用户名: 密码: 验证码:
船舶海水淡化及节能技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶远海执行任务,人员、设备需消耗大量淡水,尤其对于蒸汽动力船舶,淡水消耗量更大,据统计,每人每天需饮用水5-10升,洗涤用水30升,蒸汽动力系统补充水约为蒸汽耗量的1-1.5%,如此大的淡水消耗单靠船舶携带的淡水远不能满足需要,而且储存于水柜中的淡水储存过程中会受细菌污染变质,不适于饮用要求,对于动力设备用淡水,水质要求高,高压动力锅炉给水含盐量要求低于5-10ppm,为满足船舶淡水需求,大中型船舶都装备有海水淡化装置;船舶海水淡化装置主要有蒸馏式和反渗透式两种,本文在详细分析目前海水淡化技术的基础上,对船舶上蒸汽作为热源的50T/d单效蒸馏、5T/d机械蒸汽压缩淡化装置及真空造水装置、45T/d多级闪发及5T/d反渗透式海水淡化装置进行了详细分析计算,分析各种淡化装置的特点及性能变化规律。
     针对目前的蒸汽加热式单效蒸馏装置进行改进,提出通过增加蒸汽喷射器形成热力蒸汽压缩海水淡化装置,并着重对船舶用热力蒸汽压缩式海水淡化装置进行了详细研究,计算表明,在目前50T/d单效蒸馏装置基础上,通过增加蒸汽喷射器形成热力蒸汽压缩海水淡化装置,节能效果可达50%以上,而且蒸汽喷射器本身可靠性高;在对装置进行模拟计算基础上,对其中的关键部件—蒸汽喷射器进行数值计算,利用气体动力学理论计算不同工作蒸汽压力、蒸发温度条件下喷射器性能变化规律,得出船舶热力蒸汽压缩海水淡化装置的蒸汽喷射器的设计参数及运行参数,为喷射器设计及淡化装置的使用操作提供理论依据。
     在对反渗透海水淡化装置进行分析的基础上,利用研制的反渗透海水淡化装置进行详细试验,分析不同工作压力、海水浓度、海水温度变化、PH值变化对产水量、产水浓度、耗功、回收率的影响,利用反渗透海水淡化分析软件ROSA5.4进行分析计算,获得反渗透海水淡化装置工作参数的变化规律,为反渗透海水淡化装置的设计与使用提供理论依据。同时,根据目前船舶反渗透海水淡化装置的实际,结合某船用150T/d反渗透海水淡化装置,设计了一台新型结构的压力转换器,并给出了结构参数计算方法,该压力转换器的突出特点在于采用弯曲流道,利用压力水在流道中流动形成的力矩驱动自身旋转,能量回收效率高,达到节能、降低产水成本的目的,计算表明,利用压力转换器进行反渗透海水淡化装置的能量回收,节能效果明显,节能可达60%以上,具有明显的经济效益。
As an individul unit, the ship sails on the ocean for different tasks. Great quantity fresh water is needed for equipments and members, such as fresh water for boiler, desel motor, high pressure compressure, especially for ships propeled by steam turbine power plant, Most great displacement ships are equipted with seawater desalination plants for fresh water supply. The normal desalination technology used on ships is distallation or reverse osmosis. In this thesis, different kinds of marine desalination plants were analisized, such as 5T/d and 50T/d single-effect distillation plants,45T/d multi-stage flash distillation,2.5T/d and 5T/d reverse osmosis plants, the 5T/d mechinacal vapor compression desalination plant, and the distillation plant using heat pump as source of heat energy. The improvement methods to reserve energy for different kinds of marine desalination plants were gotten.
     For ships propeled by steam turbine power plants, the high quality fresh water consumption makes the distillation plant be used porpularly. In this thesis, based on analisizing the marine 50T/d distillation plant, an improving method by adding a steam-ejector to form marine vapor compressure desalination plant was presented. By thermo-dynamic calculation, a steam-ejector for vapor compressure desalination was designed. It was found that with an ejector to improve the single-effect distillation to form vapor compression distillation, the motive steam consumption was sharply discreased from 50T/d to 23T/d. For the distillation plant, a steam-ejector was designed and numerical sinmulinked. For different motive steam pressures and evaporate temperatures, the work characteristics of steam-ejector were gotten. It is usable for steam-ejector designing.
