳房炎抗性相关基因[D].甘肃农业大学博士学位论文. 2005.
    110俸艳萍,彭秀丽,李世军,张淑君,袁金锋,杨永平,詹慧琴,龚炎长.应用抑制消减杂交分离雌、雄鸡胚性分化早期的差异表达基因[J].动物学报, 2007, 53(2): 315-324.
    111杨希川.毛囊生长期毛乳头细胞差异表达基因文库的构建及筛选[D].第三军医大学博士学位论文. 2004.
    112张丽娟.西农萨能奶山羊泌乳中期和后期乳腺差异表达基因的筛选及gBTN1A1基因功能的研究[D].西北农林科技大学博士学位论文. 2007.
    113谢红涛.梅山×大白F1代与其亲本梅山猪背最长肌间差异表达基因的克隆鉴定及特征分析[D].华中农业大学博士学位论文. 2006.
    114徐德全.猪背最长肌差异表达基因的克隆鉴定及特征分析[D].华中农业大学博士学位论文. 2005.
    115 Cai Y, Gao Y, Sheng Q, et al. Characterization and potential function of a novel testis-specific nucleoporin BS-63 [J]. Mol Reprod Dev, 2002, 61(1): 126-134.
    116 Schaefer B C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends [J]. Anal Biochem, 1995, 227(2): 255-273.
    117李鑫,章涛.新基因的克隆策略和方法[J].海峡药学, 2004, 16(3): 16-19.
    118 Huang J, Wang J F, Zhang H S, et al. In silico cloning of glucose-6-phosphate dehydrogenase cDNA from rice (Oryza sativa L.) [J]. Yi Chuan Xue Bao, 2002, 29(11):1012-1016.
    119于浩,刘娣,杨秀芹.基于表达序列标签数据库(dbEST)的电子克隆技术[J].黑龙江畜牧兽医, 2003, 4: 19.
    120王桂芝,王建民,娄德龙.绵羊繁殖性状的遗传研究进展[J].山东农业大学学报, 1999, 30(3): 312-316.
    121朱廷旭,郭维春.绵羊主要经济性状遗传参数[J].辽宁畜牧兽医, 1996(2): 38-40.
    122赵有璋.羊生产学[M].北京:中国农业出版社, 1995, 131-132.
    123谢成侠.中国养牛羊史(附养鹿简史)[M].北京:农业出版社,1985.
    124内蒙古家畜家禽品种志编委会.内蒙古家畜家禽品种志[M].呼和浩特:内蒙古人民出版社,1985.
    125冯维祺.我国古代绵羊品种形成初考[J].农业考古, 1991, 3: 338-345.
    126李群.湖羊的来源和历史研究[J].农业考古, 1987, 1: 386-392.
    127张新兰,何小龙,乌仁图雅,萨如拉.蒙古羊的起源、驯化、分化及保种措施[J].畜牧与饲料科学, 2008, 29(6): 36-38.
    128巩元芳,李祥龙,刘铮铸,等.我国主要地方绵羊品种随机扩增多态DNA研究[J].遗传, 2002, 24(4): 423-426.
    129 Silva J M, Price C A. Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro [J]. Biol Reprod, 2000, 62(1):186-191.
    130 Maizels E T, Cottom J, Jones J C, Hunzicker-Dunn M. Follicle stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway, inducing small heat shock protein phosphorylation and cell rounding in immature rat ovarian granulosa cells [J]. Endocrinology, 1998, 139(7): 3353-3366.
    131 Davis G H, Montgomery G W, Allison A J, Kelly R W, Bray A R. Segregation of a major gene influencing fecundity in progeny of Booroola sheep [J]. NZJ Agric Res, 1982, 25: 525-529.
    132 Lesk A M, Chothia C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins [J]. Mol Biol, 1980, 136(3): 225-270.
    133 Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein [J]. Mol Biol, 1982, 157(1): 105-132.
