用户名: 密码: 验证码:
鄂尔多斯盆地北部白垩系地下水水文地球化学演化及循环规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地北部的鄂尔多斯能源基地是我国能源基地建设的重点布局区域。目前鄂尔多斯能源基地建设已初具雏形,随着能源基地建设规模扩大,由于当地地表水资源的匮乏,使得对地下水资源开发的需求日益迫切。因此,如何有效、合理的开发利用地下水突显为能源基地地下水资源开发利用中最为关键的问题。本文在系统分析鄂尔多斯盆地北部的气象、水文、地质以及水文地质条件的基础上,对地下水水化学成分及环境同位素演化特征进行研究,从水文地球化学角度揭示鄂尔多斯盆地北部白垩系地下水的成因机制、赋存方式、水文地球化学演化及循环规律,并为鄂尔多斯能源基地的地下水开采提供合理建议,不仅在水文地球化学研究方面具有深刻的理论意义,而且对于鄂尔多斯能源基地的建设具有重要的实际价值。
     鄂尔多斯盆地北部属典型的温带大陆性气候,降水量少而集中,蒸发强烈,大风日数较多。研究区内的含水层系统主要由第四系含水岩系和白垩系含水岩系构成,根据含水层系统属性及其特征,在垂向上将研究区含水层划分为萨拉乌苏、浅层、中层和深层含水层。区内地下水流场受地形高程控制,地表分水岭与地下水分水岭基本一致,在安边-四十里梁-鄂托克梁、新召等区域性地表分水岭控制下,研究区地下水系统被分割成东部乌兰木伦河-无定河、北部摩林河-盐海子、西部都思兔河-北大池三个地下水系统。本文对研究区内地下水水文地球化学演化规律的研究主要针对四个含水层以及三个地下水系统展开。
     研究区水化学空间分布规律的研究以及聚类分析的研究结果表明:在萨拉乌苏组地下水以及安边-四十里梁-鄂托克梁分水岭以东的乌兰木伦河-无定河地下水系统中,地下水的矿化度大部分在1g/L以内,水化学类型主要以HCO3型水为主;在该分水岭以西的两个地下水系统——北部摩林河-盐海子、西部都思兔河-北大池地下水系统,地下水的矿化度沿着分水岭向西南、西北方向增大,矿化度最高达到5g/L以上,沿着矿化度增大方向,地下水由HCO3型水过渡为HCO3·Cl型水、HCO3·SO4·Cl型水、SO4·Cl型水和Cl·SO4型水。
     地下水中同位素为水文地球化学演化规律的研究提供了较好的证据,通过对研究区内地下水中δ18O、δD、14C、δ34S及Sr同位素的研究表明,研究区内不同深度的地下水主要接受大气降水的补给,并且受到了一定的蒸发作用的影响。中层和深层地下水年龄在空间上总体表现为随着地下水埋藏深度增大逐渐变老的变化特点,并且安边-四十里梁-鄂托克梁分水岭西侧地下水年龄明显老于东侧。乌兰木伦河-无定河地下水系统中的地下水由于流动速度较快,矿物溶解沉淀作用较弱,而摩林河-盐海子以及都思兔河-北大池两个含水系统中,随着深度的增加,地下水对矿物的溶滤作用增强。
     研究区典型剖面的水文地球化学研究是针对研究区范围较广的问题提出的,其优点在于从局部的剖面研究进一步发现整个区内在不同含水系统、不同含水层水文地球化学演化规律。研究结果表明,剖面上的水化学演化特征与前面整体的研究规律基本一致,在两个剖面上,地下水亦受到安边-四十里梁-鄂托克梁地表分水岭的控制,地下水的水化学特征以及同位素分布特征在分水岭的东西两侧呈现的规律明显不同,在分水岭的西侧,地下水呈现明显的分带性,浅、中、深层地下水的矿化度(TDS)、水化学类型以及同位素特征都不相同,而在分水岭的东侧,地下水的分带性不明显,各种水化学特征、同位素特征比较相似。通过反向水文地球化学模拟,在安边-四十里梁-鄂托克梁分水岭东西两侧,由于水岩作用明显的不同,在分水岭以西,矿物溶解进入水中,在分水岭以东,主要以矿物的沉淀作用为主。
     通过对研究区水文地球化学演化规律的研究对鄂尔多斯市白垩系地下水的循环规律进行了验证,结果表明,地下水动力场与水化学场所得出的地下水循环规律基本一致。区内地下水主要接受大气降水的补给,地下水在径流过程中,浅、中、深三个含水层都受到了安边-四十里梁-鄂托克梁以及新召地表分水岭的影响,其中,在安边-四十里梁-鄂托克梁分水岭以西的两个地下水系统中,地下水在安边-四十里梁-鄂托克梁和新召分水岭附近接受补给,摩林河-盐海子地下水系统中,研究区西北部的摩林河以及盐海子地区为地下水的排泄区,都思兔河-北大池地下水系统中,地下水流向西南部都思兔河下游以及北大池闭流区;在安边-四十里梁-鄂托克梁分水岭以东,水化学场的演化规律表明,浅、中、深层地下水的水力联系较为紧密,地下水更新速度较快,地下水沿分水岭向东南方向流动。在研究区内,河流,湖淖都是地下水的排泄方式。
     最后,根据研究区内的水文地质条件、水文地球化学演化以及地下水循环规律的研究结果,给出研究区地下水开采的规划方案,将萨拉乌苏组含水层,浅、中层含水层作为主要的开采层位,其中,萨拉乌苏组规划了8个水源地,浅、中层含水层规划了28个水源地,深层含水层作为备用的开采层位,规划了4个备用水源地,为能源基地将来的发展提供有力的科学依据。
The Ordos Energy Base that distribute in the north of the Ordos Basin is the key area of construction of China's Energy Base. The current construction of Ordos Energy Base is beginning to take shape. However, the demand of ground water resources development has become more and more urgent as the lack of local surface water resources for expanding scale of the Energy Base. Therefore, the effective and rational exploitation of groundwater have become