用户名: 密码: 验证码:
高压氧预处理对视神经不完全损伤的保护效应及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青光眼是全球最常见的不可逆性致盲眼病之一,青光眼视神经病变是该病致盲的根本原因。目前公认的发生机制是由于眼压升高造成视网膜神经节细胞和其它视网膜细胞发生以变性坏死为特征的原发性损害,随后又通过一系列途径诱发以视网膜神经节细胞持续性凋亡为特征的继发性损害,从而导致视神经功能进行性损伤。目前除了应用药物、手术等手段降低升高的眼内压,控制疾病的原发性损害以外,尚无有效手段防治视神经的继发性损害。视神经由RGCs的轴索组成,是间脑白质的主要成分,视神经和视网膜作为中枢神经系统在颅外的延伸,在位置上具有着中枢神经系统其他部分不可比似的易操作性,因而视神经损伤模型常被用来模拟大脑的轴突损伤;其中视神经钳夹伤模型能够较好地模拟RGCs继发性凋亡,即使视神经被完全截断后,仍有相当一部分数量的RGCs能够存活一段时间。这种钳夹伤后的神经退行性过程与青光眼视神经病变的病理过程相类似。
     高压氧治疗已在临床应用多年,具有确切治疗效果的疾病包括一氧化碳中毒、中风、空气栓塞及减压病等。目前大量的研究显示高压氧预处理对大脑缺血缺氧引起的迟发型损伤有确切的神经保护作用,但HBO-PC保护效应的确切机制尚未阐明,在临床应用前还需要大量的实验证据。目前,人们普遍认为HBO诱导脑神经保护作用的机制主要有以下两个方面:一是HBO预处理诱导机体组织细胞产生大量的活性氧,进而引起机体的抗氧化酶增多,增强机体抗氧化损伤能力;二是HBO预处理可诱导脑内的抗凋亡蛋白升高,增强机体的抗凋亡损伤能力。
     视神经钳夹伤后的视网膜神经元退行性变过程和脑损伤所引起的继发性神经元退变过程相似,因此我们采用一种临床实际工作中可行而有效的高压氧预处理方法,从病理学、形态学、视功能等各个方面验证这种预处理方法对视神经不完全损伤是否具有保护效应,并初步探讨HBO预处理发挥视神经保护作用的分子机制。
     第一部分大鼠不完全视神经损伤模型的建立及高压氧预处理对视神经不完全损伤的保护效应目的:建立稳定的大鼠视神经钳夹伤模型,研究高压氧预处理对大鼠视神经不完全损伤的保护效应。
     方法:采用2.5 ATA,100%O2,每天2次,连续2天的高压氧预处理方法,末次处理后次日采用Yasargil动脉瘤夹制作大鼠视神经钳夹伤模型。动物分为Sham组、ONC组,HBO+ONC组。分别在建模后1周或2周采用HE染色、荧光金逆行标记、闪光视觉诱发电位及TUNEL观察或检测视网膜神经节细胞的形态、数量和视神经功能的改变。
     结果:建模1周时Sham组视网膜节细胞层中HE着色的细胞数量为89.5±9.4个/高倍视野,2周时为92.7±9.1个/高倍视野;而1周和2周时HBO+ONC组的视网膜节细胞层中HE着色的细胞数量显著较ONC组多(69.3±7.4 vs 56.6±6.5个/高倍视野,1w,P<0.01;62.3±6.1 vs 46.1±6.6,2w,P<0.01)。建模2周时荧光金逆行标记显示,Sham组的存活视网膜节细胞的平均密度为1650±216/mm2,而HBO+ONC组的视网膜神经节细胞平均密度显著高于Sham组(995±158/mm2和478±101/mm2,P<0.01)。闪光视觉诱发电位结果显示,相对于HBO+ONC组,ONC组P1波的潜伏期延长、振幅降低。视神经钳夹伤后1周时Sham组、HBO+ONC组和ONC组P1波的潜伏期和振幅分别为90±4ms、94±4ms、108±6ms(P<0.05,HBO+ONC vs ONC);17±2μv、18±3μv和12±2μv(P<0.01,HBO+ONC vs ONC)。2周时Sham组、HBO+ONC组和ONC组P1波的潜伏期和振幅分别为92±7ms、117±12ms、169±15ms(P<0.01,HBO+ONC vs ONC);21±3μv、14±2μv和7±1μv(P<0.01,HBO+ONCvs ONC)。
     结论:HBO预处理能使视神经损伤后的视网膜节细胞存活率显著提高,同时改善视神经的功能状态,确认HBO预处理对大鼠视神经不完全损伤的保护效应。
     第二部分
     高压氧预处理抑制线粒体途径的凋亡诱导对大鼠视神经不完全损伤的保护效应
     目的:研究高压氧预处理对线粒体凋亡途径的影响。
     方法:按第一部分方法进行高压氧预处理和建模。使用TUNEL法检测RGCs凋亡数量;ELISA法检测视网膜caspase-3和caspase-9的酶活性;Western Blot检测cytochrome c、Bcl-2 BclxL、和Bax蛋白表达量。
     结果:HBO预处理能明显减少视神经不完全损伤后RGCs的凋亡阳性细胞数(ONC:19.1±4.2/HPF vs.HBO+ONC:7.2±1.3/HPF,P<0.01),ONC组视网膜组织的caspase-3和caspase-9酶相对活性显著高于HBO+ONC组(P>0.05)。HBO预处理显著减少了视神经损伤后视网膜组织胞浆cytochromec的蛋白水平(P<0.05),同时提高了抗凋亡蛋白Bcl-2、BclxL的水平(P<0.01,P<0.05),但对促凋亡蛋白Bax的表达影响不明显(P>0.05)。
     结论:高压氧预处理可能通过抑制线粒体途径的凋亡发挥对视神经不完全损伤的保护效应。
     第三部分
     高压氧预处理调控HIF/EPO通路诱导对大鼠视神经不完全损伤的保护效应
     目的:研究HBO预处理的保护效应是否与氧化应激诱导大鼠视网膜中HIF-1及下游神经保护性基因EPO的表达有关。
     方法:按第一部分方法进行高压氧预处理,末次处理后次日直接取材。动物分为对照组和HBO预处理组。使用RT-PCR方法和Western Blot检测HBO预处理对视网膜组织HIF-1及其下游基因EPO的mRNA表达和蛋白含量的影响,并检测EPO下游信号分子P-Akt和HSP-27蛋白表达的影响。
     结果:HBO预处理能显著上调大鼠视网膜组织中HIF-1和EPO mRNA的表达,分别是对照组的13.38±1.97倍和5.55±1.03倍(P<0.01);同时HIF-1α和EPO蛋白表达显著增加,分别是对照组的1.86±0.24倍和3.01±0.33倍(P<0.01)。HBO预处理组视网膜组织中P-Akt和HSP-27蛋白表达也显著增加,分别是对照组的1.64±0.11倍和1.81±0.12倍(P<0.01)。
     结论:HBO预处理诱导增强视网膜组织中HIF-1和下游神经保护性基因EPO的表达,可能是其发挥视神经不完全损伤保护效应的机制之一。
Retinal ganglion cell (RGC) death is the end result of practically all diseases of the optic nerve, including glaucomatous optic neuropathy. Optic nerve and retina are the most easily accessible parts of the central nervous system (CNS), and lying outside the skull. The optic nerve is a white matter tract of the diencephalon composed principally of the axons of RGC. Therefore, optic nerve injury has been used to model brain axonal injury. Optic nerve crush (ONC) is a well established model of delayed RGC death. The neurodegenerative process after ONC may be similar to the process of secondary degeneration described in the context of glaucomatous optic neuropathy. After ONC, a fraction of RGCs undergo early necrosis, whereas others are subjected to delayed apoptotic death and will always be relatively numerous. Even after a complete transection many RGCs are still able to survive for long periods after the insult.