    134 von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule [J]. Mol Biol, 1992, 225(2): 487-494.
    135 Engelman D M, Steitz T A, Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins [J]. Annu Rev Biophys Biophys Chem, 1986, 15: 321-353.
    136 Ikeda M, Arai M, Lao D M, Shimizu T. Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies [J]. In Silico Biol, 2002, 2(1): 19-33.
    137 Lao D M, Okuno T, Shimizu T. Evaluating transmembrane topology prediction methods for the effect of signal peptide in topology prediction [J]. In Silico Biol, 2002, 2(4): 485-494.
    138陈钟强,刘琪,朱贻盛,等.膜蛋白跨膜区预测方法的评价[J].生物化学与生物物理学报, 2002, 34(2): 285-290.
    139 McNatty K P, Lun S, Heath D A, O'Keeffe L E. Ovarian follicular activity in Booroola lambs with and without a fecundity gene [J]. Reprod Fertil, 1987, 79(1): 57-66.
    140 Montgomery G W, McNatty K P, Davis G H. Physiology and molecular genetics of mutations that increase ovulation rate in sheep [J]. Endocr Rev, 1992, 13(2): 309-328.
    141 Penty J M, Lord E A, Dodds K G, et al. Linkage of LHB and MAG to GPI on sheep chromosome 14 [J]. Mamm Genome, 1995, 6(4): 299-300.
    142 Hiendleder S, Dodds K G, Wassmuth R. Linkage mapping of the ovine alpha-inhibin (INHA) beta(A)-inhibin/activin (INHBA) and beta(B)-inhibin/activin (INHBB) genes [J].Hered, 2000, 91(4): 343-345.
    143 Yi S E, LaPolt P S, Yoon B S, et al. The type I BMP receptor BmprIB is essential for female reproductive function [J]. Proc Natl Acad Sci U S A, 2001, 98(14): 7994-7999.
    144刘凤丽,刘永斌,王峰,等.中国部分绵羊品种BMPR-IB基因RFLP多态性的研究[D].华北农学报, 2007, 22(4): 151-154.
    145田秀娥,孙红霞,王永军. 3个绵羊群体BMPR-IB基因的遗传多态性及其对产羔数的影响[J].西北农林科技大学学报(自然科学版), 2009, 37(11): 31-36.
    146 Rosenzweig B L, Imamura T, Okadome T, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins [J]. Proc Natl Acad Sci U S A, 1995, 92(17): 7632-7636.
    147 Attisano L, Wrana J L. Signal transduction by members of the transforming growth factor-beta superfamily [J]. Cytokine Growth Factor Rev, 1996, 7(4): 327-339.
    148 Brown P S, Sharpe R M, Hartog M, Shahmanesh M. Radioligand receptor assay of FSH [J]. Acta Endocrinol (Copenh), 1976, 82(4): 673-682.
    149 van Weissenbruch M M, Schoemaker H C, Drexhage H A, Schoemaker J. Pharmaco-dynamics of human menopausal gonadotrophin (HMG) and follicle-stimulating hormone (FSH). The importance of the FSH concentration in initiating follicular growth in polycystic ovary-like disease [J]. Hum Reprod, 1993, 8(6): 813-821.
    150 Campbell B K, Scaramuzzi R J, Webb R. Control of antral follicle development and selection in sheep and cattle [J]. Reprod Fertil Suppl, 1995, 49: 335-350.
    151 Ginther O J, Wiltbank M C, Fricke P M, et al. Selection of the dominant follicle in cattle [J]. Biol Reprod, 1996, 55(6): 1187-1194.
    152 Findlay J K. An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis [J]. Biol Reprod, 1993, 48(1): 15-23.
    153 Ginther O J, Kot K, Kulick L J, et al. Relationships between FSH and ovarian follicular waves during the last six months of pregnancy in cattle [J]. Reprod Fertil, 1996, 108(2): 271-279.
