用户名: 密码: 验证码:
癫痫大鼠海马GABA能中间神经元的动态变化及突触重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:匹罗卡品致痫大鼠海马GABA能中间神经元的动态变化及轴突出芽
     背景与目的:
     颞叶癫痫是主要的难治性癫痫类型之一,发病人数日益增多,但其病因未明、发病机制不清、诊断困难、治疗效果差,已逐渐成为危害我国人群公共健康的一种主要疾病。但迄今为止其发病机制仍不明确。目前国内外学者较为公认的是颞叶癫痫发作可能由于海马区和齿状回区兴奋性和抑制性神经环路重组,导致对神经元的兴奋抑制不平衡。苔藓纤维出芽导致的异常兴奋性突触环路研究较多,但它并不足以解释慢性自发性痫性发作的原因;而构成抑制性神经环路的GABA能中间神经元逐渐成为近年来的研究热点。已有的研究发现:痫性发作早期出现部分GABA能中间神经元脱失,后期在海马和齿状回区则存在轴突出芽。但总体而言,国外已有的对GABA能中间神经元的研究范围较片面,结论亦存在较大争议。因此对GABA能中间神经元在颞叶癫痫模型中的早期缺失和后期的轴突出芽还需进一步深入研究。本课题组前期工作中利用免疫组化探讨了SS、NPY两种抑制性中间神经元的变化,本研究在此基础上继续对不同中间神经元的亚类进行深入探讨。
     方法:
     1.模型制作与分组:健康雄性SD大鼠(6-8周龄)180只随机分为实验组(A组,n=105)和对照组(B组,n=75),每组又随机分为5个亚组(A1-5亚组,n=21;B1-5亚组,n=15)。A组颞叶癫痫模型制作采用氯化锂加匹罗卡品腹腔注射法;B组大鼠腹腔注射等量无菌生理盐水。根据Racine标准判定癫痫发作的程度。选取痫性发作后1d、7d、15d、30d、60d为研究时间点,海马CA1区、CA3区、齿状回为研究部位。
     2.不同时间点行尼氏染色、NeuN免疫组化观察海马病理改变。
     3.免疫组化方法检测各时间点不同区域钙结合蛋白CB、PV阳性中间神经元数目变化及轴突出芽。
     4.免疫组化方法检测各时间点不同区域神经元NeuN的数量变化,免疫荧光双标记法检测SS/NPY与NeuN的共表达,进一步观察SS、NPY中间神经元及其轴突的动态变化。
     结果:
     1.实验组大鼠腹腔注射氯化锂-匹罗卡品后,SE诱发成功率为80%,死亡率为10.7%,模型成功率为71.4%。
     2.尼氏染色结果显示:实验组海马神经元缺失以SE后7d和60d最为明显。除齿状回颗粒细胞缺失相对较轻外(P<0.05),CA区域锥体细胞和门区神经元均显著减少(P<0.01)。
     3.CB免疫组化结果显示:阳性神经元CA1区锥体细胞亦部分表达CB,但相对于中间神经元染色很浅。SE后CA1区CB阳性神经元持续下降(P<0.05)。CA3区CB阳性神经元无明显变化。门区CB阳性神经元在1d时降至最低(P<0.05),然后有所恢复。SE15d后,CA1区辐状层出现CB染色的纤维。
     4.实验组大鼠海马门区PV阳性神经元在SE后早期无明显变化(P>0.05),慢性期时下降(P<0.01)。海马CA1区PV阳性神经元在SE后15d时开始明显增多(P<0.01),可见相应增多的PV阳性纤维;海马CA3区PV阳性神经元在SE后即持续增多,至60d时最多(P<0.01),并可见相应增多的PV阳性纤维。
     5. NeuN免疫组化显示:SE后门区和CA3区锥体细胞层、CA1区锥体细胞层显著减少(P<0.01)。齿状回外分子层细胞数目无显著变化,齿状回颗粒细胞、CA3区辐状层及腔隙分子层缺失相对较轻(P<0.05)。SE后60d变化最为明显,CA1区锥体细胞基本消失(P<0.01),但在CA1区的起始部位的各层NeuN免疫阳性神经元相对保留,始层和辐状层数目甚至超过正常,神经元形态各异,排列不齐。
     6.免疫荧光双标结果显示:对照组和实验组各时期均可见双标记的SS中间神经元,在门区7d时减至最低CA1区始层在SE后15d逐渐增多,30d、60d时均超过正常水平,60d时CA1全层可见增多的双标记SS中间神经元;CA3区7d时减至最低,后始层双标记的SS神经元逐渐恢复。NPY变化情况与SS类似,不同之处在于各时段CA3区双标记的NPY阳性神经元数目无明显变化。
     结论:
     1.同一类不同中间神经元在海马同一部位存在选择性易损性;同种中间神经元在海马不同区域易损性亦不同。中间神经元在海马的动态变化大致有如下几个特点:1)CA1区致痫后中间神经元数量下降,慢性期有所恢复,甚至超过正常;2)CA3区改变相对不明显;3)门区则下降。
     2.各亚型GABA能中间神经元均存在不同程度的轴突出芽,尤其是SE后60d海马CA1区全层出现大量增加的SS染色的纤维,可能部分来自于CA1区始层和辐状层增多的神经元,并在海马CA1区临近区域内构成病理性抑制性突触环路,从而在癫痫的发生和慢性期自发发作中发挥重要作用。
     第二部分:荧光金逆行示踪观察匹罗卡品致痫大鼠慢性期海马神经元的突触重建
     背景与目的:
     正常海马结构存在着主细胞(锥体细胞和颗粒细胞)介导的兴奋性回路和非主细胞(GABA能中间神经元)介导的抑制性回路。兴奋性回路被研究得较多,而有关抑制性回路的研究相对较少,以上两种回路的异常可能与颞叶癫痫的发生和自我修复密切相关,具体机制目前仍不清楚。虽然目前已有大量关于兴奋性回路重组的报道,但颞叶癫痫中兴奋性主细胞的突触联系变化仍不太清楚;而有关GABA能抑制性回路重组尤其是颞叶癫痫慢性自发发作期抑制性中间神经元的突触重建的研究则非常有限。神经定位示踪技术可以帮助我们从整体水平系统地观察神经元的突触联系变化,对于中间神经元的定位示踪研究可以深入了解颞叶癫痫中抑制性回路的异常及突触改变。迄今国内外有关颞叶癫痫海马GABA能中间神经元突触联系的神经示踪研究极少。本课题组前期研究发现海马CA1区SS阳性中间神经元之间可能存在异常的抑制性突触联系,本研究即在此基础上,深入探讨海马不同区域及不同亚类中间神经元的突触重建状况,以期明确颞叶癫痫大鼠海马抑制性回路的构成。
     方法:
     1.模型制作与分组:健康雄性SD大鼠(6-8周龄)80只随机分为实验组(A组,n=40)和对照组(B组,n=40)。A组颞叶癫痫模型制作采用氯化锂加匹罗卡品腹腔注射法;B组大鼠腹腔注射等量无菌生理盐水。根据Racine标准判定癫痫发作的程度。
     2.SE后60d左右,利用立体定位仪在活体内注射逆行性示踪剂荧光金(Fluoro Gold, FG)至海马CA1、CA3区,对照组大鼠亦于同一时期注射等量FG至海马同一区域,术后常规喂养7-10d后灌注取材。
     3.FG免疫组化方法观察致痫后大鼠海马异常兴奋性突触联系。
     4.激光扫描共聚焦显微镜下观察FG的分布,免疫荧光双标记法检测SS/NPY与FG的共表达情况,观察致痫大鼠海马异常抑制性突触联系。
     结果:
     1.实验组40只大鼠经腹腔注射匹罗卡品后,5只致痫失败,4只因抽搐致死,模型成功率77.5%。
     2.FG免疫组化结果显示:注射区域内可见大量FG免疫阳性神经元,注射区呈内外两带;FG注入大鼠海马CA1区,实验组远离注射部位的CA1区、CA3区锥体细胞被大量标记,海马下托亦发现有FG标记的锥体细胞,对照组未见;始层可见少量FG标记的非主细胞,门区亦可见FG标记的非主细胞,而对照组均未见。FG注入大鼠海马CA3区,对照组及实验组CA3区全层、门区锥体细胞均可见大量FG标记,实验组中CA1区部分锥体细胞被FG标记,对照组未见;对照组齿状回颗粒细胞层部分被标记,而实验组中未见;对照组及实验组门区、CA1区远离注射部位的始层均存在FG标记的非主细胞,对照组1m层偶见非主细胞呈FG阳性。
     3. SS/NPY与FG免疫荧光双标记染色显示:SS与NPY的荧光双标染色结果类似。FG注入CA1区后,实验组大鼠CA1区远离注射部位处、CA3区、门区均有FG标记的SS/NPY中间神经元,而对照组未见;FG注入海马CA3区,实验组大鼠门区有双标记的中间神经元,对照组未见。
     结论:
     1.颞叶癫痫大鼠海马慢性期CA1区锥体细胞之间、下托-CA1区、CA1-CA3区存在异常的兴奋性联系,可能构成兴奋性回路重组,导致海马持久的超兴奋性。
     2.颞叶癫痫慢性期CA1区中间神经元之间、CA3-CA1区、门区-CA1区、门区-CA3区存在异常的抑制性神经网络。这种与轴突出芽密切相关的回路重组,可能在颞叶癫痫慢性期的自发发作中起重要作用。
Background and Objective:
     Temporal lobe epilepsy(TLE) is one of the most common refractory epilepsy in clinical, but so far the epileptogenesis is still not clear. The enhancement of excitatory circuit and decrease of inhibitory circuit in the hippocampus play an important role in temporal lobe epilepsy. Researches revealed although the foundation of excitatory circuit such as mossy fiber sprouting participated in the generation of temporal lobe epilepsy, it still couldn't fully explain the reasons of spontaneous seizures. So currently GABAergic interneurons which are deeply associated with hippocampal inhibitory circuit have gradually been the research hotspot. Most studies have showed loss of GABAergic inhibitory interneurons in early period of SE, while some axonal sprouting exist in hippocampus and dentate gyrus in chronic period. But totally the range of research on GABAergic interneurons in temporal lobe epilepsy is incomplete and there are still much great arguments on it, so further studies are needed to be done. We have already observed the dynamic changes and axonal sprouting of SS&NPY by immunohistochemistry technology in our early study, and the aim of this research is to find out transmissions of other subtypes of GABAergic interneurons in temporal lobe epilepsy.
