用户名: 密码: 验证码:
SnAgBi无铅焊料熔体状态对凝固组织及焊接接头可靠性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊料的无铅化是国内外电子、电气、仪表及家用电器等行业的共识。然而,与传统PbSn焊料相比,现有无铅焊料在工艺及服役性能等方面仍存在诸种不足。迄今,国内外研究者多从成分选择与配比的优化、微合金化、稀土元素的加入及冷却速度上着手进行研究,却很少有人关注无铅焊料制备过程的熔体结构与状态对焊料本身的凝固组织、焊料施焊过程的工艺性能、接头力学性能以及服役过程中的组织稳定性等方面的影响和规律。
     本文选取Sn-3.5Ag共晶合金为研究对象,以温度诱导液液结构转变为切入点,通过改变焊料的制备温度,以及添加第三元素Bi来探索熔体结构和性质的变化规律,进而探索熔体结构对无铅焊料凝固组织、润湿性能、接头剪切性能、断裂机理及时效过程IMC生长的影响和规律。本文工作所取得的主要创新性成果和认知如下:
     1、以两轮升降温过程以及特定温度保温方式,探索了Sn-3.5Ag-xBi(x=0,2,3.5,5,7)焊料电阻率-温度行为,所揭示的现象直观地表明,Sn-3.5Ag-xBi熔体发生了温度诱导的液液结构转变。其具体特征表现为:Sn-3.5Ag-xBi焊料熔体首轮升温过程的结构转变是不可逆的;合金熔体在后续降温及第二轮升降温过程中所发生的液液结构转变具有可逆性;两种转变的温度区间均随成分而有所不同。分析认为,首轮加热熔体转变的物理本质在于,低温熔体原有同类原子团簇(SnN、BiM)及异类团簇(Sn-Ag化学短程序)在一定高温范围被打破并形成新的原子团簇,其相应熔体状态的均匀性及无序度更高;而可逆转变则与具有四面体短程有序结构的Sn-Sn共价键的可逆特征有关。
     2、凝固热分析及组织检验表明,焊料制备过程的熔体状态对其凝固行为和组织产生显著的影响,与首轮转变前的相比,转变后熔体状态的凝固特点如下:(1)形核过冷度及共晶生长过冷度均明显增大。(2)凝固组织显著细化,表现为初生相及共晶体内间距的尺度均变小,且组织分布更加均匀。(3)共晶生长方式发生了质的改变:一方面,共晶体中Ag3Sn相由原来小平面生长特征的不规则分布,转变为以非小平面生长特征的平行规则分布为主;另一方面,共晶团形貌由原来的粗大树枝状转变为细小的等轴共晶。
     3、就制备方法对焊料施焊工艺性能及接头强度影响而言,液液结构转变后熔体状态所获得的焊料,与铜基板的润湿性得到改善,即润湿角变小,而且焊接接头的剪切强度也得到明显提高。分析认为,润湿性的改善,一方面得益于焊料凝固组织细化而在施焊过程中熔化更加容易,更为重要的是,熔体首轮不可逆转变致使焊料熔化后其更均匀且更无序的熔体状态,使焊料熔体与Cu基板之间的表面能SL降低;而接头强度的提高,一则是由于焊料本身组织的细化,再则因润湿性改善界面处更加易于形成完美的原子间结合。
     4、研究表明,焊料中Bi的含量对焊料的工艺性能及接头可靠性也有不可忽略的作用。随着Bi量的增大,Sn-3.5Ag-xBi焊料熔点降低,同时润湿角减小,润湿性能得到显著提高;接头强度随Bi量显著提高,在Bi含量为5%时焊料剪切强度达到最大值。剪切试样的断口分析表明,焊料中Bi含量较少时(<3.5%),焊接接头的断裂机制为完全的韧性断裂,而Bi含量较高时(>3.5%),接头的断裂机制转变为韧性和脆性断裂的混合断裂机制。
     5、液液结构转变对所制备焊料的焊接接头界面结构,以及模拟一定服役温度下的界面行为的作用表现为:能够改善焊后界面IMC的形态,使之分布更加均匀平坦,IMC过渡层厚度也有所减小;在特定温度下时效过程中,一方面可减慢接头界面IMC的生长速率,另一方面,可减少界面处柯肯达尔孔洞的数量,抑制焊料中微裂纹的产生。这些作用均有利于提高焊接接头服役过程的可靠性。数据分析表明,液液结构转变提高了SnAgBi/Cu界面IMC的生长激活能,从物理机制上说明了液液结构转变提高组织稳定性的原因。
     综合上述几方面结论可见,基于SnAgBi无铅焊料在特定温度范围熔体状态发生改变这一重要现象,可有目标地对焊料制备方法进行创新,从而改善焊料本身的凝固组织,进而提高其焊接工艺性能、焊接接头的力学性能,同时改善焊后界面微观结构以及服役过程接头的组织稳定性和可靠性。作者希望并相信,本文系列工作及其所揭示的现象和规律,可为无铅焊料制备工艺方法的创新、新型绿色焊料的研发和生产提供科学与技术依据。
Lead-free solders are agreed to be adopted by the industries of electronics, electrical,instruments, household appliances etc. in China and foreign countries. However, compared with thetraditional PbSn solder, existing lead-free solders have many deficiencies in technology, service andother performances. So far, most researchers prefer to carry out the research by changing alloycomposition, optimum mixture ratio, microalloying, adding rare earth elements and altering coolingrate. Few people pay attention to the effects and rules of melt structure and status in the preparationof lead-free solders on solidification microstructure of solder, welding technological properties,joint mechanical properties, microstructure stability in the process of service, etc.