    154 LaPolt P S, Tilly J L, Aihara T, et al. Gonadotropin-induced up- and down-regulation of ovarian follicle-stimulating hormone (FSH) receptor gene expression in immature rats: effects of pregnant mare's serum gonadotropin, human chorionic gonadotropin, and recombinant FSH [J]. Endocrinology, 1992, 130(3): 1289-1295.
    155 Kumar T R, Kelly M, Mortrud M, et al. Cloning of the mouse gonadotropin beta-subunit-encoding genes, I. Structure of the follicle-stimulating hormone beta-subunit-encoding gene [J]. Gene, 1995, 166(2): 333-334.
    156 Ellegren H. Abundant (A)n.(T)n mononucleotide repeats in the pig genome: linkage mapping of the porcine APOB, FSA, ALOX12, PEPN and RLN loci [J]. Anim Genet, 1993, 24(5): 367-372.
    157 Mellink C. Lahbib-Mansais Y. Yerle M. Gellin J. PCR amplification and physical localization of the genes for pig FSHB and LHB [J]. Cytogenet Cell Genet, 1995, 70(3-4): 224-227.
    158 Clark A D, Layman L C. Analysis of the Cys82Arg mutation in follicle-stimulating hormone beta (FSHβ) using a novel FSH expression vector [J]. Fertility and Sterility, 2003, 79(2): 379-385.
    159焦淑贤,王瑞祥,蔡正华,赵尚吉,廖述人.枫泾和长白青所母猪首次发情周期内血清中5种生殖激素的变化[J].畜牧兽医学报, 1992, 23(3): 202-206.
    160 Pesole G, Mignone F, Gissi C, et al. Structural and functional features of eukaryotic mRNA untranslated regions [J]. Gene, 2001, 276(1-2): 73-81.
    161李凤娥.猪ESR和FSH-β位点对猪繁殖性状的调控及其调控机理的研究[D].博士学位论文.武汉:华中农业大学, 2002.
    162刘中成,赵锦,刘孟军. mRNA差异显示技术评述[J].分子植物育种, 2004, 2(6): 895- 900.
    163 Cottrez F, Auriault C, Capron A, Groux H. Quantitative PCR: validation of the use of a multispecific internal control [J]. Nucleic Acids Res, 1994, 22(13): 2712-2713.
    164高海波,张拴林,陈燕红.半定量RT- PCR在基因表达方面的应用[J].畜禽业, 2008, 226: 34-36.
    165宝生物工程(大连)有限公司. BIO VIEW NO.7 (特集1). Real Time PCR实验及解析方法介绍.
    166 Ponchel F, Toomes C, Bransfield K, et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions [J]. BMC Biotechnol, 2003, 3: 18.
    167 Shimasaki S, Moore R K, Erickson G F, Otsuka F. The role of bone morphogenetic proteins in ovarian function [J]. Reprod Suppl, 2003, 61: 323-337.
    168王爱华.猪BMP15和BMPR-IB基因的克隆和LHβ亚基基因的SSCP分析[D].北京:中国农业大学, 2002.
    169杨华,刘守仁,钟发刚,杨永林,张永胜. BMPR-IB基因在绵羊不同组织的表达差异性研究[J].中国畜牧杂志, 2009, 45(11): 6-8.
    170贾存灵.小尾寒羊多胎性状主要候选基因及繁殖相关基因表达量研究[D].北京:中国农业大学, 2005.
    171 Tilly J L, LaPolt P S, Hsueh A J. Hormonal regulation of follicle-stimulating hormone receptor messenger ribonucleic acid levels in cultured rat granulosa cells [J]. Endocrinology, 1992, 130(3): 1296-1302.
    172陈雪银.卵巢表达促卵泡刺激素[J].海南医学院学报, 2001, 7(1): 8-10.
    173 Prunier A, Chopineau M. Sexual maturation of Meishan gilts [A]. Chinese pig Symposium Toulous France, 1990, 37-40.
    174 Wilkins J F. Method of stimulating ovulation rate in Merino ewes may affect conception but not embryo survival [J]. Anim Reprod Sci, 1997, 47(1-2): 31-42.