     Methods:
     1.180 healthy male SD rats were divided randomly into epilepsy groups(n=105) and control groups(n=75). Two groups were divided randomly into 5 subsets at 1,7,15,30,60d after pilocarpine or normal sodium(NS) intraperitoneal injection. The models of epilepsy were established by intraperitoneal injection of pilocarpine and lithium, while the controls were injected with NS. The degree of seizure was judged according to Racine standard.
     2. Nissl stain and NeuN immunohistochemistry was used to observe the pathological changes of hippocampus.
     3. Immunohistochemistry method was used to detect number changes and axonal sprouting of CB\PV positive interneurons in different domains of the hippocampus at different time points.
     4. Immunohistochemistry method was used to detect number changes of NeuN positive neurons in different domains of the hippocampus at different time points, and coexpression of SS/NPY positive interneurons combined with NeuN was detected by the technique of double immunofluorescence.
     Results:
     1. After lithium-chloride and pilocarpine administration,80% rats were induced SE successfully, the mortality rate was 10.7%, and the success rate of the model was 71.4%.
     2. Nissl stain revealed that in the experimental group, loss of hippocampal neurons was most evident on 7d and 60d after SE. Significant loss of hilar neurons and pyramidal neurons was present in CA area(P<0.01), while loss of granular cells in the dentate gyrus was relatively slight(P<0.05).
     3. CB expression could also be seen in CA1 pyramidal neurons, but weaker than that of CB interneurons. The number of CB positive neurons in CA1 area decreased after SE(P<0.05), but no obvious change in CA3 area. CB neurons in hilus decreased to minimum on 1d(P<0.05), and recoverd gragrully in chronic phase. On 15d after SE, plenty of CB positive neurophils could be seen in stratum radiatum of CA1 area.
     4. There was no evident changes of PV positive neurons in early phase in hilus(P>0.05), the number of PV neurons decreased in chronic phase(P<0.01); PV positive neurons in CA1 area increased significantly after 15d after SE(P<0.01), increased neurophils also could be seen; PV neurons in CA3 area increased as early as the phase after SE, and increased to maximum on 60d(P<0.01), correspondingly increased neurophils also could be seen.
     5. NeuN immunohistochemistry revealed that in the experimental group, significant loss of hilar neurons, pyramidal neurons in CA area was present (P<0.01), while loss of granular cells in the dentate gyrus, neurons in stratum radiatum and lacunosum-moleculare of CA3 was relatively slight(P<0.05). Changes in outer molecular layer of dentate were not notable. On 60d after SE, neurons of pyramidal layer in CA1 almost disappeared(P<0.01), but in initiation site of CA1 area, part of NeuN positive neurons reserved, even beyond normal in stratum oriens and stratum radiatum.
     6. Double immunofluorescence revealed that both in experimental and control group, double labeled SS interneurons could be seen at each time point. The number of it was least on 7d in hilus; partially recovered on 15d in stratum oriens of CA1,even exceeded the controls in all layers of CA1 on 60d; decreased to minimum on 7d in CA3 and also recovered gragrully in chronic phase. Similar changes could be seen in double labeled NPY interneurons, and differences were that little change happened in CA3 area.
     Conclusions:
     1. Different subtypes of interneurons have different sensitivities to injuries induced by seizures in different time points and different domains. On the whole, there are some features of interneurons after SE:a) the number in CA1 decreases in early phase and recovers in chronic phase, even beyond normal; b) not obvious in CA3; c) decreases in hilus.
     2. Level of axonal sprouting vary from different subtype of interneurons, especially numerous increase of SS positive neurophils within area CA1 in chronic phase may come from increased interneurons in stratum oriens and stratum radiatum of CA1,and form a pathological inhibitory loop to take in part in generation and compensation of temporal lobe epilepsy.