     With the development of reverse osmosis technology, more and more reverse osmosis plants were used on ships for fresh water supply. With the marine 5T/d RO plant, different work pressures, feed water concentritions and temperatures, and the PH of seawater were tested. With the ROSA5.0 software developed by DOM's company, the basic datas of the plant were calculated. Comparing with the test datas, it was found that the calculation datas were accordingly to the test datas. The conclusions are usable for reverse osmosis plant operation.
     To reduce the power consumption of reverse osmosis deslination plant, by analysizing the different kinds of energy recovery equipments, a new structure pressure exchanger was designed for marine 150T/d reverse osmosis plant. And the calculation method was given. The main characteristic of this pressure exchanger is that the fluid ducts of the rotor unit are in curve. With the fluid flow through ducts, rotor can turn itself. Calculation and analisis shows that with this pressure exchange unit, the power consumption of this plant reduced more than 60%.
引文
[1]Bart Van der Bruggen, Carlo Vandecasteele, Distillation vs. membrane filtration: overview of process evolution in seawater desalination, Desalinationl43(2002)207-218。
    [2]阮国岭,解利昕,张耀江,发展海水淡化产业,缓解淡水危机,海岸工程,2001.3。
    [3]何季民,我国海水淡化事业基本情况,电站辅机,2002.6。
    [4]高从楷,陈国华,海水淡化技术与工程手册,化学工业出版社,2004,北京。
    [5]王世昌,海水淡化工程,化学工业出版社,2003,北京。
    [6]郑宏飞,何开岩等,太阳能海水淡化技术,北京理工大学出版社,2005,北京。
    [7]李航宇,王晓娟等,船舶海水淡化装置的研究现状与发展,船舶工程,2008.3。
    [8]Faisal Al-Juwayhel, Hisham El-Dessouky, Hisham Ettouney, Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps, Desalination114(1997)253-275.
    [9]Hisham T.El-Dessouky, H.M.Ettouney, Multiple-effect evaporation desalination systems:thermal analysis, Desalination 125(1999)259-276。
    [10]Hisham T.El-Dessouky, Hisham.M.Ettouney,Fisal Mandani, Performance of parallel feed multiple effect evaporation system for seawater desalination, Applied thermal engineering 20(2000) 1679-1706。
    [11]Ali M.El-Nashar, Predicting part load performance of small MED evaporators-a simple simulation program and its experimental verification, Desalination 130(2000)217-234。
    [12]Narmine H.Aly, M.A.Marwan, Dynamic response of multi-effect evaporators, Desalination 114(1997)189-196.
    [13]A.Y.Kalendar, A.J.Griffiths, Performance study of enhanced and smooth surface tubes in a system condenser of a multistage flash desalination unit, Desalination 134(2001)269-283.
    [14]M.A.Darwish, Fouad A.Yousef, N.M.Al-Najem, Energy consumption and costs with a multi-stage flashing(MSF) desalting system, Desalination 109(1997)285-302.
    [15]Hisham El-Dessouky, Hisham Ettouney, Hala Al-Fulaij, Faisal Mandani, Multistage flash desalination combined with thermal vapor compression, Chemical engineering and processing 39(2000)343-356.
    [16]Narmine H.Aly, Adel K.El-Fiqi, Mechanical vapor compression desalination systems-a case study, Desalination 158(2003)143-150。
    [17]Hikmet S. Aybar, Analysis of a mechanical vapor compression desalination system, Desalination 142(2002) 181-186.
    [18]焦冬生,王军,机械压汽蒸馏海水淡化系统的性能分析,中国科学技术大学学报,2009.1
    [19]Aly Karameldin, A.Lotfy, S.Mekhemar, The red sea area wind-driven mechanical vapor compression desalination system, Desalination (153(2002)47-53.
    [20]M.A.Darwish and Hisham El-Dessouky, The heat recovery thermal vapor-compression desalination system:a comparison with other thermal desalination processes, Applied thermal engineering 16(1996)523-537。
    . [21] Najem M.Al-Najem, M.A.Darwish, F.A.Youssef, Thermal vapor compression desalters:energy and availability-Analysis of single-and multi-effect system, Desalination 110(1997)223-238。
    [22]S.E.Aly, A study of a new thermal vapor compression/multi-effect stack (TVC/MES) low temperature distillation system, Desalination 103(1995)257-263.
    [23]Jernqvist, M.Jernqvist, GAly, Simulation of thermal desalination processes, Desalination126(1999)147-152。
    [24]Narmine H.Aly, Adel K.El-Fiqi, Thermal performance of seawater desalination system, Desalination 158(2003) 127-142。
    [25]Hisham M.Ettouney, Hisham El-Dessouky, A simulator for thermal desalination processes, Desalination 125(1999)277-291。
    [26]H.Miiller-Holst, Engelhardt, W.Scholkopf, Small-scale thermal seawater desalination simulation and optimization of system desiga, Desalination 122(1999)255-262.