the most critical issue for the groundwater resources development and utilization of the Energy Base. Through the study of the chemical constituents exist in groundwater and the characteristics of the evolution of the environmental isotopes, which base on the system analysis of meteorological, hydrological, geological and hydrogeologic conditions in the northern part of the Ordos Basin, to reveal the genetic mechanism, occurrence form, hydrogeochemical evolution and recycling characteristics of the Cretaceous groundwater from the hydregeochemical point of view. The study not only has profound theoretical significance, but also has important practical value for the construction of the Ordos Energy Base.
     The northern Ordos Basin is a typical temperate continental climate with low but concentrated precipitation, intense evaporation and a few more days wind. The aquifer system in the study area is constituted by the Quaternary water-bearing rock series and Cretaceous water-bearing rock series, and it can be divided into Salawusu, shallow, intermediate and deep aquifers in the vertical according to the aquifer system attributes and characteristics. Groundwater flow in the study area is controlled by the terrain elevation, and surface and groundwater watershed is almost consistent. Under the control of the regional surface watershed in Anbian-Sishililiang-Etuokeliang, Xinzhao and so on, three different patterns of groundwater flow systems in the study area are identified, including Wulanmulun river-Wuding river in the east, Molin river-Yanhaizi in the north and Situ river-Beidachi in the west. The study of groundwater hydyogeochemical evolution characteristics in the study area in this paper mainly focuses on four aquifer systems and three run-off areas.
     The study of hydrochemical spatial distribution characteristics and cluster analysis results in the study area show that most of the total mineralization degree of groundwater in the Salawusu groundwater system and Wulanmulun river-Wuding river groundwater system that lies to the east of the Anbian-Sishililiang-Etuokeliang watershed is less than 1g/L, and the chemical type of groundwater mainly is HCO3 type. The groundwater in groundwater system of Molin river-Yanhaizi in the north and Situ river-Beidachi in the west which lies to the west of the watershed mentioned above, whose total mineralization degree increase up to 5g/L or more along the watershed to the southwest and northwest, and the chemical type transit from HCO3 type to HCO3·Cl type, HCO3·SO4·Cl type, SO4·Cl type and Cl·SO4 type.