     Background and Objective:
     There are trisynaptic loop in normal hippocampal stuctrue, involving excitatory circuits mediated by pyramidal neurons and granule cells and inhibitory circuits by interneurons. Rearrangements of hippocampal excitatory and inhibitory circuits are deeply related to the generation of temporal lobe epilepsy. Nowadays there have been a lot of reports about excitatory circuit rearrangement, but the elucidation of synaptic connections among principal cells in temporal lobe epilepsy remain topics of intensive incestigation. Meanwhile researches about GABAergic inhibitory rearrangement are few, especially studies of synaptic reconstruction among inhibitory interneurons during chronic phase of temporal lobe epilepsy are much more less. Neuroanatomical tracing can help us to observe the synaptic connections through a total level, and aberrant inhibitory circuits will be revealed through interneurons tracing technique. Results of our previous study showed numerous SS positive neurophils present within CA1 area in chronic phase of temporal lobe epilepsy, and in this study, we hoped to use fluorogold(FG) to observe synaptic reconstruction in different subtypes of interneurons in every area of hippocampus during chronic phase, in order to reveal aberrant formation of inhibitory circuit rearrangements in temporal lobe epilepsy.
     Methods:
     1.80 healthy male SD rats were divided randomly into epilepsy groups(n=40) and control groups(n=40). The models of epilepsy were established by intraperitoneal injection of pilocarpine and lithium, while the controls were injected with NS. The degree of seizure was judged according to Racine standard.
     2. On about 60d after SE, we injected retrograde tracer FG into CA1 and CA3 area of the hippocampus in vivo by using the stereotaxic apparatus, the same method was performed in control animals. After surgery, animals were allowed to survive for 7-10 days before perfusion-fixation.
     3. Immunohistochemistry about FG to observe aberrant excitatory circuit rearrangements.
     4. Confocal microscopy was used to observe the distribution of FG Double immunofluorescence combined with SS/NPY and FG was performed, to observe aberrant inhibitory circuit rearrangements.
     Results:
     1. After lithium-chloride and pilocarpine administration, five animals were failed to induce SE, four were dead because of severe seizures. The success rate of the model was 77.5%.
     2. FG immunohistochemitry showed abundant FG-labeled neurons at the zone of FG-injected site, and the injection site could be divided into two bands. After injected FG into CA1 area, FG-labeled pyramidal cells could be seen remote from the zone of dye spread in CA1 area, CA3 area, and subiculm, while FG-labeled non-principle neurons could be seen in stratum oriens of CA1 and hilus in experimental group. When injection was taken place in CA3 area, FG-labeled pyramidal cells could be seen in the whole CA3 area and hilus in two groups; additional part of pyramidal cells in CA1 in experimental group; additional part of granule cells in dentate in control group; also additional some FG-labeled non-principle cells could be seen in hilus and remote from the zone of dye spread in CA1 area.
     3. Double immunofluorescence about FG and SS/NPY revealed that, at the zone of FG-injected site, FG-labeled SS/NPY positive interneurons could be seen in two groups, and there were no significant differences about the ratio of double labeled neurons to SS/NPY total neurons between two groups(P>0.05). As FG injection into CA1, double labeled interneurons could be seen remote from the zone of dye spread in CA1 area, CA3 area and hilus in experimental rats. When injection was taken place in CA3 area, FG-labeled SS/NPY neurons could be seen in hilus in experimental rats.
     Conclusions:
     1. Aberrant synaptic connections among pyramidal cells in CA1 area, pyramidal cells between CA1 and subiculum and pyramidal cells between CA1 and CA3 in the hippocampus in chronic phase of temporal lobe epilepsy may form an aberrant excitatory circuit arrangement, which will eventually develop into hyperexcitability in hippocampus.
     2. Aberrant synaptic connections among dendritic interneurons exist in CA1 area, CA3 to CA1, hilus to CA1, and hilus to CA3 area of the hippocampus in chronic phase of temporal lobe epilepsy. The inhibitory circuit arrangement related to axonal sprouting may play an important role in the generation and compensation of epilepsy.
引文
[1]Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep. 2007,Jul;7(4):348-54.
    [2]Berg AT. Defining intractable epilepsy. Adv Neurol.2006;97:5-10
    [3]Andre'V, Marescaux C, Nehlig A, and Fritschy JM. Alterations of Hippocampal GABAergic System Contribute to Development of Spontaneous Recurrent Seizures in the Rat Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. HIPPOCAMPUS,2001,11:452-468
    [4]Macdonald RL. Inhibitory synaptic transmission.In:edited by Engel J Jr.Pedley TA. Epilepsy:a comprehensive texbook. Lippincott-Raven Publisher, Philadelphia,1997:265-275
    [5]Dichter MA,Wilcox KS. Excitatory synaptic transmission.In:edited by Engel J Jr.Pedley TA. Epilepsy:a comprehensive texbook。Lippincott-Raven Publisher,Philadelphia,1997:251
    [6]Longo BM, Mello LEAM. Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kainite model of epilepsy in the rat. Epilepsy Res,1998,32:172-182.
    [7]Suzanne B. Bausch. Axonal sprouting of GABAergic interneurons in temporal lobe epilepsy Epilepsy&Behavior,2005,(7):390-400
    [8]DeLanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:387-95.
    [9]Shaoyun C, Masayuki K. Preferential neuron loss in the rat piriform cortex following pilocarpine-induced status epilepticus. Epilepsy Research 2007:74:1-18.
    [10]Dinocourt C, Petanjek Z, Freund TF, et al. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. The Journal of Comparative Neurology,2003,459:407-425.
    [11]Sun C, Mtchedlishvili Z, Bertram EH, et al. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol,2007,500(5):876-893.
    [12]Sloviter, R.S.,1991.Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat:the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1,41-66.
    [13]Morin F, Beaulieu C, Lacaille J.C,1998.Selective loss of GABAneurons in area CA1 of the rat hippocampus after intraventricular'entate'. Epilepsy Res.32, 363-369.
    [14]Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J. Neurosci.2003.23,2440-2452.
    [15]DeLanerolle NC, Brines ML, Kim JH, Williamson A, Phillips MF, Spencer DD.Neurochemical remodeling of the hippocampus in human temporal lobe epilepsy. In:Engel Jr J, Wasterlain C,Cavalheiro EA, Heinemann U, Avanzini G, editors.Molecular biology of epilepsy. Amsterdam:Elsevier; 1992. p.205-20 (EpilepsyRes. Suppl.9).
    [16]DeLanerolle NC, Brines ML, Williamson A, Kim JH, Spencer DD.Neurotransmitters and their receptors in human temporal lobe epilepsy. In: Ribak CE, Gall CM, Mody I, editors.The dentate gyrus and its role in seizures. Amsterdam:Elsevier; 1992. p.235-50(Epilepsy Res. Suppl.7).
    [17]Mathern GW, Babb TL, Pretorius JK, Leite JP.Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J Neurosci 1995;15:3990-4004.
    [18]Gruber B, Greber S, Sperk G. Kainic acid seizures cause enhanced expression of cholecystokinin-octapeptide in the cortex and hippocampusof the rat. Synapse 1993;15:221-8.
    [19]Wittner L, Eross L, Szabo Z, et al. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience 2002,115:961-978.
    [20]Klitgaard H, Matagne A, Vanneste-Goemaere J, et al. Pilocarpine-induced epileptogenesis in the rat:impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res,2002,51: 93-107
    [21]Proper EA,Jansen GH,van Veelen CW, et al. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting. Acta Neuropathol,2001,101:405-409
    [22]Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res,2002,50:105-123.