     In this paper, Sn-3.5Ag eutectic alloy was chosen as the investigation object. From theviewpoint of temperature induced Liquid-liquid structure transition(LLST),the rules of melt statechange were explored through changing preparation temperature of the solders and adding the thirdelement Bi. Besides, the effects of melt state on solidification microstructure, wettability, jointshear performance, fracture mechanism and the growth of intermetallic compound(IMC) duringisothermal aging for Sn-3.5Ag-xBi(x=0,2,3.5,5,7) were studied. The major innovationachievements and cognition of this work are present as follows:
     1.Through two cycles heating/cooling and specific isothermal experiments,resistivity-temperature behavior of Sn-3.5Ag-xBi(x=0,2,3.5,5,7)solders was investigated. Therevealed phenomena intuitively prompt that temperature induced LLST occurs in Sn-3.5Ag-xBimelts. The concrete features display as: LLST of Sn-3.5Ag-xBi solder melt in first cycle heatingprocess is irreversible; LLST that occurs during subsequent cooling and second cycleheating/cooling process is reversible; Temperature ranges of two kinds of transition are differentaccording to the composition. The analysis shows, the physical nature of LLST in first cycleheating is the same type atomic cluster(SnN、BiM)and different types of clusters (Sn-Ag CSRO) inlow temperature melt are breaking and forming new atomic cluster, the uniformity and disordereddegree of corresponding melt status is higher. The reversible transition is relative to reversiblefeature of Sn-Sn covalent bond with tetrahedral short-range ordered structures.
     2. Thermal analysis and microstructure test of solidification show melt state of solders duringpreparation process has great effects on solidification behavior and microstructure. Compared withmelt status before first LLST, Solidification characteristics of melt status after LLST is as follow:(1)Nucleation undercooling and eutectic growth undercooling are significantly increased;(2)Solidification microstructure is refined obviously, such as the size of primary phase and eutecticspacing is smaller, distribution of microstructure is more uniform;(3)Eutectic growth pattern undergoes a qualitative change: on the one hand, eutectic growth characteristics of Ag3Sn ineutectic changes from original facets irregular distribution to dominating non-facets parallel ruledistribution; on the other hand, eutectic morphology varies from coarse dendritic eutectic to fineequiaxed eutectic.
     3.For the effects of preparation method on welding performance and joint strength, thewettability of the solders, which are obtained from melt state after LLST, are significantlyimproved, furthermore, the shear strength of welding joints are also improved. The analysis shows,wettability improvement firstly benefits from refine solidification microstructure melts easierduring welding, most importantly from lower interfacial energy SLof solder melts and Cusubstrate that induced by more uniform and disordered melt state which experienced first LLST.Improvement of shear strength is attributed to refined microstructure and better bonding connectionbetween atoms at the interface because of wettability improvement.
     4. Experimental studies show, Bi content in solders plays a non-ignorable role on soldertechnology performance and joint reliability. With the increase of Bi content, wettability angle ofSn-3.5Ag-xBi solder decreases, wettability is enhanced; Joint strength is significantly improvedwith the increase of Bi content, shear strength achieves the best when Bi content in solderis5%; Fracture analysis of shear specimens shows fracture mechanism of welding joint istotally ductile fracture when the solder has little Bi element content(<3.5%); With theincreasing of Bi element content(>3.5%), the fracture mechanism changes to mixing mechanismof ductile and brittle fracture.
     5. Effect of LLST on interface structure of welding joints and interface behavior simulating acertain service temperature presents as follows: ameliorate interface IMC morphology afterwelding, make it distribute more uniform and disorder, IMC layer thickness is reduced; At specifictemperature aging process, joint interface IMC growth rate constants are slow down, and thenumber of Kirkendall voids at the interface is reduced, meanwhile, LLST suppresses the generationof micro-cracks in solder. These effects are conducive to improve the the reliability of solder jointsduring service. Date analysis showed LLST reduces growth activation energy of interface IMC,which explains the reason why LLST improves structure stability from physics mechanism.
     From above conclusions, based on the important phenomenonof melt status change in SnAgBilead-free solder at specific temperature range, researchers can be purposeful to innovate thepreparation methods of solders, to enhance the solder itself solidification microstructure, further toimprove the welding technology performance and the mechanical properties of welded joints,meanwhile, to improve interfacial microstructure, its stability and reliability of joint during serviceprocess. The author hope and believe the series work of this paper and revealing phenomena/laws could provide some scientific and technical basis for the preparation technology innovation oflead-free solders, the research and production of new green lead-free solder.
引文
[1] H.H.Manko. Solder and soldering,New York: McGraw-Hill,l979,2nd Edition:23-24.
    [2]赵宁,无铅钎料的液态结构与钎焊界面反应及其相关性研究.大连理工大学博士学位论文,2008.
    [3]杨芬,钎料合金及其接头的浸出行为研究.大连理工大学硕士学位论文,2010.
    [4] ASM International, Electronic materials handbook, Packaging, Materials Park, OH,1989,1:55-56.
    [5]沈俊,铅焊料中金属间化合物的形成与控制.天津大学博士学位论文,2005.
    [6]田民波,电子封装工程.北京:清华大学出版社,2003.
    [7]美国焊接学会钎焊委员会,软钎焊手册.北京:机械工业出版社,1987.
    [8] M. Abtew, G.Selvaduray. Lead-free solder in microelectronics. Materials Science andEngineering Report,2000,27(5-6):95-141.
    [9]郭景杰,傅恒志,合金熔体及其处理.北京:机械工业出版社,2005.
    [10] F.Lawso,李建忠,铅及铅银合金、铅锡合金和铅铜合金的表面张力的研究.国外锡工业,1993,21(2):18-23.
    [11] H.K.Kim, H.K. Liou, K.N.Tu. Morphology of instability of the wetting tips of eutectic SnBi,eutectic SnPb, and pure Sn on Cu, J.Mater. Res.1995,10(3):497-504.
    [12] R.E.Reed-Hill. Physical metallurgy principles, Massachusetts: PWS Publishing Company,1994:306-307
    [13]虞自基,环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社,1987.