     Hyperbaric oxygen (HBO) therapy has been traditionally applied in the treatment of carbon monoxide poisoning, stroke, air embolism and decompression sickness. Recently, HBO preconditioning (HBO-PC) has been shown to have neuroprotective effects against ischemic injury in gerbil hippocampus, rabbit spinal cord, transient brain infarct in mouse and rat or in primary cultured spinal cord neurons. However the mechanism is not fully understood and more evidence is needed for HBO treatment to be accepted clinically. The majority of studies examined HBO preconditioning effects on a delayed brain injury. HBO preconditioning should have a powerful anti-apoptotic effect as apoptosis is a dominant form of hippocampal cell death after global cerebral ischemia.
     In the present study, on the assumption that the processes of secondary degeneration of neurons after ONC are likely to involve pathways and mediators similar to those in brain trauma, we investigate whether the administration of HBO-PC offers neuroprotection to retinal ganglion cells by reducing ONC-induced caspase-dependent apoptosis. We hope to provide experimental evidence for the clinical application of HBO preconditioning.
     Part I The protective effect of HBO preconditioning on optic nerve crush injury in rats
     Objective:Establishing a reliable, convenient and reproducible animal model with optic nerve crush (ONC), we investigate whether the HBO protocol is of protective effect on ONC injury.
     Methods:HBO preconditioning (HBO-PC) was conducted four times by given 100% oxygen at 2.5 atmosphere absolute (ATA) for 1 h every 12 h interval for 2 days prior to ONC. Rats were euthanized at 1 or 2 weeks after ONC. RGC density was counted by Hematoxylin and Eosin (HE) staining in the retina and retrograde labeling with FluoroGold application to the superior colliculus. Visual function was assessed by flash visual evoked potentials (FVEP).
     Results:The number of HE-stained cells in the ganglion cell layer of sham group was 89.5±9.4 cells/HPF at 1 week and 92.7±9.1 cells/HPF at 2 weeks. More HE-stained cells in the ganglion cell layer were observed in HBO-PC group than in no HBO-PC group (69.3±7.4 vs 56.6±6.5 cells/HPF at 1 week, P<0.01; 62.3±6.1 vs 46.1±6.6 at 2 weeks, P<0.01). Therefore, HBO-PC had a statistically significant rescue effect in retinas when compared with ONC group. Moreover, we applied retrograde labeling with fluorogold to count the number of surviving RGCs at 2 weeks after ONC. The average RGC density in retinas of sham-operated group was 1650±216/mm2. At 2 weeks after ONC, the RGC densities of HBO-PC+ONC group and ONC group decreased to 995±158/mm2 and 478±101/mm2, respectively (p<0.01). The FVEP measurements illustrate that the HBO-PC+ONC group had significantly improved visual function as compared to the corresponding ONC group at both 1 and 2 weeks. The latency of the P1 wave at 1 week was 90±4ms,94±4ms, and 108±6ms for the control, HBO-PC+ONC (p>0.05 vs control), and ONC groups (p<0.01 vs control). At 2 weeks after operation, the latency of the P1 wave was 92±7ms,117±12ms,169±15ms for the control, HBO-PC+ONC (p<0.05 vs control, p<0.001 vs ON-crushed), and ONC groups (p<0.001 vs control). The amplitude of the P1 wave was 17±2μv,18±3μv, and 12±2μv for the control, HBO-PC+ONC (p>0.05 vs control), and ONC groups (p<0.01 vs control) at 1 week,21±3μv,14±2μv, and 7±1μv for the control, HBO-PC+ONC (p<0.05 vs control, p<0.001 vs ONC), and ONC groups (p<0.001 vs control) at 2 weeks.