    [23]Racine RJ. Modification of seizure activity by electrical stimulation II Motor Seizure. Electroencephogr Clin Neurophysiol,1972,32:781-794.
    [24]王平宇,朱治远,祁建等。大白鼠中枢神经系统解剖学基础。人民卫生出版社,1986,152-157.
    [25]Li WE, Nagy JI. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord:evidence for junction regulation by neuronal-glial interactions. Neuroscience,2000,97: 113-123.
    [26]Glien M, Brandt C, Potschka H. et al. Repeated low-dose treatment of rats with pilocarpine:low mortality but high proportion of rats developing epilepsy. Epilepsy Res,2001,46:111-119.
    [27]Coulter DA, McIntyre DC, Loscher W. Animal models of limbic epilepsies: what can they tell us? Brain Pathol,2002,12:240-256.
    [28]Savolainen KM, Hirvonen MR. Second messengers in cholinergic induced convulsions and neuronal injury. Toxicol Lett,1992,64:43-45.
    [29]Smolders L, Khan GM, Manil J, et al. NMDA receptor-mediated pilocarpine-induced seizures:characterization in freely moving rats by microdialysis. Br J Pharmacol,1997,121(6):1171-9.
    [30]Turski L, Cavalheiro EA, Turski WA, et al. Excitatory neurotransmission within substantia nigra pars reticulate regulates threshold for seizures produced by pilocarpine in rats:effects of intranigral 2-amino-7-phosphonoheptanoate and N-methl-D-asparate. Neuroscience,1986,18(1):61-77.
    [31]Einet H, Kofman O,Itkin O, et al. Augmentation of lithium's behavioral effect by inositol uptake inhibitors. J Neural Transm,1998,105:31-38.
    [32]Williams MB, Jope RS. Modulation by inositol of cholinergic-and serotonergic-induced seizures in lithium-treated rats. Brain Res,1995,685 (1-2):169-178.
    [33]Hogan RE, Bucholz RD, Joshi S. Hippocampal deformation based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia,2003,44 (6):8002-8061.
    [34]吴逊。癫痫与发作性疾病。北京:人民军医出版社,2001,6-22。
    [35]Falcomer MA, Serafetinides EA, Corsellis FAN, et al. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol,1964,10:233-248.
    [36]Falcomer MA. Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. Lancet,1974,2 (7883) 767-770.
    [37]Wasterlain CG, Shirasaka Y, Mazarati AM, et al. Chronic epilepsy with damage restricted to the hippocampus:possible mechanisms. Epilepsy Res, 1996,26(1):255-265.
    [38]Boon P, Vandekerckhove T, Achten E, et al. Epilepsy surgery in Belgium, the experience in Gent. Acta NeurolBelg,1999,99:256-265.
    [39]叶静,张文波,祁吉等。实验性癫痫大鼠颞叶及海马损害的病理学观察。中国神经精神疾病杂志,2000,26(3):168-169。
    [40]汤继宏,包仕尧,顾琴。海人酸颞叶癫痫模型的建立及其行为与病理学改变。苏州大学学报(医学版),2005,25(5):796-799。
    [41]Yang ZX, Luan GM, Yan L, et al. Establishment of temporal epilepsy models and its permanent epilepsy sensitivity. Chinese Medical J,2004,84:152-155.
    [42]Cascino GD. Temporal lobe epilepsy:More then hippocampal pathology. Epilepsy Currents,2005,5:187-189.
    [43]Buckmaster PS, Dudek FE. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 1997,385:385-404.
    [44]Buckmaster PS, Jongen-Relo AL. Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite induced epileptic rats. J Neurosci,1999,19:9519-9529.
    [45]Schwarzer C, Williamson JM, Lothman EW, et al. Somatostatin, neuropeptide Y, neurokinen B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience,1995,69:831-845.
    [46]Wittner L, Eross L, Czirjak S, et al. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain, 2005,128:138-152.
    [47]Wittner L, Magloczky Z, Borhegyi Z, et al. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience,2001,108:587-600.
    [48]Sloviter RS. Calcium binding protein (calbindin-D28k) and parvalbumin immunocytochemistry:Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol,1989;280:183-196.
    [49]Lee J, Park K, Lee S, et al. Differential changes of calcium binding proteins in the rat striatum after kainic acid-induced seizure. Neurosci Lett 2002;333(2):87-90
    [50]Jinno S, Kosaka T. Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. J Comp Neurol.2002 Jul15;449(1):1-25
    [51]Losonczy A, Zhang L, Shigemoto R, et al. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J Physiol.2002Jul1;542(1):193-210
    [52]Yoon SP, Chung YY, Chang IY, et al. Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine hippocampus. J Chem Neuroanat.2000 Jul; 19(3):143-54
    [53]Silva AV, Sanabria ER, Cavalheiro EA, et al. Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy:neuronal damage and immunocytochemical changes in chronic epileptic rats. Brain Res Bull.2002 Aug15;58(4):417-21
    [54]Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res.2002 May1;55(1-2):1-10
    [55]Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus, 1996,6:347-470.
    [56]Wittner L, Eross L, Szabo Z, et al. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience,2002,115:961-978.
    [57]Bouilleret V, Schwaller B, Schurmans S, et al. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 2000;97(1):47-58
    [58]Obenause A, Esclapez M, Houser CR. Loss of glutamate decarboxylase
    mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures. J Neurosci 1993; 13:4470-4485
    [59]Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res.1996;725:11-22
    [60]Blumcke I, Beck H, Ailing AL, et al. Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res,1999;36:205-223
    [61]Sloviter RS. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainite-treated rats. Neurosci Lett,1992;137:91-96
    [62]许念桂,肖波,杨国帅等。钙结合蛋白与颞叶癫痫大鼠海马神经元易损性的关系研究。中风与神经疾病杂志,2008,2(1):25-29。
    [63]Magloczky Z, Freund TF. Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends in Neurosciences,2005,28 (6):334-340.
    [64]Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat:the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus,1991,1:41-66.
    [65]Arellano JI. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain,2004,127:45-64.
    [66]Andrioli A, Alonso-Nanclares L, Arellano JI, et al. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience,2007,149:131-143.
    [67]Dinocourt C, Petanjek Z, Freund TF, et al. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures.The Journal of Comparative Neurology,2003,459:407-425.
    [68]Dong HX, Csemansky CA, Goico B, et al. Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci,2003;23:1742-1749
    [69]Figueredo-Cardenas G, Harris CL, Anderson KD, et al. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp Neurol,1998;149(2):356
    [70]Chard PS, Jordan J, Marcuccilli CJ, et al. Regulation of excitatory transmission at hippocampal synapses by calbindin-D28k. Proc Natl Acad Sci USA,1995;92:5144
    [71]Ince P, Stout N, Shaw P, et al. Parvalbumin and calbindin-D28k in the human motor system and in motor neuron disease. Neuropathol App Neurobiol,1993;19:291-299
    [72]Houser CR, Esclapez M. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res, 1996,26:207-218.
    [73]Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol.1994, 35(6):640-654.
    [74]Buckmaster PS, Jongen-Relo AL. Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite induced epileptic rats. J Neurosci,1999,19:9519-9529.
    [75]Mathern GW, Bertram EH, Babb TL, et al. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for Nmethyl-D-aspartate, AMPA and GABA (A) receptors. Neuroscience,1997,77:1003-1019.