    [27]J.Siqueiros,F.A.Holland, Water desalination using heat pumps, Energy 25(2000)717-729.
    [28]Ahmad Al-Ansari, Hisham Ettouney, Hisham El-Dessouky, Water-zeolite adsorption heat pump combined with single effect evaporation desalination process, Renewable energy 24(2001)91-111。
    [29]Faisal Mandani, Hisham Ettouney, Hisham El-Dessouky, LiBr-H2O absorption heat pump for single-effect evaporation desalination process, Desalination 128(2000) 161-176.
    [30]V.V.Slesarenko, Heat pumps as a source of heat energy for desalination of seawater, Desalination139(2001)405-410。
    [31]Osamah Al-Hawaj, A study and comparison of plate and tubular evaporator, Desalination 125(1999)233-242。
    [32]Carlos Legorreta, Steen Hinge, John Tonner, Andrea Lovato, Plate-the next breakthrough in desalination, Desalination 12(1999)235-246。
    [33]John Tonner, Steen Hinge, Carlos Legorreta, Plates-the next breakthrough in thermal desalination,134(2001)205-211.
    [34]John Tonner, Steen Hinge, Carlos Legorreta, Plate heat exchangers-the new trend in thermal desalination, Desalination 125(1999)243-249。
    [35]Hisham T.El-Dessouky, Hisham.M.Ettouney, Plastic/compact heat exchangers for single-effect desalination systems, Desalination 122(1999)271-289。
    [36]V.N.Slesarenko, Thermal analysis of thin film desalination systems, Desalination 139(2001)399-404。
    [37]Feodor M.Mitonkov, Vitaly I.Polunichiv, Small nuclear heat and power co-generation stations and water desalination complexes on the basis of marine reactor plants, Nuclear Engineering and Design 173(1997)183-191。
    [38]Tamas Szacsvay, Mario Posnansky, Distillation desalination systems powered by waste heat from combined cycle power generation units, Desalination 136(2001)133-140。
    [39]A.D.Al-Ansari, I.Owen, Thermal and hydrodynamic analysis of the condensation and evaporation processes in horizontal tube desalination plant, International journal of heat and transfer 42 (1999)1633-1644。
    [40]U.V.Kartovsky, V.A.Kopyrin, V.B.Chernozubov, New Russian distillation installations equipped with horizotal tube sprayed bunches, Desalination 139(2001)353-356.
    [41]Javier Uche, Javier Artal, Luis Serra, Comparison of heat transfer coefficient correlations for thermal desalination units, Desalination 152(2002)195-206。
    [42]Zhen-Hua Liu,Jie Yi, Falling film evaporation heat transfer of water/salt mixtures from roll-worked enhanced tubes and tube boundle, Applied Thermal Engineering 2292002)83-95.
    [43]Zhen-Hua Liu, Yu-Hao Qiu, Enhanced bioling heat tranfer in restricted spaces of a compact tube bundle with enhance tubes, Applieds Thermal Engineering 22(2002) 1931-1941.
    [44]M.Vlachogiannis, V.Bontozoglou, Desalination by mechanical compression of humid air, Desalination 122(1999)35-42.
    [45]K.Bourouni,M.T.Chaibi, Water desalination by humidification and dehumidification of air:state of the art, Desalination 137(2001)167-176.
    [46]Warren Rice, David S.C.Chau, Freeze desalination using hydraulic refrigerant compressors, Desalination 109(1997)157-164。
    [47]Olaf Strelow, a General Calculation Method For Plate Heat Exchangers, international journal of thermal and science 39(2000)645-658。
    [48]J.H.Tay, S.C.Low, S.Jeyaseelan, Vacuum desalination for water purification using waste heat, Desalination 106(1996)131-135。
    [49]M.J.Safi, A.Korchani, Cogeneration applied to water desalination:simulation of different technologies, Desalination 125(1999)223-229。
    [50]Zhen hua Liu, Eiichi Ishibashi, Enhanced boiling heat transfer of water/salt mixtures in the restricted space of the compact tube bundle, Heat transfer engineering 22(2001)4-10。
    [51]ABDUL Sattar Kahdim, Saleh Ismail, Alaa' Abdulrazaq Jassim, Modeling of reverse osmosis system, Desalination 158(2003) 323-329.