    [14]郭福,无铅钎焊技术与应用.北京:科学出版社,2006.
    [15]段莉蕾,无铅钎料接头界面化合物层生长及元素扩散行为.大连理工大学硕士学位论文,2004.
    [16]袁力鹏,Sn-Ag-Cu-Sb无铅焊料物理性能研究.哈尔滨理工大学硕士学位论文,2010.
    [17]阮迪云,铅影响学习记忆的细胞和分子机制.卫生毒理学杂志,1996,10(3):153-156.
    [18]阮迪云,铅对儿童学习记忆的影响及其细胞和分子机理.中国药理学与毒理学杂志,1997,11(2):97-98.
    [19] I. Artaki, A.M. Jackson, P.T. Vianco. Evaluation of lead-free solder joints in electronicassemblies. J. Electron. Mater.,1994,23(8):757-764
    [20] Y. Masaru. University-Industry Collaboration Networks for the Creation of Innovation: AComparative Analysis of the Development of Lead-Free Solders in Japan,Europe and theUnited States Technology Management for the Global Future,2006:368-386
    [21] S.Y. Chiang, C.C. Wei, T.H. Chiang. The Key Indicators of Lead-Free Manufacturing inElectronics Industry in Taiwan and Japan. International Conference on Management andService Science(ICMASS),2009:1-6
    [22]帅磊,Sn0.3Ag0.7Cu无铅钎料界面反应对焊点可靠性的影响.华南理工大学硕士学位论文,2011.
    [23]别正业,无铅焊接技术的现状与应用.电机电器技术,2002,6:12-14.
    [24] W. L.Winterbottom, Converting to Lead-Free solders: An Automotive Industry Perspeetive.JOM,1993,45(7):20-24.
    [25] D.Frear, D.Grivas, J.W.Morris. A mierostruetural study of the thermal fatigue failures of60Sn-40Pb solder joints. J. Electron. Mater.,1988,17(2):171-180.
    [26] C.M. Wu, D.Q.Yu, C.M.T.Law et al. Properties of lead free solder alloys with rare earthelement additions. Mater. Sci. Eng., R,2004,44(1):1-44.
    [27] K.Zeng, K.N.Tu. Six cases of reliability study of Pb-free solder jionts in electronicpackaging technology. Mater. Sci. Eng., R,2002,38:55-105.
    [28] K.J.R.Wassink,M.M.F.Verguld. Manufacturing techniques for surface mounted assemblies.GB-Port Erin British lsles: Electrochemical Publications Ltd.,1995:17-20.
    [29]杨邦朝,顾永莲,无铅焊料的研究(1)反应润湿性.印制电路信息,2005,5:57-64.
    [30]杨邦朝,苏宏,任辉,无铅焊料的研究(2)机械性质(上).印制电路信息,2005,7:54-57.
    [31] Glazer. Metallurgy of low temperature Pb-free solders for electronic assembly. Int. Mater.Rev.1995,40(2):65~93.
    [32] K.Suganuma,S.H.Huh,K.Kim,et a1.Effect of Ag content on properties of Sn-Ag binaryalloy solder: Special issue on inovative solidification processing for advanced materials, Mater.Trans.,2001,42(2):286-291.
    [33] K.R.Stone,R.Duckett,S.Muckett,et a1.Mechanical properties of solders and soldered joints.Brazing and Soldering,1983,4:20-27.
    [34] J.London,D.W.Ashall. Some Properties of Soldered Joints Made with a TiN/Silver EutecticAlloy. Brazing and Soldering,1986,10:17-20.
    [35] J.M.Song, G.F.Lan,T.S.Lui, et al. Microsturcture and tensile properties of Sn-9Zn-xAg leadfree solder alloys, Scripta Mater.,2003,48:1047-1051.
    [36]张红耀,无铅焊料的发展概况.云南冶金,2002,31:50-53.
    [37]闵文锦,宣天鹏,锡基无铅电子焊料的研究进展与发展趋势.金属功能材料,2009,16:55-59.
    [38]田民波,马鹏飞,电子封装无铅化技术进展.电子工艺技术,2003,24(6):231-237.
    [39]张飞, Sn-Cu-Bi合金液-液结构转变及其对凝固和钎焊性的影响.合肥工业大学硕士学位论文,2010.
    [40] K. Suganuma. Advances in lead-free electronics soldering. C. Opin. Solid State Mater. Sci.,2001,5:55-64.
    [41] S.K. Kang, A.K. Sarkhel. Lead (Pb)-free solders for electronic packaging. J. Electron. Mater.1994,23:701-707.
    [42] NCMS, Lead-free Solder Project Final Report, NCMS Report0401RE96, National Center forManufacturing Sciences, Ann Arbor, MI,1997:1.1–2.14.
    [43]曹昱,易丹青,王颖,等, Sn-Ag基无铅焊料的研究与进展.四川有色金属,2001,3:5-12.
    [44] U.R. Kattner, W.J. Boettinger. On the Sn-Bi-Ag ternary phase diagram J. Electron. Mater.,1994,23:603-610.
    [45] P.T. Vianco, J.A. Rejent. Properties of ternary Sn-Ag-Bi solder alloys: Part II—Wettabilityand mechanical properties analyses. J. Electron. Mater.,1999,28(10):1138-1143.
    [46] C.W.Hwang,K.Suganuma. Joint reliability and high temperature stability of Sn-Ag-Bilead-free solder with Cu and Sn–Pb/Ni/Cu substrates. Mater. Sci. Eng., A,2004,373:187–194
    [47]孟桂萍,Sn-Ag和Sn-Zn及Sn-Bi系无铅焊料.电子工艺技术,2002,23(2):75-76
    [48]李元山,雷晓娟,陈振华,等,新型锡秘系无铅焊料的开发.机械工程材料,2007,31:24-26.
    [49]戴志锋,黄继华,微电子组装中Sn--zn系无铅钎料的研究与开发.电子工艺技术,2004,25(1):5-8.