    [76]Sato M, Racine RJ, McIntyre DC. Kindling:basic mechanisms and clinical validity. Electroencephalogr. Clin. Neurophysiol,1990,76:459-472.
    [77]Zmullen RJ, Buck CR, Smith Am. NeuN, a neuronal specific nuclear protein in vertebrates. J Development,1992,116:201-211.
    [78]Johnson GVW, Jope RS. The role of microtubule-associated protein 2(MAP-2) in neuronal growth, plasticity and degeneration. J Neurosci Res,1992,33: 505-512.
    [79]Wolf HK, Busleui R, Schmidt-KR, et al. NeuN:a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem,1996,44(10):1167-71.
    [80]C.KoE bberta, R. Appsb, I. Bechmannc, J.L. Lanciegod, J. Meye, S. Thanosa. Current concepts in neuroanatomical tracing. Progress in Neurobiology,2000, 62:327-351.
    [81]KoEbberta C, Appsb R, Bechmannc I, et al. Current concepts in neuroanatomical tracing. Progress in Neurobiology,2000,62:327-351.
    [82]Shozo J, Toshio K. Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain:a retrograde labeling study. Brain Research,2002,945:219-231.
    [83]Zappone C, Sloviter RS. Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus:a colocalization study of neuronal markers and the retrograde tracer fluoro-gold. The Journal of Comparative Neurology, 2001,441:324-344.
    [84]包新民,舒斯云。大鼠脑立体定位图谱。北京:人民卫生出版社,1990,40-45.
    [85]Swanson LW, Sawchenko PE, Cowan WM. Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum:a multiple retrograde labeling study in the rat. J Neurosci,1981,1:548-559.
    [86]Schmued LC, Kyriakidis K, Fallon JH, et al. Neurons containing retrogradely transported Fluoro-Gold exhibit a variety of lysosomal profiles:a combined brightfield, fluorescence, and electron microscopic study. J Neurocytol,1989, 18:333-343.
    [87]Mello LE, Cavelheiro EA, Tan AM, et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy:cell loss and mossy fiber sprouting. Epilepsia,1993,34:985-995.
    [88]Okazaki MM, Evenson DA, Nadler JV. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats:visualization after retrograde transport of biocytin. J Comp Neurol,1995,352:515-534.
    [89]Shetty AK. Entorhinal axons exhibit sprouting in CA1 subfield of the adult hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 2002; 12:534-542.
    [90]Esclapez M, Hirsch JC, Ben-Ari Y, et al. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. The Journal of Comparative Neurology,1999,408:449-460.
    [91]Wheal HV, Chen Y, Mitchell J, et al. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity. Prog Neurobiol,1998,55:611-640.
    [92]Lehmann TN, Gabriel S, Kovacs R, et al. Alteration of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia,2000,41:190-194.
    [93]Lehmann TN, Gabriel S, Eilers A, et al. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. European Journal of Neuroscience,2001,14:83-95.
    [94]Turner DA, Wheal HV. Excitatory synaptic potentials in kainic acid-denervated rat CA1 pyramidal neurons. J Neurosci 1991;11:2786-2794.
    [95]Christian EP, Dudek FE. Characteristics of local excitatory circuits studied with glutamate microapplication in the CA3 area of rat hippocampal slices. J Neurophysiol,1988,59:90-109.
    [96]Christian E.P, Dudek FE. Electrophysiological evidence from glutamate microapplications for local excitatory circuits in the CA1 area of rat hippocampal slices. J Neurophysiol,1988,59:110-123.
    [97]Deuchars J, Thomson AM. CA1 pyramid-pyramid connections in rat hippocampus in vitro:dual intracellular recordings with biocytin filling. Neuroscience,1996,74:1009-1018.
    [98]Attila Sik, Aarne Ylinen, Markku Penttonen, et al. Inhibitory CA1-CA3-Hilar region feedback in the hippocampus. Science,1994,265(16):1722-1724.
    [99]Goodman JH, Sloviter RS. Evidence for commissurally projecting parvalbumin-immunoreactive basket cells in the dentate gyrus of the rat. Hippocampus,1992,2:13-22.
    [100]Deller T, Nitsch R, Frotscher M. Phaseolus vulgaris leucoagglutinin(PHAL) tracing of commissural fibers to the rat fascia dentate; evidence for a preciously unknown commissural projection to the outer molecular layer. J Comp Neurol,1995,352:55-68.
    [101]Deller T, Nitsch R, Frotscher M. Heterogeneity of the commissural projection to the rat dentate gyrus:a Phaseolus culgaris-Leucoagglutinin tracing study. Neuroscience,1996,75:111-121.
    [102]Ribak CE, Seress L, Peterson GM, Seroogy KB, Fallon JH, Schmued LC.1986.A GABAergic inhibitory component within the hippocampal commissural pathway. J Neurosci 6:3492-3498.
    [103]Zappone CA, Sloviter RS. Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. The Journal of Neuroscience,2004,24(4):853-864.
    [104]Ma DL, Tang YC, Chen PM, et al. Reorganization of CA3 area of the mouse hippocampus after pilocarpine induced temporal lobe epilepsy with special reference to the CA3-septum pathway. J Neurosci Res.2006,83(2):318-331.
    [105]Wanscher B, Kragh J, Barry DI, et al. Increased somatostatin and enkephalin-like immunoreactivity in the rat hippocampus following
    hippocampal kindling. Neurosci Lett,1990,188:33-36.
    [106]Cossart R, Dinocourt C, Hirsch JC, et al. Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci,2001,4:52-62.
    [107]Miles R, Toth K, Gulyas AI, et al. Differences between somatic and dendritic inhibition in the hippocampus. Neuron,1996,16:815-823.
    [108]Traub RD. et al. Functionally relevant and functionally disruptive (epileptic) synchronized oscillations in brain slices. Adv Neurol,1999,79:709-724.
    [109]Mann EO, Paulsen O. Role of GABAergic inhibition in hippocampal network oscillations.Trends in Neurosciences,2007,30(7):343-349.
    [1]Fink, R.P., Heimer, L., Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res.1967.4369-374.
    [2]Nauta, W.J.H., Gygax, P.A., Silver impregnation of degenerating axons in the CNS:a modified technique. Stain Technol.1954.2991-93.
    [3]Kristensson, K., Olsson, Y., Retrograde axonal transport of protein. Brain Res. 1971.29,363-365.
    [4]LaVail, J.H., LaVail, M.M., Retrograde axonal transport in the central nervous system. Science 1972.176,1416-1417.
    [5]Mesulam, M.M., Principles of horseradish peroxidase neurochemistry and their applications for tracing neural pathways-axonal transport, enzyme histochemistry and light microscopic analysis. In:Mesulam, M.M. (Ed.), Tracing Neural Connections with Horseradish Peroxidase. IBRO Handbook Series:Methods in the Neurosciences.1982.Wiley, New York, pp.1-551.
    [6]Akintunde, A., Buxton, D.F., Quadruple labeling of brain-system neurones:a multiple retrograde fluorescent tracer study of axonal collateralization. J. Neurosci. Methods 1992.45,15-22.
    [7]Kuypers, H.G.J.M., Huisman, A.M., Fluorescent neuronal tracers. Adv. Cell. Neurobiol.1984.5,307-340.