     The isotopes exist in groundwater provides good evidence for the hydrogeochemical evolution. Through the study of the isotopes ofδ18O,δD,14C,δ34S and Sr in the groundwater have shown that groundwater of different depth in the study area mainly recharge from the precipitation, and effect by evaporation to some extent. The overall spatial performance of middle and deep groundwater age have illustrated that the age of groundwater become older and older with the gradually increasing depth of groundwater, and groundwater age that to the west of the Anbian-Sishililiang-Etuokeliang watershed is apparent older than that to the east. The mineral dissolution and precipitation intensity is weak in the Wulanmulun river-Wuding river system as the high velocity of the groundwater flow, however, the lixiviation enhance with the depth increasing in Molin river-Yanhaizi aquifer system and Situ river-Beidachi Aquifer system.
     Hydrogeochemical research of the typical profile in the study area is proposed for the wider study area of the issue, and the performance of its advantage in further found different aquifer systems and different hydrogeochemical evolution characteristics. The results have shown that the hydrochemical characteristics of the profile are consistent with the overall research characteristics that mentioned above. Groundwater are subjected to the surface watershed of Anbian-Sishililiang-Etuokeliang in the two sections, and its characteristics of the hydrochemical and isotopes distribution are obvious different in the both sides of the watershed. To the west of the watershed, groundwater show clear zonation as the different of the total mineralization degree of the shallow, middle, deep groundwater, hydrochemical type and isotopes characteristics, while to the east of the watershed, the zonation of the groundwater is not obvious as the similar of the hydrochemical and isotopes characteristics. Through the reverse hydrogeochemical modeling, to the east and west sides of the Anbian-Sishililiang-Etuokeliang watershed, because of the different intensity of water-rock interaction, to the west of the watershed, the mineral mainly dissolve into the water, while mineral mainly precipitation from the groundwater to the east of the watershed.
     Through research the hydrogeochemical evolution of groundwater in study area in order to validate the groundwater cycle rule in the Ordos Cretaceous aquifer and the validated results show that the groundwater cycle rule derived from the hydrodynamic field is consistent with the rule from the water chemical field, reaching unity between the hydrodynamic field and the water chemical field. Precipitation is the main supply source reached to the aquifer in this area. In the runoff process, groundwater in the shallow, middle and deep aquifers have all been affected by the surface watersheds which are named as Anbian-Sishili girder-Otogs girder watershed and Xinzhao watershed. In the two groundwater systems in the west of Anbian-Sishili girder-Otogs girder watershed, groundwater accepts recharge around the watershed. In the Molin river-Yanhaizi groundwater system, however, the groundwater is discharged from the northwest of Molin river and Yanhaizi. And, in the groundwater system called Dousitu river-Beidachi, groundwater flows into the downstream of Dousitu river and Beidachi Inner flow area, both of which are in the southwest of this groundwater system. Based on the rule of water chemistry which has been researched, the hydraulic connection among the shallow, middle and deep aquifers is comparatively close and the update rate of groundwater is relatively quick and groundwater flow towards the southeast along the watershed in the east of Anbian-Sishili girder-Otogs girder watershed. Evaporation of groundwater, rivers, lakes and mud are all the ways of groundwater discharge in our study area.
     Finally, groundwater exploitation and planning projects are given according to the research results of hydrogeologic conditions, hydrogeochemical evolution and groundwater circulation characteristics. Salawusu aquifer, shallow and middle aquifers serve as the major exploitation aquifers, there are 8 water sources in Salawusu aquifer,24 water sources in shallow and middle aquifer, while the deep aquifer serves as the deposit exploitation aquifer. Meanwhile, the area that located in the vicinity of Anbian-Sishililiang-Etuokeliang and Xinzhao watershed, where the aquifer always have a large quantities of groundwater with good quality, and is the ideal area for construction of the water source.