     Conclusion:The RGC density in the retinas of ONC, HBO-PC-treated rats was significantly higher than that of the corresponding ONC rats. FVEP measurements indicated a significantly better preserved latency and amplitude of the P1 wave of in the HBO-PC group. These observations demonstrate that HBO-PC appears to be neuroprotective against ONC injury.
     PartⅡHyperbaric oxygen preconditioning promotes survival of retinal ganglion cells by inhibition of mitochondrial apoptosis in a rat model of optic nerve crush
     Objective:To investigate the influence of HBO preconditioning on mitochondrial apoptosis.
     Methods:The animal models were made and the HBO was performed according to the protocol introduced in Part I. The terminal deoxynucleotidyl transferase-mediated Dutp nick end labeling (TUNEL) assay was performed on paraffin-embedded sections according to the manufacture instructions. The activity of caspase-3 and-9 were measured with caspase-3 and caspase-9/CPP32 Fluorometric Assay Kit. The protein expression levels of cytochourome c, Bcl-2, BclxL and Bax were detected by Western Blot.
     Results:At 2 weeks after operation, TUNEL assay illustrated that TUNEL-positive cells/HPF of 1.8±1.6 cells in sham operated group,7.2±1.3 cells in HBO-PC+ONC group and 19.1±4.2 cells in ONC group (p<0.01 vs HBO-PC+ONC group) in the RGC layer. Caspase-9 activity in HBO-PC+ONC group were higher than that of ONC group at indicated time points (4.15±1.33-fold vs 11.25±3.26-fold at 1 week; 2.25±0.79 vs 6.29±1.95 at 2 weeks, P<0.01). Similarly, the measurements of caspase-3 activity showed a 2.62±0.45-fold and 3.22±0.67-fold increase in HBO-PC+ONC group and ONC group respectively at 1 week (p<0.05); a 1.72±0.34-fold and 2.82±0.51-fold increase in HBO-PC+ONC group and ONC group respectively at 2 weeks (p<0.01). Western blot analysis of retina samples at 24 h after ONC showed that HBO-PC reduced the protein expression of cytochourome c (P<0.05), HBO-PC enhanced the anti-apoptotic protein levels of Bcl-2 and BclxL.The protein level of Bax remains constant in all groups after ONC.
     Conclusion:The inhibition of mitochondrial apoptosis may be one of the mechanisms of neuroprotection induced by HBO preconditioning in a rat model of optic nerve crush. PartⅢMechanism of neuroprotection induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1 and erythropoietin in a rat model of optic nerve crush
     Objective:To investigate whether the protective effect induced by HBO preconditioning involves upregulation of hypoxia-inducible factor-1 and erythropoietin in retina.
     Methods:HBO was performed according to the protocol introduced in Part I. RT-PCR and Western blot were used to analyze the HIF-1 and EPO mRNA level, the HIF-la, EPO, ERK and HSP70 protein level using samples taken from the retinas of the experimental groups 12 h after the last HBO pretreatment without optic nerve crush injury.
     Results:The HIF-1 mRNA and HIF-la protein level were significantly increased 12 h after the last HBO pretreatment (13.38±1.97-fold and 1.86±0.24-fold vs control, P<0.01) in rat retinas, while the EPO mRNA and protein level were also significantly increased (5.55±1.03-fold and 3.01±0.33-fold vs control, P<0.01). Moreover, EPO activates downstream effectors, such as ERK and HSP70, which protein level was also significantly increased (1.64±0.11-fold and 1.81±0.12-fold vs control, P<0.01).
     Conclusion:HBO preconditioning can induce the protective effect on ONC injury, which may probably involve up-regulation of HIF-1 and its target gene EPO.
引文
1. Yu SY, Chiu JH, Yang SD, Yu HY, Hsieh CC, Chen PJ, Lui WY, Wu CW. Preconditioned hyperbaric oxygenation protects the liver against ischemia-reperfusion injury in rats. J Surg Res,2005.128(1): 28-36.
    2. Sheridan, R.L. and E.S. Shank. Hyperbaric oxygen treatment:a brief overview of a controversial topic. J Trauma,1999.47(2):426-35.
    3. Tibbles P.M. and J.S. Edelsberg. Hyperbaric-oxygen therapy. N Engl J Med,1996.334(25):1642-8.
    4. Wada K, Ito M, Miyazawa T, Katoh H, Nawashiro H, Shima K,Chigasaki H. Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res,1996,740:15-20.
    5. Kim CH, Choi H, Chun YS, Kim GT, Park JW, Kim MS. Hyporbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Pflugers Arch,2001,442: 519-525.
    6. Tritto I, D'Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A, Esposito A, Chiariello M, Ambrosio G. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res,1997,80: 743-748.
    7. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK, Semenza GL, Prabhakar NR. Heterozygous Hif-1 Deficiency Impairs Carotid Body-Mediated Cardio-Respiratory Responses and Ros Generation in Mice Exposed to Chronic Intermittent Hypoxia. J Physiol,2006.