    [8]Kristensson, K., Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol.1970.16,293-300.
    [9]Hubel, D.H., Wiesel, T.N., Stryker, M.P., Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxy-glucose autoradiographic technique. Nature 1977.269,328-330.
    [10]Thanos, S., Bonhoe.er, F., Investigations on development and topographic order of retinotectal axons:anterograde and retrograde staining of axons and their perikarya with rhodamine in vivo. J. Comp. Neurol.1983.219,420-430.
    [11]Thanos, S., Bonhoe.er, F., Axonal arborization in the developing chick retinotectal system. J. Comp. Neurol.1987.261,155-164.
    [12]Gerfen, C.R., Sawchenko, P.E., An anterograde neuroanatomical tracing method that shows the detailed morphology of neurones, their axons and terminals:immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res.1984.290, 219-238.
    [13]Wouterlood, F.G., Jorritsma-Byham, B., Goede, P.H., Combination of anterograde tracing with Phaseolus vulgaris-leucoagglutinin, retrograde fluorescent tracing and fixed-slice intracellular injection of Lucifer yellow. J. Neurosci. Methods1990a.33,207-217.
    [14]Schofield, B.R., Uptake of Phaseolus vulgaris leucoagglutinin(PHA-L) by axons of passage. J. Neurosci. Methods 1990.35,47-56.
    [15]Ter, Horst, G.J., Groenewegen, H.J., Karst, H., Luiten, P.G.M., Phaseoulus vulgaris leucoagglutinin immunohistochemistry.1984.
    [16]Glover, J.C., Petursdottir, G., Jansen, J.K.S., Fluorescent dex-tran-amines used as axonal tracers in the nervous system of chicken embryo. J. Neurosci. Methods 1986.18,243-254.
    [17]Hausmann, R.E., Moscona, A.A., Isolation of retina-specific cell-aggregating factor from membranes of embryonic neural retina tissue. Proc. Natl. Acad. Sci. USA 1976.73 (10),3594-3598.
    [18]Bonhoe.er, F., Huf, J., Position-dependent properties of retinal axons and their growth-cones. Nature 1980.315,409-410.
    [19]Honig, M.G., Hume, R.I., DiI and DiO:versatile fluorescent dyes for neuronal labelling and pathway tracing. TINS 1989.12,333-341.
    [20]Fritzsch, B., Sonntag, R., Sequential double labelling with di.erent fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and or regeneration. J.Neurosci. Methods 1991.39,9-17.
    [21]Godement, P., Vanselow, J., Thanos, S., Bonhoe.er, F., A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 1987.101,697-713.
    [22]Vanselow, J., Thanos, S., Godement, P., Henke-Fahle, S.,Bonhoe.er, F., Spatial arrangement of radial glia and ingrowing of retinal axons in the chick optic tectum during development. Dev. Brain Res.1989.45,15-27.
    [23]Trowe, T., Klosterman, S., Baier, H., Granato, M., Crawford, A.D.,Grunewald, B., Ho.mann, H., Karlstrom, R.O., Meyer, S.U.,MuE Her, B., Richter, S., NuE sslein-Volhard, C., Bonhoe.er, F., Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Dariorerio. Development 1996.123,439-450.
    [24]Connors, B.W., Benardo, L.S., Prince, D.A., Carbon dioxide sensitivity of dye-coupling among glia and neurones of the neocortex. J. Neurosci.1984.4 (5),1324-1330.
    [25]Grinvald, A., Salzberg, B.M., Lev-Ram, V., Hildesheim, R., Optical recording of synaptic potentials from processes of single neurones using intracellular potentiometric dyes. Biophys. J.1987.51,643-651.
    [26]Zecevic, D., Antic, S., Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell. J.Histochem.1998.30, 197-216.
    [27]Wessendorf, M.W., Fluoro-Gold:composition, and mechanism of uptake. Brain Res.1991.553,135-148.
    [28]Luksch, H., Walkowiak, W., Munoz, A., tenDonkelaar, H.J., The use of in vitro preparations of the isolated amphibian central nervous system in neuroanatomy and electrophysiology. J.Neurosci. Methods 1996.70,91-102.
    [29]Luksch, H., Cox, K., Karten, H.J., Bottlebrush dendritic endings and large dendritic fields:motion-detecting neurones in the tectofugal pathway. J. Comp. Neurol.1998.396 (3),399-414.
    [30]Mey, J., Thanos, S., Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 1993.602,304-317.
    [31]Giloh, H., Sedat, J.W., Fluorescence microscopy:reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 1982. 217,1252-1255.
    [32]Kristensson, K., Olsson, Y., Retrograde axonal transport of protein. Brain Res. 1971.29,363-365.
    [33]Mason, A., Larkman, A., Eldridge, J.L., A method for intracellular injection of horseradish peroxidase by pressure. J.Neurosci. Methods 1988.22,181-187.
    [34]SchuE tte, M., Hoskins, S.G., Ipsilaterally projecting retinal ganglion cells in Xenopus laevis:an HRP study. J. Comp. Neurol.1993.331,482-494.
    [35]Lu X, Geng X, Zhang L,et al. The Methodology for Labeling the Distal Cerebrospinal Fluid-contacting Neurons in Rats. J Neurosci Methods,2008,168 (1):98-103.
    [36]Horikawa, K., Armstrong, W.E., A versatile means of intracellular labelling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 1988.25,1-11.
    [37]Kita, H., Armstrong, W.E., A biotin-containing compound N-(2-aminoethyl) biotinamide for intracellular labeling and neurotracing studies. J. Neurosci. Methods 1991.37,141-150.
    [38]Lapper, S.R., Bolam, J.P., The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat:comparison with biocytin. J. Neurosci. Methods 1991.39,163-174.
    [39]Wirsig-Wiechmann, C.R., Biocytin:a neuronal tracer compatible with rapid decalcification procedures. J. Neurosci. Methods1994.51,213-216.
    [40]Apps, R., Input-output connections of the "hindlimb" region of the inferior olive in cats. J. Comp. Neurol.1998.399,513-529.
    [41]Apps, R., Rostrocaudal branching within the climbing fibreprojection to forelimb-receiving areas of the cerebellar cortical C1 zone. J. Comp. Neurol. 2000.419,193-204.
    [42]Apps, R., Trott, J.R., Dietrich, E., A study of branching in the projection from the inferior olive to the x-zone and lateral c1 zone of the cat cerebellum using a combined electrophysiological and retrograde fluorescent double-labelling technique. Exp. Brain Res.1991.87,141-152.
    [43]King, V., Armstrong, D.M., Apps, R., Trott, J.R., Numerical aspects of pontine, lateral reticular, and inferior olivary projections to two paravermal cortical zones of the cat cerebellum. J.Comp. Neurol.1998.390,1-15.
    [44]Cabot, J.B., Mennone, A., Bogan, N., Carroll, J., Evinger, C.,Erichsen, J.T., Retrograde, trans-synaptic and transneuronal transport of fragment C of tetanus toxin by sympathetic preganglionic neurones. Neuroscience 1991.40,805-823.
    [45]Sawchenko, P.E., Gerfen, C.R., Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci.1985.8,378-385.
    [46]Wouterlood, F.G., Goede, P.H., Groenewegen, H.J., The insitu detectability of the neuroanatomical tracer Phaseolus vulgaris-leucoagglutinin (PHA-L). J. Comp. Neuroanatom.1990b.3,11-18.