引文
[1]侯光才,张茂省等,鄂尔多斯盆地地下水勘查研究[M],北京:地质出版社,2008:1-23。
    [2]叶思源,孙继朝,姜春永.水文地球化学研究现状与进展[J]地球学报,2002,23(5):477-452。
    [3]JAYAKUMAR R, SIRAZ L, FACTOR ANALYSIS IN HYDROGEOCHEMISTRY OF COASTAL AQUIFERS-A PRELIMINARY STUDY[J], ENVIRONMENTAL GEOLOGY,1997,31:174-177。
    [4]AFYIN, M. HYDROCHEMICAL EVOLUTION AND WATER QUALITY ALONG THE GROUNDWATER FLOW PATH IN THE SANDLKLL PLAIN, AFYON, TURKEY[J], ENVIRONMENTAL GEOLOGY,1997,31:221-230。
    [5]N.JANARDHANA RAJU. HYDROGEOCHEMICAL PARAMETERS FOR ASSESSMENT OF GROUNDWATER QUALITY IN THE UPPER GUNJANAERU RIVER BASIN, CUDDAPAH DISTRICT, ANDHRA PRADESH, SOUTH INDIA[J], ENVIRON GEOL,2007,52:1067-1074。
    [6]N.C.MONDAL, V.S.SINGH, V.K.SAXENA.IMPROVEMENT OF GROUNDWATER QUALITY DUE TO FRESH WATER INGRESS IN POTHARLANKA ISLAND, KRISHNA DELTA, INDIA[J], ENVIRON GEOL,2008,55:595-603.
    [7]苏春利,王焕新,大同盆地孔隙地下水化学场的分带规律性研究[J],水文地质工程地质,2008,1: 83-89
    [8]姜凌,干旱区绿洲地下书水化学成分形成及演化机制研究——以阿拉善腰坝绿洲为例[D],长安大学博士研究生毕业论文,2009。
    [9]桂和荣,皖北矿区地下水水文地球化学特征及判别模式研究[D],中国科学技术大学博士毕业论文,2005。
    [10]徐慧珍,济南岩溶泉域地下水水文地球化学特征及防污性能研究[D],中国地质大学(北京)博士毕业论文,2007。
    [11]陆徐荣,周爱国,王茂亭等,PIPER图解淮河流域江苏地区浅层地下水水质演化特征[J],工程勘察,2010(2):42-28。
    [12]滕彦国,左锐,王金生等,区域地下水演化的地球化学研究进展[J],水科学进展,2010,21(1):127-136
    [13]孙亚乔,钱会,张黎等,基于矩形图的天然水化学分类和水化学规律研究[J],地球科学与环境学报,2007,29(1):75-79。
    [14]章光新,邓伟,何岩等,中国东北松嫩平原地下水水化学特征与演变规律[J],水科学进展,2006,17(1):21-28。
    [15]RICHARD A. JOHNSON, DEAN W.WICHERN著,陆璇译,实用多元统计分析[M],北京:清华大学出版社,2001。
    [16]张立杰,刘锜,张焕智.聚类分析方法及其在水文地质分析中的应用[J]长春科技大学学报,1999,29(4):349-354。
    [17]GDONGARRA, E.MANNO, G.SABATINO等, GEOCHEMICAL CHARACTERISTICS OF WATERS IN MINERALIZED AREA OF PELORITANI MOUNTAINS(SICILY, ITALY), APPLIED GEOCHEMISTRY,2009,240:900-914.
    [18]N.JANARDHANA RAJU. HYDROGEOCHEMICAL PARAMETERS FOR ASSESSMENT OF GROUNDWATER QUALITY IN THE UPPER GUNJANAERU RIVER BASIN, CUDDAPAH DISTRICT, ANDHRA PRADESH, SOUTH INDIA[J]ENVIRON GEOL,2007,52:1067-1074。
    [19]M.JEEVANANDAM, R.KANNAN, S.SRINIVASALU.HYDROGEOCHEMISTRY AND GROUNDWATER QUALITY ASSESSMENT OF LOWER PART OF THE PONNAIYAR RIVER BASIN, CUDDALORE DISTRICT, SOUTH INDIA[J]ENVIRON MONIT ASSESS,2007,132:263-274。
    [20]郭笃发.莱州湾东南岸海水入侵区地下水中若干例子的主成分分析[J]海洋科学,2004,28(9):6-9。
    [21]SUSAN K.SWANSON, JEAN M.BAHR, MICHAEL T.SCHWAR.TWO-WAY CLUSTER ANALYSIS OF GEOCHEMICAL DATA TO CONSTRAIN SPRING SOURCE WATERS[J]CHEMICAL GEOLOGY, 2001,179:73-91.