    8. Kietzmann, T. and A. Gorlach. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol,2005.16(4-5):474-86.
    9. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab,2005.1(6):401-8.
    10. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol,2000.48(3): 285-96.
    11. Shein NA, Horowitz M, Alexandrovich AG, Tsenter J, Shohami E. Heat acclimation increases hypoxia-inducible factor 1 alpha and erythropoietin receptor expression:implication for neuroprotection after closed head injury in mice. J Cereb Blood Flow Metab,2005.25(11):1456-65.
    12. Maloyan A, Eli-Berchoer L, Semenza GL, Gerstenblith G, Stern MD, Horowitz M. HIF-1 alpha-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiol Genomics,2005.23(1):79-88.
    13. Semenza, G.L. Hydroxylation of HIF-1:oxygen sensing at the molecular level. Physiology (Bethesda),2004.19:176-82.
    14. Levent Sarikcioglu, Necdet Demir, Arife Demirtop. A standardized method to create optic nerve crush:Yasargil aneurysm clip. Experimental Eye Research,2007,84:373-377.
    15. Walsh FB. Morphology in experimental centralretinal artery occlusion in rats. Invest Ophthalmol, 1966,5(5):433-449.
    16. Morrison JC. Elevated intraocular pressure and optic nerve injury in the rat. J Glaucoma,1998,14(4): 315-317
    17. Dezawa M, Kawana K, Negishi H, Adachi-Usami E. Glial cells in degenersting and regeneranting optic nerve of the adult rat. Brain Res Bun,1999,48(6):573-579
    18. Holmes MD, Sires SB. Flash visual evoked optic neuropathy. J Ophthalmol Plast Reconstru Surg, 2004,20(5):342-346
    19. Leach RM, Rees PJ, Wilmshurst P. ABC of oxygen:Hyperbaric oxygen therapy. BMJ,1998,317: 1140-3
    20. Chang YH, Chen PL, Tai MC, Chen CH, Lu DW, Chen JT. Hyperbaric oxygen therapy ameliorates the blood-retinal barrier breakdown indiabetic retinopathy. Clin Experiment Ophthalmol,2006,34: 584-9
    21. Leach RM, Rees PJ, Wilmshurst P. ABC of oxygen:Hyperbaric oxygen therapy. BMJ,1998,317: 1140-3
    22. Chang YH, Chen PL, Tai MC, Chen CH, Lu DW, Chen JT. Hyperbaric oxygen therapy ameliorates the blood-retinal barrier breakdown in diabetic retinopathy. Clin Experiment Ophthalmol,2006, 34(6):584-589
    23. Ce Murry, Rb Jennings, Ka Reimer. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation,1986,74:1124-36
    24. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J,2000,113(9):836-9.
    25. Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab.2005.25 (5):554-571
    26. Freiberger JJ, Suliman HB, Sheng H, McAdoo J, Piantadosi CA, Warner DS. A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res,2006,1075 (1):213-222.
    27. Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma.2000; 17:811-829.
    28. Green DR, Reed JC. Mitochondda and apoptosis. Science.1998; 218:1309-1312.
    29. Hochman A, Sternin H, Gorodin S, Korsmeyer S, Ziv I, Melamed E, Often D. Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem.1998; 71:741-8.
    30. Wang CH, Liang CL, Huang LT, Liu JK, Hung PH, Sun A, Hung KS. Single intravenous injection of naked plasmid DNA encoding erythropoietin provides neuroprotection in hypoxia-ischemia rats. Biochem Biophys Res Commun.2004 20; 314(4):1064-71.
    31. Al-Waili NS, Butler GJ, Beale J, Abdullah MS, Hamilton RW, Lee BY, Lucus P, Allen MW, Petrillo RL, Carrey Z, Finkelstein M. Hyperbaric oxygen in the treatment of patients with cerebral stroke, brain trauma, and neurologic disease. Adv Ther.2005; 22(6):659-78.
    32. Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T. Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology,2002.96(4): 907-12.
    33. Kim CH, Choi H, Chun YS, Kim GT, Park JW, Kim MS. Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Pflugers Arch,2001.442(4): 519-25.
    34. Prass K, Wiegand F, Schumann P, Ahrens M, Kapinya K, Harms C, Liao W, Trendelenburg G, Gertz K, Moskowitz MA, Knapp F, Victorov IV, Megow D, Dirnagl U. Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res,2000.871(1): 146-50.
    35. Wada K, Miyazawa T, Nomura N, Yano A, Tsuzuki N, Nawashiro H, Shima K Mn-SOD and Bcl-2 expression after repeated hyperbaric oxygenation. Acta Neurochir Suppl,2000.76:285-90.
    36. Yogaratnam JZ, Laden G, Madden LA, Seymour AM, Guvendik L, Cowen M, Greenman J, Cale A, Griffin S. Hyperbaric oxygen:a new drug in myocardial revascularization and protection? Cardiovasc Revasc Med,2006.7(3):146-54.
    37. Benedetti S, Lamorgese A, Piersantelli M, Pagliarani S, Benvenuti F, Canestrari F. Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyperbaric oxygen. Clin Biochem,2004.37(4):312-7.
    38. Conconi MT, Baiguera S, Guidolin D, Furlan C, Menti AM, Vigolo S, Belloni AS, Parnigotto PP, Nussdorfer GG. Effects of hyperbaric oxygen on proliferative and apoptotic activities and reactive oxygen species generation in mouse fibroblast 3T3/J2 cell line. J Investig Med,2003.51(4):227-32.