    [47]BjoE rklund, A., Skagerberg, G., Simultaneous use of retrograde fluorescent tracers and fluorescence histochemistry for convenient and precise mapping of monoaminergic projections and collateral arrangements in the CNS. J. Neurosci. Methods 1979.1,261-277.
    [48]Bonhoe.er, F., Huf, J., Position-dependent properties of retinal axons and their growth-cones. Nature 1980.315,409-410.
    [49]Bentivoglio, M., Kuypers,H.G., Catsman-Berrevoets, C.E., Loewe,H., Dann, O., Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci. Lett.1980.18,25-30.
    [50]Akintunde, A., Buxton, D.F., Quadruple labeling of brain-system neurones:a multiple retrograde fluorescent tracer study of axonal collateralization. J. Neurosci. Methods 1992.45,15-22.
    [51]Bentivoglio, M., Su, H.S., Photoconversion of fluorescent retrograde tracers. Neurosci. Lett.1990.113,127-133.
    [52]Novikova, L., Novikov, L., Kellerth, J.O., Persistent neuronal labelling by retrograde fluorescent tracers:a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J.Neurosci., Methods 1997.74,9-15.
    [53]Vince, G.H., Bouterfa, H., Goldbrunner, R., Roosen, K., Tonn,J.C., Fast blue, a fluorescent tracer in glioma cell culture, a.ects cell proliferation and motility. Neurosci. Lett.1997.233,148-150.
    [54]Hong, Y.-M., Thanos, S., A quantitative approach to identify and isolate pure populations of fluorescently labeled adult retinal ganglion cells using a pressure-driven microaspiration technique.Neurosci. Lett.1996.214,111-114.
    [55]Veenman, C.L., Reiner, A., Honig, M.G., Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies. J. Neurosci. Methods 1992.41,239-254.
    [56]Mandado M,Molist P,Anadon R,et al. A Dil-tracing Study of the Neural Connections of the Ppineal Organ in Two Elasmobranchs (Scyliorhinus Canicula and Raja Montagui) Suggests a Pineal Projection to the Midbrain GnRH-immunoreactive Nucleus. Cell Tissue Res,2001,303(3):391-401.
    [57]Fernandez-Borja M,Bellido D,Vilella E,et al. Lipoprotein Lipase-mediated Uptake of Lipoprotein in Human Fibroblasts:Evidence for an LDL Receptor-independent Internalization Pathway. J Lipid Res,1996,37(3): 464-481.
    [58]Naito J, Chen Y. Morphologic Analysis and Classification of Ganglion Cells of the Chick Retina by Intracellular Injection of Lucifer Yellow and Retrograde Labeling with Dil. J Comp Neurol,2004,469(3):360-376.
    [59]Schmued, L.C., Fallon, J.H., Fluoro-Gold:a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res.1986,377,147-154.
    [60]Schmued, L.C., Kyriakidis, K., Heimer, L., In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS. Brain Res.1990,526,127-134.
    [61]Wessendorf, M.W., Fluoro-Gold:composition, and mechanism of uptake. Brain Res.1991,553,135-148.
    [62]Chen P, Wang P, Chen G, et al. Study on Remodeling of Astrocytes in Facial Neuclus after Peripheral Injury. J Hua-zhong Univ Sci Technolog Med Sci, 2005,25(6):726-728.
    [63]Nakajima T, Ohtori S, Yamamoto S,et al. Differences in Innervation and Innervated Neurons between Hip and Inguinal Skin. Clin Orthop Relat Res, 2008,466(10):2527-2532.
    [64]Viterbo F, Trindade JC, Hoshino K, et al. Two End-to-side Neurorrhaphies and Nerve Graft with Removal of the Epineural Sheath:Experimental Study in Rats. Br J Plast Surg,1994,47(2):75-80.
    [65]Byers CT, Fan R, Messina A, et al. Comparing the Efficacy of Two Fluorescent Retrograde Tracers in Labeling the Motor and Sensory Neuron Populations of the Rat Sciatic Nerve. J Neurosci Methods,114(2):159-164.
    [66]Yang L, Zhang FX, Huang F, et al. Peripheral Nerve Injury Induces Trans-synaptic Modification of Channels, Receptors and Signal Pathways in Rat Dorsal Spinal Cord. Eur J Neurosci,2004,19(4):871-883.
    [67]Brandt, H.M., Apkarian, A.V., Biotin-dextran:a sensitive anterograde tracer for neuroanatomic studies in rat and monkey.J. Neurosci. Methods 1992,45,35-40.
    [68]Glover, J.C., Petursdottir, G., Jansen, J.K.S., Fluorescent dextran-amines used as axonal tracers in the nervous system of chicken embryo. J. Neurosci. Methods 1986.18,243-254.
    [69]Nance, D.M., Burns, J., Fluorescent dextrans as sensitive anterograde neuroanatomical tracers:applications and pitfalls. Brain Res. Bull.1990.25, 139-145.
    [70]Rajakumar, N., Elisevich, K., Flumerfelt, B.A., Biotinylated dextran:a versatile anterograde and retrograde neuronal tracer.Brain Res.1993.607,47-53.
    [71]Curtis R, Tonra J R,Stark JL,et al. Neuronal Injury Increases Retrograde Axonal Transport of the Neurotrophins to Spinal Sensory Neurons and Motor Neurons via Multiple Receptor Mechanisms. Mol Cell Neurosci,1998, 12(3):105-118.
    [72]Harsh C, Archibald SJ, Madison RD. Double-labelling of Saphenous Nerve Neurone Pools:A Model for Determining the Accuracy of Axon Regeneration at the Single Neuron Level. J Neurosci Methods,1991,39(2):123-130.
    [73]Turner EH, Lauterbach K, Pugsley HR, et al. Detection of Green Fluorescent Protein in a Single Bacterium by Capillary Electrophoresis with Laser-Induced Fluorescence. Anal Chem,2007,79(2):778-781.
    [74]Cabantous S, Terwilliger TC,Waldo GS. Protein Tagging and Detection with Engineered Self-assembling Fragment s of Green Fluorescent Protein. Nat Biotechnol,2005,23(1):102-107.
    [75]Puigdellivol-Sanchez A,Prats-Galino A,Ruano-Gil D,et al. Efficacy of the Fluorescent Dyes Fast Blue, Fluoro-Gold, and Diamidino Yellow for Retrograde Tracing to Dorsal Root Ganglia after Subcutaneous Injection. J Neurosci Met hods,1998,86(1):7-16.
    [76]Loening AM, Fenn TD, Gambhir SS. Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis. J Mol Biol,2007,374(4): 1017-1028.
    [77]常成,高晓群。病毒在神经通路示踪中的应用。中国组织化学与细胞化学杂志,2004,13(2):250-254.
    [78]C.KoE bberta, R. Appsb, I. Bechmannc, J.L. Lanciegod, J. Meye, S. Thanosa. Current concepts in neuroanatomical tracing. Progress in Neurobiology,2000, 62:327-351.
    [79]Raju DV, Smith Y. Anterograde axonal tract tracing.Curr Protoc Neurosci.2006 Nov;Chapter 1:Unit 1.14.