    175 Fleming J S, Greenwood P J, Heath D A, et al. Expression of gonadotrophin subunit genes in sheep that were homozygous carriers and non-carriers of the Booroola fecundity gene FecB [J]. Reprod Fertil, 1995, 103(2): 315-321.
    176 Abdennebi L, Monget P, Pisselet C, et al. Comparative expression of luteinizing hormone and follicle-stimulating hormone receptors in ovarian follicles from high and low prolific sheep breeds [J]. Biol Reprod, 1999, 60(4): 845-854.
    177 Hunter M G, Picton H M, Biggs C, et al. Periovulatory endocrinology in high ovulating Meishan sows [J]. Endocrinol, 1996, 150(1): 141-147.
    178 Al-Obaidi S A R, Bindon B M, Findlay J K, et al. Plasma follicle stimulating hormone in Merino ewes immunized with an inhibin-enriched fraction from bovine follicular fluid [J]. Animal Reproduction Science, 1987, 14: 39-51.
    179 Windle J J, Weiner R I, Mellon P L. Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice [J]. Mol Endocrinol, 1990, 4(4): 597-603.
    180 Winters S J, Kawakami S, Sahu A, Plant T M. Pituitary follistatin and activin gene expression, and the testicular regulation of FSH in the adult Rhesus monkey (Macaca mulatta) [J]. Endocrinology, 2001, 142(7): 2874-2878.
    181 Linville R C, Pomp D, Johnson R K, Rothschild M F. Candidate gene analysis for loci affecting litter size and ovulation rate in swine [J]. Anim Sci, 2001, 79(1): 60-67.
    182 Rohrer G A, Wise T H, Lunstra D D, Ford J J. Identification of genomic regions controlling plasma FSH concentrations in Meishan-White Composite boars [J]. Physiol Genomics, 2001, 6(3): 145-151.
    183孙晓阳,谈寅飞,唐爽,王雁玲.用少量样本进行抑制性消减杂交[J].生物化学与生物物理进展, 2003, 30(6): 889-893.
    184 McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles [J]. Endocr Rev, 2000, 21(2): 200-214.
    185 Findlay J K, Drummond A E, Dyson M L, et al. Recruitment and development of thefollicle; the roles of the transforming growth factor-beta superfamily [J]. Mol Cell Endocrinol, 2002, 191(1): 35-43.
    186 Tilly J L, Kowalski K I, Johnson A L. Stage of ovarian follicular development associated with the initiation of steroidogenic competence in avian granulosa cells [J]. Biol Reprod, 1991, 44(2): 305-314.
    187 Davis A J, Johnson P A. Expression pattern of messenger ribonucleic acid for follistatin and the inhibin/activin subunits during follicular and testicular development in gallus domesticus [J]. Biol Reprod, 1998, 59(2): 271-277.
    188王惠生.动物卵泡发育调控的研究进展[J].草食家畜, 2000, 106(1): 22-25.
    189 Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc Natl Acad Sci USA, 1996, 93(12): 6025-6030.
    190 Russell D L, Doyle K M, Ochsner S A, et al. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation [J]. Biol Chem, 2003, 278(43): 42330-42339.
    191 Kuno K, Kanada N, Nakashima E, et al. Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene [J]. Biol Chem, 1997, 272(1): 556-562.
    192 Espey L L, Yoshioka S, Russell D L, et al. Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat [J]. Biol Reprod, 2000, 62(4): 1090-1095.
    193 Richards J S, Hernandez-Gonzalez I, Gonzalez-Robayna I, et al. Regulated expression of ADAMTS family members in follicles and cumulus oocyte complexes: evidence for specific and redundant patterns during ovulation [J]. Biol Reprod, 2005, 72(5): 1241-1255.