    [50]黎小燕,陈国海,马营生,Sn一Zn无铅焊料的研究与发展.电子工艺术,2004,25(4):150-153.
    [51] F.Wang, X.Ma, and Y.Qian. Improvement of Microstructure and Interface Structureof Eutectic Sn-0.7Cu Solder with Small Amount of Zn Addition. Scripta Mater.,2005,53:699-702.
    [52] H.Nishikawa, J.Y.Piao, and T.takemoto. Interfacial Reaction betweenSn-0.7Cu(-Ni) Solder and Cu Substrate. J. Electron. Mater.,2006,35(5):1127-1132.
    [53]汤清华,潘晓光, Wu C M L, et al.添加Sn-Ag对Sn-Bi焊接特性的改善.电子元件与材料,1999,18(4):27–31.
    [54] C.M.L. Wua, D.Q. Yu, C.M.T. Law, et al. Properties of lead-free solder alloys with rareearth element additions, Mater. Sci. Eng., R,2004,44:1–44.
    [55]卢斌,栗慧,王娟辉,张宇航,添加微量稀土元素对Sn-Ag-Cu系无铅焊料性能的影响.稀有金属与硬质合金,2007,35(1):27-30.
    [56]王要利,张柯柯,樊艳丽,微量稀土对S nAgCu无铅钎料力学及润湿性能的影响.焊接切割,2007,36(17):73-75.
    [57] H.Hao, J. Tian, Y. W. Shi,et al.. Properties of Sn3.8Ag0.7Cu solder alloy with trace rareearth element Y additions. J. Electron. Mater.,2007,36(7):766-774.
    [58]卢斌,王娟辉,栗慧,等.微量铈对Sn-0.7Cu-0.5Ni焊料合金组织与性能的影响.中国稀土学报,2007,25(2):217-222.
    [59]张建纲,黄继华,戴志锋,含稀土Sn-Zn-Bi系无铅钎料润湿性能的研究.中国稀土学报,2006,25(4):586~591.
    [60] S. L. Allen, M. R. Notis, R. R.Chromik, et al. Microstructural evolution in lead-free solderalloys: Part II. Directionally solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag, J. Mater. Res.,2004,19(5):1425-1431.
    [61]祝清省,张黎,王中光,等,金属间化合物Ag3Sn对Sn3.8Ag0.7Cu焊料合金拉伸性能的影响.金属学报,2007,43(1):41-46.
    [62] T.Y.Lee, W.J.Choi, K.N.Tu, et al. Morphology, kinetics, and thermodynamics ofsolid state aging of eutectic SnPb-and Pb-free solders (Sn3.5Ag,Sn3.8Ag0.7Cu,andSn0.7Cu)on Cu, J.Mater.Res.,2001,17(2):291-301.
    [63]顾永莲,电子焊料的无铅化及可靠性问题.功能材料,2005,36(4):490-494.
    [64]黄惠珍,魏秀琴,周浪,无铅焊料及其可靠性的研究进展.电子元件与材料,2003,22(4):39-42
    [65]夏阳华,无铅电子封装中的界面反应及焊点可靠性.上海:中国科学院(上海微系统与信息技术研究所)博士学位论文,2006.
    [66] G.Y. Li, B. L.Chen. Formation and growth kinetics of interfacial intermetallics in Pb-freesolder joint. IEEE Transactions on Components and Packaging Technologies,2003,26(3):651-658.
    [67] J. Panghl, H.Tank, X.Q. Shi, et al. Microstructure and intermetallic growth effects on shearand fatigue of solder joints subjected to thermal cycling aging. Mater Sci Eng A,2001,307(1):42-50.
    [68] H.T. Lee, M.H. Chen, H.M. Jao,et al. Influence of interfacial intermetallic compound onfracture behavior of solder joints. Mater. Sci. Eng., A,2003,358:134-141.
    [69]李晓延,杨晓华,兑卫真,等,时效对Sn-3.8Ag-0.7Cu/Cu焊料接头的组织和拉伸性能的影响.机械强度,2008,30(1):024-028.
    [70] W.Yang, R.W.Messler, L.E.Felton. Microstructural evolution of eutectic Sn-Ag solder joints.J.Electron. Mater.,1994,23(8):765–772.
    [71]胡汉起,金属凝固原理.北京:机械工业出版社,1991.
    [72] W.E. Morrell, J.H. Hildebrand. The distribution of molecules in a model liquid. J.Chem.Phys.,1936,4:224-227.
    [73] J.D. Bernal. A Geometrical approach to the structure of liquids, Nature,1959,183:910-914.
    [74] J.D. Bernal. Geometry of the structure of monatomic liquids. Nature,1960,185:68-70.
    [75] P.M Smith, J.W Elmer, G.F Gallegos. Measurement of the density of liquid aluminum alloysby an X-ray attenuation technique. Scripta Mater.,1999,40(8):937-941.
    [76] D.Turnbull. in“Liquids:Structure, Properties,Solid Interactions”, edited by Thomas J.Hughel(Elservier, Amsterdam,)1965:6-22
    [77] Y. Yagodzinskyy, L. Straka, H. H nninen. Forced torsion pendulum for studies ofinteractions at solid–liquid interface. Mater. Sci.&Eng. A,2006,442(1-2):538-542.
    [78] L.J.Guo, A.Q. Wu, Z.G. Zhu. Internal friction behavior of liquid AsxTe1-x mixtures. J.Non-Cryst. Solids,2007,353:1631-1634.
    [79] T. Kurosawa. On the Melting of Ionic Crystals. J. Phys. Soc. Japan,1957,12:338-346.
    [80]郭丽君,合金液态结构及其变化规律的研究.合肥工业大学硕士学位论文,2002.
    [81] R.M.J. Cotterl. Molecular dynamics studies of melting Ⅲ. Spontaneous dislocationgeneration and dynamics of melting. Philo. Mag,1974,30:245-263.