    [52]M.Abou Rayan,I. Khaled, Seawater desalination by reverse osmosis (case study),Desalination 153(2002)245-251.
    [53]Awwad J.Dababneh, M.A.Al-Nimr, A reverse osmosis desalination unit, Desalination 153(2002)265-272.
    [54]V.J.Shah, C.V.Devurari, S.V.Joshi, A case study of long term RO plant operation without chemical pretreatment, Desalination 161(2004) 137-144.
    [55]GHAZI Al-Enezi, Nagla Fawzi, Design consideration of RO units:case studies, Desalination 153(2002) 281-286.
    [56]Essam El-Sayed, Sadeq Ebrahim, Ahmad Al-Saffar, Pilot study of MSF/RO hybrid system, Desalination 120(1998)121-128.
    [57]周一卉,陈彦泽,丁信伟,反渗透海水淡化系统中的能量回收,水处理技术,2003(8)194-196
    [58]常宇清,鞠茂伟,周一卉,反渗透海水淡化系统中的能量回收技术及装置研究进展,能源工程,2006(3)。
    [59]姜海峰,周一卉,张立冬,反渗透海水淡化旋转式压力能回收装置中液柱活塞的数值模拟研究能源工程2007(6)。
    [60]孙业山,马玉久,游亚戈,王利生,反渗透海水淡化中差动式能量回收装置的研究,水处理技术,2007(6)。
    [61]Beat Schneider, Selection,operation and control of a work exchanger energy recovery system based on the Singapore project, Desalinationl 84(2005)197-210。
    [62]R.L.Stover,A.Ameglio,P.A.K.Khan, The Ghalilah SWRO plant:anoverview of the solutions adopted to minimize energy consumption,Desalinationl 84(2005)217-221。
    [63]Stephan Bross, Wolfgang Kochanowski, SWRO core hydraulic system:Extension of the SalTec DT to higher flows and lower energy consumption, Desalination 203 (2007) 160-167。
    [64]Stephan Bross, Wolfgang Kochanowski, SWRO core hydraulic module-the right concept decides in terms of energy consumption and reliability Part II. Advanced pressure exchanger design, Desalination 165 (2004) 351-361。
    [65]W.T. Andrews, Wil F. Pergande, Gregory S. McTaggart, Energy performance enhancements of a 950 m3/d seawater reverse osmosis unit in Grand Cayman, Desalination 135 (2001) 195-204。
    [66]Yue Wang, Shichang Wang, Shichang Xu, Investigations on characteristics and efficiency of a positive displacement energy recovery unit, Desalination 177 (2005) 179-185。
    [67]Stephan Bross, Wolfgang Kochanowski, Nabil El Maraghy, SWRO-core-hydraulic-system:first field test experience, Desalination,184(2005)223-232。
    [68]Richard L. Stover, Seawater reverse osmosis with isobaric energy recovery devices, Desalination 203 (2007) 168-175。
    [69]John P. MacHarg, systems with a new energy Retro-fitting existing SWRO recovery device, Desalination 153 (2002)253-264。
    [70]Richard L. Stover, Development of a fourth generation energy recovery device. A 'CTO's Notebook', Desalination 165 (2004) 313-321。
    [71]Narmine H.Aly, Aly Karameldin, M.M.Shamloul, Modeling and simulation of steam jet ejectors, Desalination 123(1999)1-8。
    [72]GK.Alexis, E.D.Rogdakis, A verification study of steam-ejector refrigeration model, Applied thermal engineering 23(2003)29-36。
    [73]Yau Ming Chen, Chung Yung Sun, Experimental study of the performance characteristics of a steam-ejector refrigeration system, Experimental thermal and fluid science 15(1997)384-394.
    [74]N.Deberne, J.F.Leone, A.Duque, A.Lallemand, A model for calculation of steam injector performance, International journal of multiphase flow 25(1999)841-855。
    [75]B.J.Huang, J.M.Chang,C.P.Wang, A 1-D analysis of ejector performance, International Jounal of Refrigeration 22(1999)354-364.
    [76]I. W.Eames, S.Aphornratana and H.Haider, A theoretical and experimental study of a small-scale steam jet refrigerator, International journal of refrigeration 18(1995)378-386。
    [77]N.M.Al-Najem, K.Y.Ezuddin, M.A.Darwish, Heat transfer analysis of preheated turbulent falling films in vertical tube evaporator, Desalination 115(1998)43-55。
    [78]N.H.Aly, S.D.Bedrose, Enhance film condensation of steam on sprially fluted tubes, Desalination 101(1995)295-301.