    39. Gregorevic, P., G.S. Lynch, and D.A. Williams. Hyperbaric oxygen modulates antioxidant enzyme activity in rat skeletal muscles. Eur J Appl Physiol,2001.86(1):24-7.
    40. Yusa T, Beckman JS, Crapo JD, Freeman BA. Hyperoxia increases H2O2 production by brain in vivo. J Appl Physiol,1987.63(1):353-8.
    41. Ohtsuki T, Matsumoto M, Kuwabara K, Kitagawa K, Suzuki K, Taniguchi N, Kamada T. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res,1992. 599(2):246-52.
    42. Semenza, GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol,2001.13(2):167-71.
    43. Buemi M, Vaccaro M, Sturiale A, Galeano MR, Sansotta C, Cavallari V, Floccari F, D'Amico D, Torre V, Calapai G, Frisina N, Guarneri F, Vermiglio G. Recombinant human erythropoietin influences revascularization and healing in a rat model of random ischaemic flaps. Acta Derm Venereol,2002.82(6):411-7.
    44. Genc, S., T.F. Koroglu, and K. Genc, Erythropoietin and the nervous system. Brain Res,2004. 1000(1-2):19-31.
    45. Forooghian F, Razavi R, Timms L. Hypoxia-inducible factor expression in human RPE cells. Br J Ophthalmol.2007; 91(10):1406-10.
    46. Van Wijngaarden P, Brereton HM, Gibbins IL, Coster DJ, Williams KA.Kinetics of strain-dependent differential gene expression in oxygen-induced retinopathy in the rat. Exp Eye Res.2007; 85(4):508-17.
    47. Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med.2002; 8(7):718-24.
    48. Junk AK, Stefani FH, Ludwig K. Bilateral anterior lenticonus:Scheimpflug imaging system documentation and ultrastructural confirmation of Alport syndrome in the lens capsule. Arch Ophthalmol.2000; 118(7):895-7.
    49. Bocker-Meffert S, Rosenstiel P, Rohl C, Warneke N, Held-Feindt J, Sievers J, Lucius R. Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci.2002; 43(6):2021-6.
    50. Kretz A, Happold CJ, Marticke JK, Isenmann S. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell Neurosci.2005; 29(4):569-79.
    51. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A,2001.98(7):4044-9.
    52. Yoshimura, A. and H. Misawa, Physiology and function of the erythropoietin receptor. Curr Opin Hematol,1998.5(3):171-6.
    53. Renzi MJ, Farrell FX, Bittner A, Galindo JE, Morton M, Trinh H, Jolliffe LK. Erythropoietin induces changes in gene expression in PC-12 cells. Brain Res Mol Brain Res,2002.104(1):86-95.
    54. Vairano M, Dello Russo C, Pozzoli G, Battaglia A, Scambia G, Tringali G, Aloe-Spiriti MA, Preziosi P, Navarra P. Erythropoietin exerts anti-apoptotic effects on rat microglial cells in vitro. Eur J Neurosci,2002.16(4):584-92.
    55. Wen TC, Sadamoto Y, Tanaka J, Zhu PX, Nakata K, Ma YJ, Hata R, Sakanaka M. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res,2002.67(6):795-803.
    56. Digicaylioglu, M. and S.A. Lipton. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature,2001.412(6847):641-7.
    57. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A.1998; 95(8):4635-40.
    58. Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y. Effects of erythropoietin on neuronal activity. J Neurochem,1999,72(6):2565-72.
    59. Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol,2000.401(3):349-56.
    60. Solaroglu I, Solaroglu A, Kaptanoglu E, Dede S, Haberal A, Beskonakli E, Kilinc K. Erythropoietin prevents ischemia-reperfusion from inducing oxidative damage in fetal rat brain. Childs Nerv Syst. 2003; 19(1):19-22.
    61. Chattopadhyay A, Choudhury TD, Bandyopadhyay D, Datta AG. Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem Pharmacol,2000. 59(4):419-25.
    62. Morishita, S. Masuda, M. Nagao, Y. Tasuda and R. Sasaki, Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death, Neuroscience 76 (1997), pp.105-116.
    63. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A, 2002.99(14):9450-5.
    64. Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, Gene S, Gene K, Sagiroglu E, Cerami A, Brines M. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A,2002.99(4): 2258-63.
    65. Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res,2002.952(1):128-34.
    66. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A,2000.97(19):10526-31.
    67. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med,2003.198(6):971-5.
    68. Vairano M, Dello Russo C, Pozzoli G, Battaglia A, Scambia G, Tringali G, Aloe-Spiriti MA, Preziosi P, Navarra P. Erythropoietin exerts anti-apoptotic effects on rat microglial cells in vitro. Eur J Neurosci,2002.16(4):584-92.
    69. Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Aktl, Bad, and caspase-mediated pathways. Br J Pharmacol,2003.138(6):1107-18.
    70. Wang CH, Liang CL, Huang LT, Liu JK, Hung PH, Sun A, Hung KS. Single intravenous injection of naked plasmid DNA encoding erythropoietin provides neuroprotection in hypoxia-ischemia rats. Biochem Biophys Res Commun.2004; 314(4):1064-71.
    71. Tezel G., Seigel G. M., Wax M. B. Autoantibodies to small heat shock proteins in glaucoma. Invest. Ophthalm. Vis. Sci.,1998,39:2277-87.
    72. Schwartz M, Yoles E. Self-destructive and self-protective processes in the damaged optic nerve: implications for glaucoma. Invest Ophthalmol Vis Sci,2000,41(2):349-351.
    73. Sakai M, Sakai H, Nakamura Y, Fukuchi T, Sawaguchi S. Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Jap J Ophthalmol,2003,47(1):42-52.