    [22]王永利,贾疏源,张成江等.多元统计在雅砻江某电站水文地质调查中的应用[J]物探化探计算技术,2004,26(4):331-336。
    [23]SUSAN X.MENG, J.BARRY MAYNARD, USE OF STATISTICAL ANALYSIS TO FORMULATE CONCEPTUAL MODELS OF GEOCHEMICAL BEHAVIOR; WATER CHEMICAL DATA FROM THE BOTUCATU AQUIFER IN SAO PAULO STATE[J], JOURNAL OF HYDROLOGY,2001,250:78-97。
    [24]FARNHAM.I.M., STETAENBACH, K.J., A.K.等, DECIPHERING GROUNDWATER FLOW SYSTEMS IN OASISI VALLEY, NEVADA USING TRACE ELEMENT CHEMISTRY, MULTIVARIATE STATISTICS, AND GEOGRAPHICAL INFORMATION SYSTEM, MATHEMATICAL GEOLOGY,2000,32:943-968。
    [25]DARRELL KIRK NORDSTROM, JAMES W.BALL, RONA J.DONAHOE.GROUNDWATER CHEMISTRY AND WATER-ROCK INTERACTIONS AT STRIPA[J]GEOCHIMICA ET COSMOCHIMICA ACU。
    [26]GARRELS, THOMASON, A CHEMICAL MODEL FOR SEA WATER AT 25℃ AND ONE ATMOSPHERE TOTAL PRESSURE[J], AMERICAN JOURNAL OF SCIENCE,1962,60:57-66.
    [27]GARRELS R M, CHRIST C L, SOLUTION, MINERALS, AND EQUILIBRIA[M], NEW YORK:HARPER AND KNOW,1962:1-62。
    [28]ALLISON. J.D., BROWN. D.S., NOVO-GRADAC, K.J.,1991, MINTEQA2, A GEOCHEMICAL ASSESSMENT MODEL FOR ENVIRONMENTAL SYSTEMS, REPORT EPA/600/3-91/0-21, USEPA, ATHENS, GEORGIA。
    [29]BALL JW, NORDSTROM DK(1991) USER'S MANUAL FOR WATEQ4F-US GEOLOGICAL SURVEY OPEN-FILE REPORT,125-138。
    [30]PARKHURST DL, APPELO CAJ(1999), USER'S GUIDE TO PHREEQC(VERSION 2)-A COMPUTER PROGRAM FOR SPECIATION, BATCH-REATION, ONE-DIMENSIONAL TRANSPORT, AND INVERSE GEOCHEMICAL CALCULATIONS,-U S GEOLOGICAL SURVEY
    [31]PARKHURST DL (1995) USER'S GUIDE TO PHREEQC-A COMPUTER PROGRAM FOR SPECIATION, REACTION-PATH, ADVECTIVE-TRANSPORT, AND INVERSE GEOCHEMICAL CALCULATIONS,-U S GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS
    [32]PARKHURST DL, PLUMMER LN, THORSTENSON DC(1980) PHREEQE-A COMPUTER PROGRAM FOR GEOCHEMICAL CALCULATIONS,-REV, U S GEOL, SURVEY WATER RESOURCES INV, REPT,80-96。
    [33]PLUMMER LN,PRESTENRNON EC,PARKHURST DL, AN INTERACTIVE CODE (NETPATH) FOR MODELING NET GEOCHEMICAL REACTIONS ALONG A FLOW PATH, U S GEOL, SURVEY WATER RESOURCES INVESTIGATIONS REPORT 91-4078,1991, 1-89。
    [34]PLUMMER LN, PRESTENRNON EC, PARKHURST DL, AN INTERACTIVE CODE (NETPATH) FOR MODELING NET GEOCHEMICAL REACTIONS ALONG A FLOW PATH, U S GEOL, SURVEY WATER RESOURCES INVESTIGATIONS REPORT,1992,26-30.