    [82] S. Mitzushima. Dislocation model of liquid structure. J. Phys. Soc. Japan,1960,5:70-77.
    [83]祖方遒,液态金属结构变化的研究.中国科学院研究生院博士学位论文,2002.
    [84] S.R.Elliott. Medium-range structural ordering in covalent amorphous solids.Nature,1991,354:445-452
    [85] B.Steffen, R.Hosemann. Paracrystalline microdomains in monatomic liquids. II.Three-dimensional structure of microdomains in liquid lead. Phys. Rev. B:,1976,13(8):3232-3238.
    [86] S.R.Elliott. Physics of Amorphous Material. London:Longman,1984.
    [87] W.Jank, J. Hafner. Structural and electronic properties of the liquid polyvalent elements: Thegroup-Ⅳ elements Si,Ge,Sn,and Pb. Physical Review B,1990,41(3):1497-1515.
    [88] I.Stich, R.Car, M.Parrinello. Bonding and disorder in liquid Silicon. Physical Review Lett.,1989,63(20):2240-2243.
    [89] T. Itami,S. Munejiri, T. Masaki, et al. Structure of liquid Sn over a wide temperature rangefrom neutron scattering experiments and first-principles molecular dynamics simulation: Acomparison to liquid Pb. Phys. Rev. B,2003,67(6):064201.
    [90] B. P. Alblas, W. Vander Lugt, J. Dijkstra, et al. Structure of liquid Na-Sn alloys. J. Phys F: Metal.Phys.,1983,13:2465-2477.
    [91]秦敬玉,液体Al-Fe合金的微观不均匀结构研究.山东工业大学博士学位论文,1998.
    [92] P. Vashishta, R.K. Kalia, I. Ebbsj. Structure correlations and phonon density of states inGeSe2: A molecular-dynamics study of molten and amorphous states. Phys. Rev. B,1989,39:6034-6047.
    [93] G.A. de Wijs, G. Pastore, A. Selloni, et al. First-principles molecular-dynamics simulation ofliquid CsPb. J. Chem. Phys.1995,103:5031-5040.
    [94]耿浩然,孙春静,杨中喜,金属熔体黏度与结构相关性的分子动力学模拟.物理学报,2006,55(3):1320-1324.
    [95] T.K. Gu, X.F. Bian, J.Y. Qin, et al. Ab Inito Molecular Dynamics Simulations ofLiquid GaSb and InSb. Phys. Rev. B,2005,71:104206
    [96] J.E.Enderby, D.M.North, P.A.Egelstaff. The partial structure factors of liquid Cu-Sn.Phil.Mag.,1966,14(131):961-970.
    [97] J.M. Ziman. A theory of electrical properties of liquid metals. I: The monovalent metals. Phil.Mag.,1961,6(68):1013-1034.
    [98] Y.Xi, F.Q. Zu, X.F. Li, et al, High-temperature abnormal behavior of resistivities for Bi–Inmelts. Phys. Lett. A,2004,329:221-225.
    [99] X.F. Li, F.Q. Zu, H.F. Ding, et al. Anomalous change of electrical resistivity withtemperature in liquid Pb–Sn alloys. Physica B,2005,358:126-131.
    [100] A.Q. Wu, L.J.Guo, C.S. Liu, et al. Internal friction behavior of liquid Bi-Sn alloys. PhysicaB,2005,369:51-55.
    [101] F. Q. Zu, Z. G. Zhu, L. J. Guo, et al. Liquid-liquid phase transition in Pb-Sn melts. Phys.Rev. B,2001,64(18):180203..
    [102] F. Q. Zu, Z. G. Zhu, L. J. Guo,et al. Liquid-liquid phase transition in Pb-Sn melts. J. Phys.Rev. B,2001,64:180203.
    [103] P. G. Debenedetti. Metastable liquids: concepts and principles. Princeton University Press,1996.
    [104] C. A. Angell. Formation of glasses from liquids and biopolymers. Science,1995,267(5206):1924-1935.
    [105] P. H. Poole, T. Grande, C. A. Angell, et al. Polymorphic phase transitions in liquids andglasses. Science,1997,275(5298):322-323.
    [106]关绍康,熔体热历史对快凝铝铁基合金显微结构影响的研究.北京科技大学博士学位论文,1995.
    [107] G.H. Vineyard. Liquid Metals and Solidification. Cleveland: ASM,1958.
    [108] H. Tanaka. General view of a liquid-liquid phase transition. Phys. Rev. E.,2000,62(5):6968-6976.
    [109] A.C.Mitus, A.Z.Patashinskii and B.I.Shumilo.The liquid-liquid phase transition. Phys.LettA,1985,113(1):41-44.
    [110] Y. Katayama, T. Mizutani, W. Utsumi, et al. A first-order liquid–liquid phase transition inphosphorus. Nature,2000,403(6766):170-173.
    [111] Y.Senda, F.Shimojo, K.Hoshino. The liquid–liquid phase transition of liquid phosphorusstudied by ab initio molecular-dynamics simulations. J. Non-Cryst. Solids,2002,312:80-84.
    [112] V.V. Brazhkin, Y. Katayama, M.V. Kondrin, et al. AsS melt under pressure: One substance,three liquids. Phys. Rev. Lett.,2008,100(14):145701.
    [113] M. Togaya. Pressure dependences of the melting temperature of graphite and the electricalresistivity of liquid carbon. Phys. Rev. Lett.,1997,79(13):2474-2477.
    [114] M. P. Grumbach, R. M. Martin. Phase diagram of carbon at high pressures and temperatures.Phys. Rev. B,1996,54(22):15730-15741.
    [115] M. Yao, H. Endo. Structure and physical properties of liquid chalcogens. J. Non-Cryst.Solids,1996,205:85-88.