    74. Krueger-Naug AM, Emsley JG, Myers TL, Currie RW, Clarke DB. Injury to retinal ganglion cells induces expression of the small heat shock protein in the rat visual system. Neuroscience,2002, 110(4):653-665.
    75. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E. Hsp27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J.,1999,13:2061-2070.
    76. Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene,2000,19:1975-81.
    77. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C. Hsp27 negatively regulates cell death by interacting with cytochrome C. Nature Cell Biol.2000,2:645-652.
    78. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H. Expression ofthe activating transcription factor 3 prevents c-Jun N-Terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and akt activation. J Neurosci.2003,23 (12):5187-96.
    1. Morrison JC. Elevated intraocular pressure and optic nerve injury in the rat. J Glaucoma,1998,14(4): 315-317.
    2. Walsh FB. Morphology in experimental centralretinal artery occlusion in rats. Invest Ophthalmol, 1966,5(5):433-449.
    3. Solomon AS, Lavie V, Hauben U, et al. Complete transaction of rat optic nerve while sparing the meninges and the vasculature:an experimental for optic nerve neuropathy and trauma. J Neurosci Methods,1996,70:21-25.
    4. Rogers SD, Demaater E, Catton M, et al. Expression of endothelin-B receptor by glia in viva is increased after CNS iniury in rats, rabbits, and humans. Exp Neurol,1997:180-195.
    5. Dezawa M, Kawana K, Negish H, et al. Glial cells in degenersting and regeneranting optic nerve of the adult rat. Brain Res Bun,1999,48(6):573-579.
    6. Tezel G, Yang XJ, Yang JJ, et al. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush iniury in mice. Brain Res,2004,996:202-212.
    7. Klocker N, Zefowski M, Gellrich NC, et al. Morphological and functional analysis of an incomplete CNS 1% er tract lesion:graded crush of the rat optic nerve. J Neurosci Methotis,2001,110: 147-153.
    8. Yoles E, Muller S, Schwartz M. NMDA Receptor antagonist protects neurons from secondary degeneration after partial optic crush. J Neurotrauma,1997,4:465.
    9.袁洪峰,刘少章,贺翔鸽.大鼠视神经损伤视网膜碱性成纤维细胞生长因子的表达.中华眼底病杂志,2000,16(2):100.
    10. Chen Hao, Weber AJ. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci,2001,42:966-974.
    11.Levent Sarikcioglu, Necdet Demir, Arife Demirtop. A standardized method to create optic nerve crush:Yasargil aneurysm clip. Experimental Eye Research,2007,84:373-377.
    12.史剑波,狄静芳,徐锦堂等.外伤性视神经损伤后视神经及视网膜形态的动态观察.中国病理生理杂志,2002,18(10):1268-1270.
    13.Gennnarelli TA, Thibault LE, Tipperman R, et al. Axonal injury in the optic nerve:a model simulating diffuse axonal injury in the brain. J Neurosurg,1989,71:244-253.
    14. Akabane A, Saito K, Suzuki Y, et al. Monitoring visual evoked potentials during retraction of the canine optic nerve:protective effect of unroofing the optic canal. J Neurosurg,1995,82:284-287.
    15.徐丽,夏德昭,李富君.复明中药对牵引性视神经损伤后视神经及血中SOD,MDA水平的影响.中国实用眼科杂志,1998,16(12):721-723.
    16.刘杰,马志中,梁延杰.兔视神经间接损伤病理学观察.中华眼科杂志,1999,35(6):437-439.
    17.McFadzean RM, Graham DI, Lee WR, et al. Ocular blood flow in unilateral carotid stenosis and hypotension. Invest Ophthaomol Vis Sci,1989,30(3):487-490.
    18.Jonas JB, Hayreh SS. Optic disk morphology in experimental centralretinal artery occlusion in rhesus monkeys. Am J Ophthalmol,1999,127:523-530.
    19. Kim TW, Kang KB, Choung HK, et al. Elevated glutamate levels in the vitreous body of an in vivo model of optic nerve ischemia. Arch Ophthalmol,2000,118:533-536.
    20.Liu HK, Bartels SP, Neufeld AH. Effective of L2and D2 timolol on cyclic AMP synthesis and intraocular pressure in water2loaded, albino and pigmented rabbits. Invest Ophthalmol Vis Sci,1983, 24:1276-1282.
    21.贾莉君,蒋幼芹,吴振中等.急性高眼压致大鼠视网膜节细胞细胞色素氧化酶活性降低.眼科研究,1995,13(4):228-230.
    22.王传富,潘晓晶,金梅玲等.脑神经生长素治疗兔急性高眼压视神经损伤.中华眼底病杂志,2000,16(2):88-90.
    23.周浩,周韵秋,魏锐利等.碱性成纤维细胞生长因子对兔急性高眼压视神经纤维损害的保护作用.中华眼底病杂志,2000,16(2):94-96.
    24.朱益华,蒋幼芹,刘忠浩等.灯盏细辛注射液对鼠实验性高眼压视神经轴浆运输的影响.中华眼科杂志,2000,36(4):289-291.
    25.刘艳艳,周令娴.针刺对氯丙嗪实验性高眼压的影响.中国中医眼科杂志,1994,4(1):24-25.
    26. Lessell S, Kuwabara T. Experimental a2 chymotrypsin glaucoma. Arch Ophthalmol,1961,81: 853-864.
    27.Zhu MD, Cai FY. Development of ezperimental chronic intraocular hypertension in the rabbit. Aus NZJ Ophthalmol,1992,20:225-234.