    [35]WOLERY TJ (1992A) EQ 3/6, A SOFTWARE PACKAGE FOR GEOCHEMICAL MODELING OF AQUEOUS SYSTEMS:PACKAGE OVERVIEW AND INSTALLATION GUIDE(VER.7.0), UCRL-MA-110662 PTI LAWRENCE; LIVERMORE NATL, LAB.
    [36]WOLERY TJ(1992B) EQBNR, A COMPUTER PROGRAM FOR GEOCHEMICAL AQUEOUS SPECIATION SOLUBILITY CALCULATIONS:THEORETICAL MANUAL, USER'S GUIDE, AND RELATED DOCUMENTATION (VER,7,0), UCRL-MA-110662 PT I LAWRENCE; LIVE
    [37]DARRELL KIRK NORDSTRORM, GROUNDWATER GEOCHEMISTRY[M], USA: SPRINGER,68.
    [38]周佳,王驹,苏锐.NP(Ⅳ), PU(Ⅳ), AM(Ⅲ)在北山花岗岩裂隙水中存在形式的模拟研究[J]岩石力学与工程学报,2007,26(2):3982-3988。
    [39]钱天伟,陈繁荣,陈家军等.NP,PU在黄土地下水流系统中的反应路径模拟[J]核技术,2004,27(1):76-79。
    [40]马应明,金玉仁,王志强等.镎、钚在西北某地区地下水中化学形态的模拟计算[J]辐射防护,2009,29(1):40-45,
    [41]DAVID L. PARKHURST, SCOTT R. CHARLTON, NETPATHXL—AN EXCEL INTERFACE TO THE PROGRAM NETPATH, U.S. GEOLOGICAL SURVEY, RESTON, VIRGINIA:2008。
    [42]李义连,王焰新,周来茹等,地下水矿物饱和度的水文地球化学模拟分析—以娘子关泉域岩溶水为例[J],2002,21(1):32-36。
    [43]王珍岩,孟广兰,王少青.渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟[J].海洋地质与第四纪地质,2003,23(1):49-53
    [44]FLORENT.B., CHRISTELLE. M,, ELISABETH, G,, ET AL, HYDROCHEMICAL AND ISOTOPIC CHARACTERIZATION OF THE BATHONIAN AND BAJOCIAN COASTAL AQUIFER OF THE CAEN AREA (NORTHERN FRANCE)[J], APPLIED GEOCHEMISTRY,2000(15):791-805。
    [45]APPELO. C.A.J., POSTMA, D. GEOCHEMISTRY, GROUND WATER AND POLLUTION[M], ROTTERDAM:A, A, BALKEMA PUBLISHER,2005。
    [46]MARIMUTHU. S., REYNOIDS, D.A., ET AL, A FIELD STUDY OF HYDRAULIC, GEOCHEMICAL AND STABLE ISOTOPE RELATIONSHIPS IN A COASTAL WETLANDS SYSTEM[J], JOURNAL OF HYDROLOGY,2005(315):93-116。
    [47]L.C, RADKE, K.W.F HOWARD, INFLUENCE OF GROUND WATER ON THE EVAPORATIVE EVOLUTION OF SALINE LAKES IN THE WIMMERA OF SOUTH-EASTERN AUSTRALIA[J], HYDROBIOLOGIA (2007) 591:185-205.
    [48]CRAIG, H. ISOTOPE VARIATIONS IN METEORIC WATER[J], SCIENCE,1961,133:1702-1703.