    [116] F.Q. Zu, Z.G. Zhu, L.J. Guo, et al. Observation of an Anomalous DiscontinuousLiquid-Structure Change with Temperature. Phys. Rev. Lett.,2002,89:125505.
    [117] F.Q. Zu, Z.G. Zhu, B. Zhang, et al. Post-melting anomaly of Pb-Bi alloys observed byinternal friction technique. J. Phys.: Condens. Matt.,2001,13:11435-11442.
    [118]朱震刚,祖方遒,郭丽君,等,液态金属结构研究新进展.物理,2003,32(5):283-285.
    [119]李先芬,共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响.合肥工业大学博士学位论文,2006.
    [120]陈杰,Cu-Sn/Sb及Pb-Bi/Sb合金熔体结构转变的可逆性及其对凝固的影响.合肥工业大学博士学位论文,2009.
    [121]黄中月,二元热电材料凝固行为及热电性能与熔体状态的相关性.合肥工业大学博士学位论文,2010.
    [122] Z.G. Zhu, F.Q. Zu, L.J. Guo, et al, Internal friction method: suitable also for structuralchanges of liquids. Mater. Sci. Eng. A.,2004,370:427-430.
    [123] L. Wang, X.F. Bian, J.T. Liu. Discontinuous structural phase transition of liquid metaland alloys (1), Phys. Lett. A,2004,326(5):429-435.
    [124]秦敬玉,边秀房,王伟民,Al和Sn液态结构的温度变化特性.物理学报,1998,47(3):438-444.
    [125]孙民华,耿浩然,边秀房,A1熔体粘度的突变点及与熔体微观结构的关系.金属学报,2000,36(11):1134-1138.
    [126] P.S. Popel, M. Calvo-Dahlborg, U. Dahlborg. Metastable microheterogeneity of melts ineutectic and monotectic systems and its influence on the properties of the solidified alloy. J.Non-Cryst. Solids2007,353:3243–325
    [127] N.V. Surovtsev, V.K. Malinovsky, V.P. Solntsev, et al. Peculiarities of LiB3O5 crystallization from melts studied by Raman spectroscopy. J. Cryst. Growth,2008,310(15):3540-3544.
    [128] P.S. Popel, O.A. Chikova, V.M. Matveev. Metastable colloidal states of liquid metallicsolutions. High Temp. Mat. Proc.,1995,14(4):219-234..
    [129] F. Q. Zu, Z. G. Zhu, Y. Feng, et al. Post-melting anomaly of Pb-Bi alloys observed byinternal friction technique. J. Phys.: Condens. Matter,2001,13(50):11435.
    [130]益讯,温度诱导Pb-Sn、In-Sn和Pb-Bi合金液-液结构转变的可逆性,合肥工业大学硕士学位论文,2007.
    [131] F.Sette,M.H.Krisch,C. Masciovecchio et al. Dynamics of glasses and glass-formingliquids studied by inelastic X-ray scattering. Science,1998,280(5369):1550-1555.
    [132] R.M.J.Cotteril,J.K.Kristensen. A transmission electron microscopy investigation of themelting transition, Philos. Mag.,1977,36(2):453-462.
    [133] P.A.Curreri, W.F.Kaukler.Real-time X-ray transmission microscopy of solidifying Al-Inalloys. Metall and Mater.Trans.A,1996,27(3):801-808.
    [134] L.Andre,Heridity in Cast Iron, The Iron Age,1927,6:960-966.
    [135] P. Rudolph, N. Schaefer, T. Fukuda. Crystal growth of ZnSe from the melt, Mater.Sci. Eng., R:Report,1995,15(3):85-133.
    [136] J.F.Wang, A.Omino, M.Isshiki. Bridgman growth of twin-free ZnSe single crystals, Mater.Sci.&Engin. B.,2001,83:185–191.
    [137]王致明,几种合金熔体的不均匀性及其特征研究.山东大学博士学位论文,2010
    [138]谭敦强,黎文献,张迎元,铝及铝合金熔体结构研究.材料导报,2004,18(5):27-40.
    [139]周兵,Sn-Bi系与Pb-30%Sb合金熔体结构转变的可逆性及其对凝固的影响.合肥工业大学硕士学位论文,2007
    [140] F.Q.Zu, J.Chen, X.F. Li,et al. A new viewpoint to the mechanism for the effects of meltoverheating on solidification of Pb-Bi alloys. J. Mater. Res.,2009,24(07):2378-2384.
    [141] G.I.Eskin, D.G. Eskin. Some control mechanisms of spatial solidification in light alloys.Zeitschrift Fur Metallkunde,2004,95(8):682-690.
    [142]李培杰,桂满昌,贾均,等. Al-16%Si合金熔体的电阻率及其结构遗传.铸造,1995,9:15-20.
    [143] P. Li, V.I. Nikitin, E.G. Kandalova, et al. Effect of melt overheating, cooling andsolidification rates on Al–16wt.%Si alloy structure. Mater. Sci. Eng. A,2002,332(1):371-374.
    [144]张蓉,沈淑娟,刘林,过热处理对Al-Si过共晶合金耐磨性能的影响.摩擦学学报,2000,20(5):344-347.
    [145] X.F. Bian, W.M. Wang. Thermal-rate treatment and structure transformation of Al–13wt.%Si alloy melt. Mater. Lett.,2000,44:54–58.
    [146]周振平,李荣德,马建超,热速处理对Al2Fe合金组织与性能的影响.中国有色金属学报,2004,14(8):1420-1425.
    [147]无名,表面贴装行业的无铅化现状与趋势.现代表面贴装资讯,2004,2:24-24.
    [148] U. R. Kattner. Phase diagrams for lead-free solder alloys. JOM,2002,54(12):45-51.
    [97] J.M. Ziman. A theory of electrical properties of liquid metals. I: the monovalent metals. Phil.Mag.,1961,6(68):1013-1034.