    194 Boerboom D, Russell D L, Richards J S, Sirois J. Regulation of transcripts encoding ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin-like motifs-1) and progesterone receptor by human chorionic gonadotropin in equine preovulatory follicles [J]. Mol Endocrinol, 2003, 31(3): 473-485.
    195 Madan P, Bridges PJ, Komar C M, et al. Expression of messenger RNA for ADAMTS subtypes changes in the periovulatory follicle after the gonadotropin surge and during luteal development and regression in cattle [J]. Biol Reprod, 2003, 69(5): 1506-1514.
    196 Shindo T, Kurihara H, Kuno K, et al. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function [J]. Clin Invest, 2000, 105(10): 1345-1352.
    197 Benezra R, Davis R L, Lockshon D, et al. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins [J]. Cell, 1990, 61(1): 49-59.
    198 Yokota Y, Mori S. Role of Id family proteins in growth control [J]. Cell Physiol, 2002, 190(1): 21-28.
    199 Li H, Dai M, Zhuang Y. A T cell intrinsic role of Id3 in a mouse model for primary Sjogren's syndrome [J]. Immunity, 2004, 21(4): 551-560.
    200 Ohtani N, Zebedee Z, Huot T J, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence [J]. Nature, 2001, 409(6823): 1067-1070.
    201 Kowanetz M, Valcourt U, Bergstr?m R, et al. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein [J]. Mol Cell Biol, 2004, 24(10): 4241-4254.
    202 Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter [J]. Biol Chem, 2002, 277(7): 4883-4891.
    203 Huang H J, Wu J C, Su P, et al. A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating hormone [J]. Endocrinology, 2001, 142(6): 2275-2283.
    204 Juengel J L, McNatty K P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development [J]. Hum Reprod Update, 2005, 11(2): 143-160.
    205 Jackson T, Clark S, Berryman S, et al. Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection [J]. Virol, 2004, 78(9): 4533-4540.
    206 Albelda S M, Buck C A. Integrins and other cell adhesion molecules [J]. FASEB J, 1990, 4(11): 2868-2880.
    207 Tarone G, Russo M A, Hirsch E, et al. Expression of beta 1 integrin complexes on the surface of unfertilized mouse oocyte [J]. Development, 1993, 117(4): 1369-1375.
    208 Almeida E A, Huovila A P, Sutherland A E, et al. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor [J]. Cell, 1995, 81(7): 1095-1104.
    209 Liu X, Andoh K, Abe Y, et al. A comparative study on transforming growth factor-beta and activin A for preantral follicles from adult, immature, and diethylstilbestrol-primed immature mice [J]. Endocrinology, 1999, 140(6): 2480-2485.
    210 MassaguéJ, Chen Y G. Controlling TGF-beta signaling [J]. Genes Dev, 2000, 14(6):627-644.
    211 Oh S P, Li E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse [J]. Genes Dev, 1997, 11(14): 1812-1826.
    212丁乃峥,腾春波,杨增明.胰岛素样生长因子系统与哺乳动物生殖[J].生殖医学杂志, 2002, 11(6): 377-381.
    213 Wandji S A, Wood T L, Crawford J, et al. Expression of mouse ovarian insulin growth factor system components during follicular development and atresia [J]. Endocrinology, 1998, 139(12): 5205-5214.
    214 Wathes D C, Reynolds T S, Robinson R S, Stevenson K R. Role of the insulin-like growth factor system in uterine function and placental development in ruminants [J]. Dairy Sci, 1998, 81(6): 1778-1789.
    215 Spicer L J. Proteolytic degradation of insulin-like growth factor binding proteins by ovarian follicles: a control mechanism for selection of dominant follicles [J]. Biol Reprod, 2004, 70(5): 1223-1230.
    216 Gérard N, Monget P. Intrafollicular insulin-like growth factor-binding protein levels in equine ovarian follicles during preovulatory maturation and regression [J]. Biol Reprod, 1998, 58(6): 1508-1514.