    [49]胡海英,包为民,王涛等,氢氧同位素在水文学领域中的应用[J],中国农村水利水电,2007(5):4-8。
    [50]CRAIG, H. ISOTOPE COMPOSITION AND ORIGIN OF THE RED SEA AND SALTON SEA GEOTHERMAL BRINES[J], SCIENCE,1966,154:1544-1548。
    [51]顾慰祖.集水区降雨径流相应的环境同位素实验研究[J],水科学进展,1992,3(4):246-254。
    [52]顾慰祖,利用环境同位素及水文实验研究集水区产流方式[J],水利学报,1995,5:9-17。
    [53]刘贯群,陈浩,韩曼等,内蒙孪井灌区地下水氢氧同位素特征[J],中国水运,2007,5(5):118-120。
    [54]SEIFU KEBEDE, YVES TRAVI等, GROUND WATER ORIGIN AND FLOW ALONG SELECTED TRANSECTS IN ETHIOPIAN RIFT VOLCANIC AQUIFERS[J], HYDROGEOLOGY JOURNAL, 2008,16:55-73。
    [55]张茂省,党学亚,喻胜虎,陕西渭北东部岩溶水环境同位素[J],水文地质工程地质,2004,5:46-51。
    [56]武金博,周爱国,蔡鹤生等,河北平原地下水14C年龄新认识[J],水文地质工程地质,2007,5:43-47。
    [57]苏小四,林学钰,董维红,反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J],吉林大学学报(地球科学版),2007,37(2): 271-277。
    [58]马致远.环境同位素地下水文学[M],西安:陕西科技出版社,2004。
    [59]顾慰祖,林曾平等.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1): 14-20。
    [60]杨郧城,沈照理,文冬光等,鄂尔多斯白垩系地下水盆地硫酸盐的水文地球化学特征及来源[J]地球学报,2008,29(5):553-562。
    [61]李小倩,周爱国,刘存富等,河北平原地下水硫酸盐34S和18O同位素演化特征[J],地球学报, 2008,29(6):745-751。
    [62]马致远,范基娇,陕西渭北东部岩溶地下水中硫酸盐的形成[J],煤田地质勘探,2005,33(3):45-48。
    [63]白莉,王中良,西安城市工业区和咸阳郊区大气降水S同位素地球化学[J],地球化学,2009,38(3):273-281。
    [64]LAURA TORAN, ROBIN F.HARRIS.INTERPRETATION OF SULFUR AND OXYGEN ISOTOPES IN BIOLOGICAL AND ABIOLOGICAL SULFIDE OXIDATION[J], GEOCHLMLCO AT COSMOCHRMRCA ACTA,1989,53:2341-2348.
    [65]文冬光,水-岩相互作用的地球化学模拟理论及应用[M],北京:中国地质大学出版社,1998。
    [66]叶萍,周爱国,刘存富等.河北平原地下水水—岩作用新证据——锶同位素示踪演变特征[J],水文地质工程地质,2007,4:41-44。
    [67]宋军,胡进武.岩溶水锶元素水文地球化学特征[J],西部探矿工程,2005,12:131-133。
    [68]郎赞超,刘丛强,韩桂琳等.贵阳市区地表/地下水化学与锶同位素研究[J]第四纪研究,2005,25(5):655-662。
    [69]李俊亭,地下水流数值模拟[M],,北京,地质出版社,1988。
    [70]魏林宏,束龙仓,郝振纯,地下水流数值模拟的研究现状和发展趋势[J],重庆大学学报(自然科学版),2000,23(增刊):50-52。
    [71]ISSAR A, GAT J·ENVIRONMENTAL ISOTOPES AS TOOL IN HYDROGEOLOGICAL RESEARCH IN AN ARID BASIN, GROUND WATER,1981,19(5):490-494.
    [72]张宗祜,沈照理,施德鸿等,人类活动影响华北平原地下水环境的演化与发展[J],地球学报,1997,18(4):337-343。
    [73]孙芳强,侯光才,窦妍等,鄂尔多斯盆地白垩系地下水循环特征的水化学证据-以查布水源地为例[J],吉林大学学报(地球科学版),2009,39(2):269-293。
    [74]YURTSEVER Y, PAYNE B R, APPLICATION OF ENVIRONMENTAL ISOTOPES TO GROUNDWATER INVESTIGATIONS IN QATAR[A], PROC SYMP ISOT TECH GROUNDWATER HYDROL[C], IAEA VIENNA,1979,:465-490.