    [149]陈志浩,二元合金熔体结构转变动力学行为探讨.合肥工业大学博士学位论文,2008.
    [150]金准智,胡立新,等,液态Bi-Te和Bi-Se系合金系合金的电阻率与金属-非金属转变.武汉大学学报:自然科学版,1995,41(3)337-340.
    [151]任大志,冯启星,液态Hg-Na和Te-Se合金电输运性质及金属-非金属转变的研究.武汉大学学报:自然科学版,1995,41,(5):605-610.
    [152]王强,陆坤权,李言祥,液态InSb电阻率和热电势与温度的关系.物理学报,2001,50(7):1355-1358.
    [153]常芳娥,李卫军,吕士勇,等,从液态锡的电阻率研究其结构变化的滞后性.西北工业大学学报,2010,30(2):155-159
    [154] J. N. Glosli, H. R. Francis. Liquid-liquid Phase Transformation in Carbon. Physical ReviewLetters,1999,82(23):4659-4662.
    [155] J. X. Zhang, P. C. W. Fung, W. G. Zeng. Dissipation Function of the first-order phasetransformation in solids via internal-friction measurements. Physical Review B,1995,52(1):268-277.
    [156]陈杰,祖方遒,席赟,等,不同类型的液液结构转变对CuSn80合金凝固的影响.中国有色金属学报,2007,17-S1:71-76.
    [157] S. Aasland and P. McMillan.Density-driven liquid–liquid phase separation in the systemAI2O3–Y2O3. Nature,1994,369:633-636.
    [158] W.M. Wang, X.F. Bian, J.Y. Qin, et al. The atomic-structure changes in Al-16pct Si alloyabove the liquidus. Met. Mater. Trans. A,2000,31:2163-2168.
    [159] P. Rudolph, H. J. Koh, N. Sch fer et al. The crystal perfection depends on the superheatingof the mother phase too--experimental facts and speculations on the “melt structure” ofsemiconductor compounds, J. Cryst. Growth.1996,166:578-582.
    [160]陈红圣,Sn-Bi系合金熔体结构转变及其对凝固和润湿性的影响.合肥工业大学硕士学位论文,2008.
    [161]刘永驰,SnAg(Cu)系无铅焊料熔体结构状态与凝固组织及润湿性的相关性探索,合肥工业大学硕士学位论文,2009.4
    [162] K.J.Puttlitz, G.T. Galyon. Impact of the ROHS Directive on high-performance electronicsystems Part II: key reliability issues preventing the implementation of lead-free solders.J.Mater. Sci.-Mater. Electr.,2007,18(1–3):347-365.
    [163] I.E. Anderson. Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronicsolder applications. J. Mater. Sci.Mater. Electr.,2007,18(1–3):55-76.
    [164] C.W. Hwang, K. Suganuma, Joint reliability and high temperature stability of Sn–Ag–Bilead-free solder with Cu and Sn–Pb/Ni/Cu substrates, Mater.Sci.Eng. A,2004,373(1):187-194.
    [165] X. F. Li, F.Q. Zu, L. J. Liu, et al. Effect of Sn on reversibility of liquid–liquid transition inBi–Sb–Sn alloys. J. Alloy Compd.,2008,453:508–512
    [166]陈红圣,祖方遒,陈杰等.熔体过热对Sn-Bi40合金熔体结构转变及凝固组织的影响.中国科学E辑,2009,39(1):141~145
    [167] J Hafner, A Philipp, Low-temperature electrical resistivity of amorphous Ca-Mg alloys, J.Phys. F: Met. Phys.14(1984), pp.1685-1691.
    [168] Q. Q. Sun, L. J. Liu, X. F. Li, et al., A new understanding of melt overheating treatment ofSn–20wt-%Sb from viewpoint of TI-LLST, Mater. Sci. Technol.25(2009), pp:35-38
    [169] I. Kaban, W. Hoyer, A. Il_inskii, et al., Short-range order in liquid silver–tin alloys,J.Non-Cryst.Solids331(2003), pp:254-262
    [170] D.M.North, J.E.Enderby and P.A.Egelstaff, The structure factor for liquid metals II.Resultsfor liquid Zn,T1,Pb, Sn and Bi. J. Phys.C: Solid State Physics,1(1968)1075-1087
    [171]秦敬玉,边秀房,王伟民,等. Al及Sn液态结构温度变化特征.物理学报,47(1998)438-444
    [172]T. Itami, S. Munejiri,T. Masaki, et al., Structure of liquid Sn over a wide temperature rangefrom neutron scattering experiments and first-principles molecular dynamics simulation: Acomparison to liquid Pb. Phys. Rev. B,67(2003)064201.
    [173]杨中喜,耿浩然,陶珍东,孙春静,液态Sn的粘度及其熔体微观结构的变化.原子与分子物理学报.21(2004)663-666.
    [174]胡成明,李先芬,祖方遒等. Sn-Bi合金熔体可逆液-液结构转变的研究.原子与分子物理学报.25(2008)1003-1007.
    [175] G.Y. Li, X.Q. Shi. Effects of bismuth on growth of intermetallic compounds in Sn-Ag-CuPb-free solder joints. Trans. Nonferrous Met. Soc. China.2006.16:739-743.
    [176]傅恒志,魏炳波,郭景杰,凝固科学技术与材料.中国工程科学,2003,5(8):1-15.
    [177]周尧和,胡壮麒,介万奇,《凝固技术》.北京:机械工业出版社,1998
    [178] L.R. Garcia, W.R. Osório, L.C. Peixoto, A. Garcia. Wetting behavior and mechanicalproperties of Sn-Zn and Sn-Pb solder alloys. J Electron Mater38(2009)2405-2414.
    [179] J.Chen, F.Q. Zu, X.F. Li, et al. Influence of a Liquid Structural Change on the Solidificationof the Alloy CuSn30, Met. Mater. Int.,2008,14(5):569-574.