    28.蔡丰英,孙文驷.透明质酸酶对类固醇性高眼压作用的探讨.眼科新进展,1991,11(3):10-13.
    29.Quigley HA, Addicks EM. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci,1981,9:126-136.
    30.Morrison JC, Nylander KB, Lauer AK, et al. Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci,1998,39:526-531.
    31. Ueda J, Sawaguchi S, Hanyu T, et al. Experimental glaucoma model inthe rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol,1998,42: 337-344.
    32.Dreyer EB, Zurakowski D, Schumer RA, et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol,1996,114:299-305.
    33.Kim SH, Kim SD, Kim SY, et al. Myeloptic neuropathy caused by aconitine in rabbit model. Jpn J Ophthalmol,1991,35:417-427.
    34.张细芝,王燕,余杨贵.实验性糖尿病视网膜病变动物模型研究近况.中国中医眼科杂志,1999,9(1):58-61.
    35.Kamijo M, Cherian PV, Sima AA. The preventive effect of aldose reductase inhibition on diabetic optic neuropathy in the BB/W2 rat. Diabetologia,1993,36:893-898.
    36.王一,周继红,许立军等.间接视神经损伤动物模型的研制.中华创伤杂志,1999,15(4):287-289.
    37.Holmes MD, Sires SB. Flash visual evoked optic neuropathy. J Ophthalmol Plast Reconstru Surg, 2004,20(5):342-346.
    38.朱豫,宋国祥,杨卫民.F-VEP术中监护视神经传导功能的实验研究.眼外伤职业病杂志,2000,22(5):495-497.
    39.邹秀兰,庞友鉴,徐锦堂.视神经疾病的磁共振成像.中国实用眼科杂志,1998,16(5):268.
    1. Jain KK. HBO Therapy and Ophthalmology. Textbook of Hyperbaric Medicine,2004,14(3):83-96.
    2. Halit Oguz, Gungor Sobaci. Midsurvey of ophthalmology.2008,53(2):276-268
    3.姜冉,王马魁,张会萍等.高压氧在常见神经疾病治疗中的应用.脑与神经疾病杂志,2007,15(6):469-471.
    4. Leach RM, Rees PJ, Wilmshurst P. ABC of oxygen:Hyperbaric oxygen therapy. BMJ,1998,317: 1140-3.
    5. Buras J. Basic mechanisms of hyperbaric oxygen in the treatment of ischemia-reperfusion injury. Int Anesthesiol Clin,2000,38:101-109.
    6. Chang YH, Chen PL, Tai MC, et al. Hyperbaric oxygen therapy ameliorates the blood-retinal barrier breakdown indiabetic retinopathy. Clin Experiment Ophthalmol,2006,34:584-9.
    7. Leach RM, Rees PJ, Wilmshurst P. ABC of oxygen:Hyperbaric oxygen therapy. BMJ,1998,317: 1140-3.
    8. Schmetterer L, Findl O, Strenn K, et al. Role of NO in theO2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol Regul Integr Comp Physiol,1997,273:R2005-2.
    9. Thom SR, Bhopale V, Fisher D, et al. Stimulation of nitric oxide synthesis in cerebral cortex due to elevated partial pressures of oxygen,2001,32:490-3.
    10.Sakoda M, Ueno S, Kihara K, et al. A potential role of hyperbaric oxygen exposure through intestinal nuclear factor-kappaB. Crit Care Med,2000,32:1722-9.
    11.Sen CK, Khanna S, Gordillo G, et al. Oxygen, oxidants, and antioxidants in wound healing:an emerging paradigm. Ann NY Acad Sci,2002,957:239-49.
    12.Edremitlioglu M, Kilic D, Oter S, et al. The effect of hyperbaric oxygen treatment on the renal functions in septic rats:relation to oxidative damage. Surg Today,2005,35:653-661.
    13.Dimova EY, Samoylenko A, Kietzmann T. Oxidative stress and hypoxia:implications for plasminogen activator inhibitor-1 expression. Antioxid Redox Signal,2004,6:777-91.
    14. Amboni WA, Roth AC, Russell RC, et al. Morphologic analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconstr Surg, 1993,91:1110-23.
    15. Ce Murry, Rb Jennings, Ka Reimer. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation,1986,74:1124-36.
    16.熊利泽.高压氧预处理诱导脊髓缺血耐受的机制.第四军医大学学报.2001,23:106-112.
    17.Xiong L, Zhu Z, Dong H, et al. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J,2000, 113(9):836-839.
    18. Wada K, Ito M, Miyazawa T, et al. Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res.1996,740 (2):15-20.
    19.Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab.2005.25 (5):554-571.
    20.Freiberger JJ, Suliman HB, Sheng H, et al. A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res,2006,1075 (1):213-222.
    21. Wang RB, Xu JJ, Xie JX, et al. Hyperbaric oxygen preconditioning promotes survival of retinal ganglion cells in a rat model of optic nerve crush. J Neurotrauma. April 2010,27(4):763-770.
    22.肖平田,曹春妮.常规高压氧对新生小鼠视网膜影响的研究.医学临床研究,2008,25(1): 119-121.
    23.俞有皆,尹东明,黄中宁等.高压氧辅助治疗视网膜静脉阻塞临床观察.实用医学杂志2008,24(10):1789-1790.
    24.Kiryu J, Ogura Y. Hyperbaric oxygen treatment for macular edema in retinal vein occlusion:relation to severity of retinal leakage. Ophthalmologica, 1996,210(3):168-170.