    [75]宋献方,李发东,于静洁等,基于氢氧同位素与水化学[J],地理研究,2007,26(1):11-22。
    [76]陈宗宇,聂振龙,张荷生等,从黑河流域地下水年龄论其资源属性[J],地质学报,2004,8:560-567。
    [77]董维红,林学钰,张博等,鄂尔多斯苏里格南区块浅层地下水水化学分布特征及污染源分析[J],干旱区资源与环境,2010,24(3):103-108。
    [78]苏小四,万玉玉,董维红等,马莲河河水与地下水的相互关系:水化学和同位素证据[J],吉林大学学报(地球科学版),2009,39(6):1087-1094。
    [79]李生海,鄂尔多斯白垩系盆地北区地下水水化学演化的同位素示踪[D],吉林大学硕士研究生毕业论文,2008。
    [80]徐中华,李云峰,侯光才等,鄂尔多斯盆地洛河组地下水地球化学模拟-以陕西省长武-彬县地区为例[J],干旱区资源与环境,2009,23(10):143-148。
    [81]钱会,宋秀玲,窦妍等,都思兔河中段河水化学成分的形成机制分析[J],水文地质工程地质,2008,6:103-106。
    [82]徐中华,李云峰,姜凌等,鄂尔多斯盆地南区环河组地下水水岩作用研究[J],干旱区资源与环境,2009,23(9):160-168。
    [83]杨郧城,文冬光,侯广才等,鄂尔多斯白垩系自流水盆地地下水锶同位素特征及其水文学意义[J],2007,81(3):405-412。
    [84]刘娟,康学军,郭天元等,水化学聚类分析在岩溶系统中研究中的应用[J],勘察科学技术,2004,1:44-47。
    [85]栾长青,唐益群,高文冰等.鄂尔多斯白垩系环河含水岩组中的地球化学反向模拟[J]自然灾害学报,2007,16(4):169-173。
    [86]董维红,苏小四,侯光才等,鄂尔多斯白垩系盆地地下水矿化度和主要离子浓度的分布规律[J],水文地质工程地质,2008(4):11-15。
    [87]苏耀明,朱琳,苏小四等,基于GIS的鄂尔多斯白垩系盆地浅层地下水分布规律研究[J],水文地质工程地质,2009,1:24-29。
    [88]黄永梅, 张明理.鄂尔多斯高原植物群落多样性时空变化特点[J].生物多样性,2006,VOL.14(1): 13-20。
    [89]于小飞,孙睿,陈永俊等,乌审旗植被覆盖度变化及其与降水量之间的关系.资源科学,2006,28(4):31-37。
    [90]杨泽元,地下水引起的表生生态效应及其评价研究[D],长安大学博士研究生毕业论文,2004。
    [91]王艳伟,鄂尔多斯内蒙能源基地水体、植被演化特征[D],中国地质大学(北京),2009。
    [92]中国地质调查局西安地质调查中心,陕北能源基地地下水勘查报告[M],2008。
    [93]侯光才,林学钰,苏小四等,鄂尔多斯白垩系盆地地下水流系统研究[J],吉林大学学报,2006,36(3):391-398。
    [94]宋新山,邓伟,张琳编著,MATLAB在环境科学中的应用[M],北京:化学工业出版社,2008。
    [95]张应华,仵彦卿,温小虎等,环境同位素在水循环研究中的应用[J],水科学进展,2006,17(5):738-747。
    [96]王丽,王金生,林学钰,水文地球化学模型研究进展[J],水文地质工程地质,2003,6:105-109。
    [97]王兵,李心清,周会,河流锶元素及其同位素地球化学研究现状与问题[J],地球与环境,2009,37(2):170-178。
    [98]徐玉琳,江苏地下热水水化学特征概略分析[J], 江苏地质,1997,21(4): 235-238,
    [99]陈宗宇,天津市塘沽低温热储回灌的水-岩相互作用地球化学模拟[J],1998,23(5): 513-518。
    [100]柯柏林,北京城区地热田西北部地热地质特征[J],现代地质,2009,23(1):49-56。
    [101]聂艳萍,与地方病有关的水文地球化学问题[J],内蒙古石油化工,2008,22:58-59。
    [102]朱世云,林春绵,环境影响评价[M],北京:化学工业出版社,2007。
    [103]孙林华,桂和荣,陈松.皖北矿区深层地下水径流规律的地球化学反演[J].中国煤炭地质,2009,21(1):35-39。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700