    217 Juengel J L, Reader K L, Bibby A H, et al. The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat [J]. Reproduction, 2006, 131(3): 501-513.
    218 Zhu G, Guo B, Pan D, et al. Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation [J]. Anim Reprod Sci, 2008, 104(2-4): 275-283.
    219徐业芬,李齐发,李二林,等.湖羊BMP2、BMP4、BMP6和BMP7基因mRNA表达水平与排卵数关系的研究[J].中国农业科学, 2009, 42(10): 3655-3661.
    220陈力学.生物信息学在基因组研究中的应用[J].国外医学临床生物化学与检验学分册, 2003, 24(6): 339-340.
    221 Zhang C, Yu Y, Zhang S, et al. Characterization, chromosomal assignment, and tissue expression of a novel human gene belonging to the ARF GAP family [J]. Genomics, 2000, 63(3): 400-408.
    222徐存拴,熊蕾,卢龙斗. ADAMs与哺乳动物受精[J].动物学杂志, 2001, 36(2): 51-54.
    223 Kuno K, Terashima Y, Matsushima K. ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix [J]. Biol Chem, 1999, 274(26): 18821-18826.
    224 Norton J D. ID helix-loop-helix proteins in cell growth, differentiation andtumorigenesis [J]. Cell Sci, 2000, 113 (Pt 22): 3897-3905.
    225 Ruzinova M B, Benezra R. Id proteins in development, cell cycle and cancer [J]. Trends Cell Biol, 2003, 13(8): 410-418.
    226李菜娥,马月辉,叶绍辉.生物信息学在畜禽基因组研究中的应用[J].中国畜牧兽医, 2007, 34(2): 79-81.
    227张立凡,连林生,鲁绍雄.生物信息学在动物遗传育种中的应用[J].畜牧与兽医, 2004, 36(7): 42-44.
    228 Read T D, Salzberg S L, Pop M, et al. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis [J]. Science, 2002, 296(5575): 2028-2033.
    229冯浩咏,苗向阳,罗绪刚,胡婕.生物信息学在发现新基因方面的应用[J].生物技术通报, 2007, 5: 1-5.
    230 Kuno K, Matsushima K. ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region [J]. Biol Chem, 1998, 273(22): 13912-13917.
    231 Richards J S, Russell D L, Ochsner S, Espey L L. Ovulation: new dimensions and new regulators of the inflammatory-like response [J]. Annu Rev Physiol, 2002, 64: 69-92.
    232 Doyle K M, Russell D L, Sriraman V, Richards J S. Coordinate transcription of the ADAMTS-1 gene by luteinizing hormone and progesterone receptor [J]. Mol Endocrinol, 2004, 18(10): 2463-2478.
    233 Richards J S. New signaling pathways for hormones and cyclic adenosine 3', 5'-monophosphate action in endocrine cells [J]. Mol Endocrinol, 2001,15(2): 209-218.
    234 Peng Y, Kang Q, Luo Q, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells [J]. Biol Chem, 2004,279(31): 32941-32949.
    235 Chen X, Zankl A, Niroomand F, et al. Upregulation of ID protein by growth and differentiation factor 5 (GDF5) through a smad-dependent and MAPK-independent pathway in HUVSMC [J]. Mol Cell Cardiol, 2006, 41(1): 26-33.
    236 Bounpheng M A, Dimas J J, Dodds S G, Christy B A. Degradation of Id proteins by the ubiquitin-proteasome pathway [J]. FASEB J, 1999, 13(15): 2257-2264.
    237 Bain G, Cravatt C B, Loomans C, et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade [J]. Nat Immunol, 2001, 2(2): 165-171.
    238 Ko M, Ahn J, Lee C, et al. E2A/HEB and Id3 proteins control the sensitivity to glucocorticoid-induced apoptosis in thymocytes by regulating the SRG3 expression [J]. Biol Chem, 2004, 279(21): 21916-21923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700