    25.Krott R, Heller R, Aisenbrey S, et al. Adjunctive hyperbaric oxygenation in nlaeular edenla of vascular origin. Undersea Hyperb Med,2000,27(4):195-204.
    26.黄杜茹,黄中宁,尹东明.高压氧结合激光光凝治疗糖尿病性黄斑水肿.广州医药,2008,39(2):12-15.
    27.Chang YH, Chen PL, Tai MC, et al. Hyperbaric oxygen therapy ameliorates the blood-retinal barrier breakdown in diabetic retinopathy. Clin Experiment Ophthalmol,2006,34(6):584-589.
    28.Beiran I, Goldenberg I, Adir Y, et al. Early hyperbaric oxygen therapy for retinal artery occlusion. EurJ Opbthalmol,2001,11(4):345-350.
    29. Weinberger AW, Siekmann UP, Wolf S, et al. Treatment of acute central retinal atery occlusion (CRAO) by hyperbaric oxygenation therapy (HBO)-Pilot study with 21 patients. Klin Monatsbl Augenheilkd,2002,219(10):728-734.
    30. Aronld AC, Hepler RS, Lieber M, et al. Hyperbaric oxygen therapy for non-arteritie anterior ischemie optic neuropathy. Am J OphthMmol,1996,122(4):535-541.
    31.安玮,陈梦姣,齐杰等.高压氧治疗缺血性视神经病变38例.国际眼科杂志,2005,5(4):802-803.
    32.金忠平,沈丽珍,季惠玲等.高压氧治疗前部缺血性视神经病变临床分析.当代医学,2007,114:58-59.
    33. Price JC, Stevens DL. Hyperbaric oxygen in the treatment of rhinocerebral mucormycosis. Laryngoscope,1980,90(5 Pt 1):737-47.
    34. Yohai RA, Bullock JD, Aziz AA, et al. Survival factors in rhino-orbital-cerebral mucormycosis. Surv Ophthalmol,1994,39:3-22.
    35.Hirai T, Kimura S, Mori N. Head and neck infections causedby streptococcus milleri group:an analysis of 17 cases. Auris Nasus Larynx,2005,32:55-8.
    36. Jurgenliemk, Schulz IM, Hartman LJ, et al. Prevention of pterygium recurrence by postoperative single-dose betairradiation:a prospective randomized clinical double-blind trial. Int J Radiat Oncol Biol Phys,2004,59:1138-47.
    37.Oguz H, Basar E, Gurler B. Intraoperative application versus postoperative mitomycin C eye drops in pterygium surgery. Acta Ophthalmol Scand,1999,77:147-50.
    38.Bayer A, Mutlu FM, Sobaci G:Hyperbaric oxygen therapy for mitomycin C-induced scleral necrosis. Ophthalmic Surg Lasers,2002,33:58-61.
    39. Bayer A, Mutlu FM, Sobaci G. Hyperbaric oxygen therapy for mitomycin C-induced scleral necrosis. Ophthalmic Surg Lasers,2001,32:490-3.
    40.Jampol LM, Orlin C, Cohen SB, et al. Hyperbaric and transcorneal delivery of oxygen to the rabbit and monkey anterior segment. Arch Ophthalmol,1988,106:825-9.
    41.Gallin-Cohen PF, Podos SM, Yablonski ME. Oxygen lowers intraocular pressure. Invest Ophthalmol Vis Sci,1980,19(1):43-48.
    42.Bojie L, Kovaeevie H, Andrie D, et al. Hyperbaric oxygen dose of choice in the treatment of glaucoma. Arh Hig Rada Toksikol,1993,44(3:239-247.
    43.Tezel G, Yang X. Caspase-independent component of retinal ganglion cell death in vitro. Invest Ophthalmol Vis Sci,2004,45:4049-59.
    44.黄怀,鲍锦华,徐洁明等.高压氧治疗发生中耳气压伤84例分析.中华理疗杂志,2001,24(4):237-238.
    45.孙国柱,扈玉华,张庆俊等.脑出血术后高压氧治疗致氧中毒死亡1例.中华物理医学与康复杂志,2001,23(6):350.
    46.黄怀,鲍锦华.高压氧治疗中发生脑血栓形成6例临床分析.中华航海医学杂志,1999,6(4):240-41.
    47.陈轶,黄怀.医用高压氧治疗中的毒副作用综述.重庆医学,2004,33(3):365-367.
    48.Herbstein K, Murchland JB. Retinal vascular changes after treatment with hyperbaric oxygen. Med J Aust,1984,140(12):728-729.
    49.卞保芝,于春花.高压氧治疗致视功能受损3例.中华眼底病杂志,1997,13(4):227.
    50.Huang ET, Twa MD, Schanzlin DJ, et al. Refractive change in response to acute hyperbaric stress in refractive surgery patients. J Cataract Refract Surg,2002,28(9):1575-1580.
    51.Palmquist BM, Philipson B, Barr PO. Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol,1984,68(2):113-117.
    52.Evanger K, Haugen OH, Irgens A, et al. Ocular refractive changes in patients receiving hyperbaric oxygen administered by oronasal mask or hood. Aeta Ophthalmol Seand,2004,82(4):449-453.
    53.Fledelius HC, ansen EC, Thorn J. Refractive change during hyperbaric oxygen therapy. A clinical trial including ultrasound oculometry. Aeta Ophthahnol Seand,2002,80(2):188-190.
    54.Palmquist BM, Philipson B, Barr PO. Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol,1984,68(2):142-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700