    [79]Ohaemann B, Emmermann D K. Desalination,45(1983)39。
    [80]M.Reali, M.de Gerloni, A.Sampaolo, Submarine and underground reverse osmosis schemes for energy-efficient seawater desalination, Desalination 109(1997)269-275。
    [81]L.Martinez-Diez, F.J.Florido-Diaz, Desalination of brines by membrane distillation, Desalination 137(2001)267-273.
    [82]姚寿广,船舶热力系统分析,北京,科学出版社,2003。
    [83]陶文铨,数值传热学,西安,西安交通大学出版社,2000。
    [84]李素芬,沈胜强,刘岚,Ahuliti, Ahudula,蒸汽喷射器超音速流场的数值分析,造 纸设备,2001.6。
    [85]龚晓波,顾兆林,冯霄,郁永章,海水淡化压缩—喷射复合型热泵研究,化学工程,1999.6。
    [86]张于峰,一种新的制冷喷射器计算方法,工程热物理学报,17卷,1996.12。
    [87]Huanmin Liu, zero discharge desalination, University of Texas At El Paso,2001。
    [88]Bassem Mastapha Hamieh, A theoretical and experimental study of seawater desalination with dewvaporator, University of Arizona state,2001。
    [89]张小艳,郑宏飞等,横管降膜蒸发闭式循环太阳能海水淡化装置实验,西安交通大学学报,36(2002)。
    [90]李海军,喷射器性能、结构及特殊流动现象研究,大连理工大学博士学位论文,2004.12。
    [91]靳世平 张喜来 皮博明等,高炉热风炉系统煤气引射器实验及数值模拟,华中科技大学科研报告,2006.12。
    [92]郑宏飞,多级蒸馏、多级降膜蒸发和气流吸附型三种太阳能海水淡化装置的实验研究,中国科学技术大学博士学位论文,1999.6。
    [93]艾育华,喷嘴与蒸汽喷射器研究,华北电力大学硕士学位论文,2001.1。
    [94]刘岚,蒸汽喷射器三维流场数值模拟计算与分析,大连理工大学硕士学位论文,2000.6。
    [95]蒋妮,蒸发传热传质研究与应用,西北工业大学硕士学位论文,2002.3。
    [96]E.Я.科索罗夫,H.M.津格尔(苏)著,黄秋云译,喷射器,科学出版社,1977,北京。
    [97]冯逸仙,杨世纯,反渗透水处理工程,中国电力出版社,北京。
    [98]田琦,太阳能喷射式制冷,科学出版社,2007,北京。
    [99]王如竹等,制冷原理与技术,科学出版社,2003,北京。
    [100]高翔等,舰船辅助机械,国防工业出版社,2005,北京。
    [101]704研究所,1.75-2T/d闪发式蒸发装置使用说明书。
    [102]常州康耐特机械设备公司,150T/d反渗透海水淡化装置说明书。
    [103]Zeinab S. Abdel-Rehim, Ashraf Lasheen, Experimental and theoretical study of a solar desalination system located in Cairo, Egypt, Desalination,,217 (2007)。
    [104]Yan Junjie, Shao Shufeng, Wang Jinhua, Liu Jiping, Improvement of a multi-stage flash seawater desalination system for cogeneration power plants, Desalination,217 (2007),191-202.
    [105]Henning Raach, Jovan Mitrovic, Simulation of heat and mass transfer in a multi-effect distillation plant for seawater desalination, Desalination,204 (2007),416-422。
    [106]Cyril Jacob, Seawater desalination:Boron removal by ion exchange technology, Desalination,205 (2007),47-52.
    [107]Adel M. Abdel Dayem, Experimental and numerical performance of a multi-effect condensation-evaporation solar water distillation system, Energy,31 (2006),2710-2727。
    [108]Jan H. Hanemaaijer, Jolanda van Medevoort, Memstill membrane distillation-a future desalination technology, Desalination,199 (2006),175-176。
    [109]A.M. Helal and S.A. Al-Malek, Design of a solar-assisted mechanical vapor compression (MVC) desalination unit for remote areas in the UAE, Desalination,197 (2006),273-300.
    [110]Yue Wang, Shichang Wang and Shichang Xu, Investigations on characteristics and efficiency of a positive displacement energy recovery unit, Desalination,177 (2005),179-185.
    [111]P. Fiorini and E. Sciubba, Thermoeconomic analysis of a MSF desalination plant, Desalination,182 (2005),39-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700