    [180] F.Q. Zu, G.H. Ding, X.F. Li. Change in Solidification Behavior of Bi-Sb10Alloy afterLiquid Structural Transition, J. Cryst. Growth,2008,310:397–403.
    [181]祖方遒.材料成形基本原理,机械工业出版社,2004.
    [182]J. Shen, Y.C. Liu, Y.J Han, etc. Effects of cooling rates on microstructure and microhardnessof lead-free Sn-3.5%Ag solders,Trans.Nonferrous Met.Soc.China16(2006)59-64.
    [183] U. R.Kattner, W.J. Boettinger. On the Sn-Bi-Ag Ternary Phase Diagram, J. Electron. Mater.23(1994)603-610
    [184]祖方遒,铸件成形原理.北京:机械工业出版社,2013.
    [185] R.P.Liu, T.Volkmann and D.M.Herlach, Undercooling and solidification of Si byelectromagnetic levitation, Acta Mater.2001,49:439-444.
    [186]高文龙,含Sb二元合金熔体电子输运性质及凝固行为.合肥工业大学硕士学位论文,2013.
    [187]丰大顺,熔体结构与冷却速率对Pb-Te/Sb/Bi合金凝固的综合作用.合肥工业大学硕士学位论文,2013.
    [188] K.S.Bae,and S.J.Kim,2002Materials Research Society,Vo1.17(4),PP.743-746,(2002)
    [189] J.C.Foley,A.Gickler,F.H.Leprevost,et a1.Joumal of Electronic Materials,Vo1.29(10),PP.1258-1263,(2000)
    [190] O.Unal, I.E.Anderson, J.L.Harringa, et al.Application of an asymmetrical four point bendshear test to solder joints. Journal of Electronic Materials,2001,30(9):1206-1213.
    [191] J.K.Lin,A.D.Silva,D.Frear,et a1.51th Electronic Components and TechnologyConference,2001:455-462.
    [192] W.Yang,L.E.Felton, R.W.Messler. The effect of soldering process variables on themicrostructure and mechanical properties of eutectic Sn-Ag/Cu solder joints. Journal ofElectronic Materials,1995,24(10):1465-1472.
    [193]高建明,材料力学性能.武汉:武汉理工大学出版社,2004
    [194]高艳俊, Sn-Cu基无铅焊料及其钎焊接头的剪切性能.大连理工大学硕士学位论文,2010.
    [195] T.Young. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London,1805,95:65-87.
    [196]罗渝然,化学键能数据手册.北京:科学出版社,2005.
    [197]宣大荣,无铅焊接-微焊接技术分析与工艺设计.北京:电子工业出版社,2008
    [198]胡志田,徐道荣, Bi对Sn3.5Ag共晶合金钎料性能的影响.焊接技术,2006,35(4):46-48
    [199] H.Okamoto, T.B.Massalski,P.R. Subramanian,et al. Binary Alloy Phase Diagrams, vol.1.ASM International,1990:2104.
    [200]美国金属学会,金属手册-断口金相与断口图谱.北京:机械工业出版社,1974.
    [201]姜锡山,赵晗,钢铁显微断口速查手册.机械工业出版社,2010.5
    [202]迟成宇, Bi对Sn-3Ag-0.5Cu/Cu界面组织及接头剪切强度的影响.大连理工大学硕士学位论文,2007.
    [203] Q.D.Qin, Y.G. Zhao, Y.H. Liang, W. Zhou,Effects of melt superheating treatment onmicrostructure of Mg2Si/Al–Si–Cu composite. J. Alloys Comp.,2005,399:106-109.
    [204] C.L. Xu, Q.C. Jiang. Morphologies of primary silicon in hypereutectic Al–Si alloys withmelt overheating temperature and cooling rate. Mater. Sci. Eng. A,2006,437:451–455
    [205] C.W.Hwang, J.G. Lee, K. Suganuma, et al. Interfacial microstructure between Sn-3Ag-xBialloy and Cu substrate with or without electrolytic Ni plating. J. Electron. Mater.,2003,32:52-62.
    [206] X.Y. Li, F.Q. Zu, W.L. Gao,et al. Effects of the Melt State on the Microstructure of aSn-3.5%Ag Solder at Different Cooling Rates, Appl. Surf. Sci.2012,258:5677–5682.
    [207] H.L.J. Pang, K.H. Tan, X.Q. Shi, et al. Microstructure and intermetallic growth effects onshear and fatigue of solder joints subjected to thermal cycling aging. Mater. Sci. Eng. A,2001,307(1):42-50.
    [208] A.T.Wu, M.H.Chen, C.N. Siao. The Effects of Solid-State Aging on the IntermetallicCompounds of Sn-Ag-Bi-In Solders on Cu Substrates. Journal of Electronic materials,2009,38:252-256.
    [209] W. Yang, R.W. Messler. Microstructure Evolution of Eutectic Sn-Ag Solder Joints, J.Electron. Mater.,1994,23:65-772.
    [210] C.K.Alex, Y.C. Chan. Aging Studies of Cu-Sn Intermetallic Compounds in AnnealedSurface Mount Solder Joints. Electronic Components and Technology Conference,1996,5:1164-1171.
    [211] W.J. Tomlinson, H.G. Rhodes. Kinetics of intermetallic compound growth between nickel,electroless, Ni-P, electroless Ni-B and tin at453to493K. J. Mater. Sci.,1987,22:1769-1772.
    [212] D. Gur, M. Bamberger. Reactive isothermal solidification in the Ni–Sn system. Acta Mater.,199846:4917-4923.
    [213] C.Y.Lee, K.L. Lin. The interaction kinetics and compound formation between electrolessNi P and solder. Thin Solid Films,1994,249:201-206.
    [214] J. Burke. in “The Kinetics of Phase Transformations in Metals”(translated from English byK. Hirano and H.Hori (Kyoritsu, Tokyo,1972) p.190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700