    [80]Peng ZC, Bentivoglio M. The thalamic paraventricular nucleus relays information from the suprachiasmatic nucleus to the amygdala:A combined anterograde and retrograde tracing study in the rat at the light and electron microscopic levels. Journal of Neurocytology.2004,33:101-116.
    [81]Thanos, S., Rohrbach, J.M., Thiel, H.J., Post mortem preservation of ganglion cells in the human retina:a morphometric investigation with the carbocyanine dye Dil. Retina 1991.11,318-327.
    [82]Janssen, P., Naskar, R., Moore, S., Thanos, S., Evidence for glaucoma-induced horizontal cell alterations in the human retina.Ger. J. Ophthalmol.1997.5, 378-385.
    [83]KoE bbert, C., Thanos, S., Topographic presentation of the sciatic nerve
    motoneurons in the spinal cord of the adult rat correlates to region-specific activation patterns of microglia. J.Neurocytol.,2000.
    [84]Bechmann, I., Nitsch, R., Astrocytes and microglial cells incorporate degenerating fibres following entorhinal lesion:a light, confocal, and electron microscopical study using a phagocytosisdependent labelling technique. Glia 1997a.20,145-154.
    [85]Bechmann, I., Nitsch, R., Identification of phagocytic glial cells after lesion-induced anterograde degeneration using double-fluorescence labelling: combination of axonal tracing and lectin or immunostaining. Histochem. Cell Biol.1997b.107,391-397.
    [86]Apps, R., Trott, J.R., Topographical organisation within the lateral reticular nucleus mossy fibre projections to the cl and c2 zones in the rostral paramedian lobule of the cat cerebellum. J.Comp. Neurol.1998.381,175-187.
    [87]Trott, J.R., Apps, R., Armstrong, D.M., Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. Part 1:The C1 zone. Exp.Brain Res.1998a.118,298-315.
    [88]Trott, J.R., Apps, R., Armstrong, D.M., Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. Part 2:The C2 zone. Exp.Brain Res.1998b.118,316-330.
    [89]VogtBA, RoseneDL, PandyaDN. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in themonkey.Science,1979; 204: 205-207
    [90]Baleydier C, Mauguiere F. The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain,1980; 103:525-554
    [91]N. Tschuluun, J. H. Wenzel, K. Katleba Initiation and spread of epileptiform discharges in the methylazoxymethanol acetate rat model of cortical dysplasia: Functional and structural connectivity between CA1 heterotopia and hippocampus/neocortex[J]. Neuroscience 2005.133(1):327-342.
    [92]Mello LE, Cavelheiro EA, Tan AM, et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy:cell loss and mossy fiber sprouting. Epilepsia,1993,34:985-995.
    [93]Okazaki MM, Evenson DA, Nadler JV. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats:visualization after retrograde transport of biocytin. J Comp Neurol,1995,352:515-534.
    [94]Attila Sik, Aarne Ylinen, Markku Penttonen, et al. Inhibitory CA1-CA3-Hilar region feedback in the hippocampus. Science,1994,265(16):1722-1724.
    [95]Swanson LW, Sawchenko PE, Cowan WM. Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum:a multiple retrograde labeling study in the rat. J Neurosci,1981,1:548-559.
    [96]Zappone C, Sloviter RS. Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus:a colocalization study of neuronal markers and the retrograde tracer fluoro-gold. The Journal of Comparative Neurology, 2001,441:324-344.
    [97]Goodman JH, Sloviter RS. Evidence for commissurally projecting parvalbumin-immunoreactive basket cells in the dentate gyrus of the rat. Hippocampus,1992,2:13-22.
    [98]Deller T, Nitsch R, Frotscher M. Phaseolus vulgaris leucoagglutinin(PHAL) tracing of commissural fibers to the rat fascia dentate; evidence for a preciously unknown commissural projection to the outer molecular layer. J Comp Neurol,1995,352:55-68.
    [99]Deller T, Nitsch R, Frotscher M. Heterogeneity of the commissural projection to the rat dentate gyrus:a Phaseolus culgaris-Leucoagglutinin tracing study. Neuroscience,1996,75:111-121.
    [100]Gottlieb DI, Cowan WM. Autoradiographic studies of the commissural and ipsilateral association connections of the hippocampus and dentate gyrus of the rat. Ⅰ.The commissural connections. J Comp Neurol,1973,149:393-422.
    [101]Patton PE, McNaughton B. Connection matrix of the hippocampal formation. Ⅰ.The dentate gyrus. Hippocampus,1995,5:245-286.
    [102]Freund TF, Buzsa'ki G. Interneurons of the hippocampus. Hippocampus, 1996,6:347-470
    [103]Macdonald RL. Inhibitory synaptic transmission.In:edited by Engel J Jr.Pedley TA. Epilepsy:a comprehensive textbook. Lippincott-Raven Publisher, Philadelphia,1997,265-275.
    [104]Dichter MA,Wilcox KS. Excitatory synaptic transmission.In:edited by Engel J Jr.Pedley TA. Epilepsy:a comprehensive textbook. Lippincott-Raven Publisher, Philadelphia,1997,251.
    [105]Magloczky Z,Freund TF. Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends in Neurosciences 2005,28 (6):334-340.
    [106]Miles R, Wong RKS. Excitatory synaptic interactions between CA3 neurons in the guinea pig hippocampus. J Physiol,1986,373:397-418.
    [107]eLanerolle NC, Kim JH, Robbins RJ, et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy.Brain Res,1989,495:387-395.
    [108]Houser CR, Miyashiro JE, Swartz BE, et al. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990; 10:267-282.
    [109]Mello LEAM, Cavalheiro EA, Tan AM, et al. Granule cell dispersion in relation to mossy fiber sprouting, hippocampal cell loss, silent period and seizure frequency in the pilocarpine model of temporal lobe epilepsy. In:Engel Jr J, Wasterlain C, Cavalheiro EA, Heinemann U, Avanzini G, editors. Molecular neurobiology of epilepsy. Amsterdam:Elsevier,1992,51-60.
    [110]Wenzel HJ, Woolley CS, Robbins CA, et al. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus, 2000,10:244-260.
    [111]Sloviter RS. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett,1992,137:91-96.
    [112]Lynch M, Sutula T. Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats. J Neurophysiol.2000,83(2):693-704.
    [113]Routbort MJ, Bausch SB, McNamara JO. Seizures, cell death, and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Neuroscience.1999,94(3):755-765.
    [114]Pierce JP, Milner TA. Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse. 2001,39(3):249-256.
    [115]Coulter DA. Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia.1999,40:23-33.
    [116]Lehmann, TN., Gabriel S., Kovacs R, et al. Alteration of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia,2000,41:190-194.
    [117]charfman HE, Sollas AL, Berger RE, et al. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol,2003,90:2536-2547.
    [118]Bausch SB, McNamara JO. Contributions of mossy fiber and CA1 pyramidal cell sprouting to dentate granule cell hyperexcitability in kainic acid-treated hippocampal slice cultures. J Neurophysiol,2004,92:3582-3595.
    [119]Lehmann TN, Gabriel S, Eilers A, et al. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci,2001,14(1):83-95
    [120]Zhang X, Cui S-S, Wallace AE, et al. Relations between brain pathology and temporal lobe epilepsy. J Neurosci,2002,22:6052-6061.
    [121]Longo BM, Mello LEAM. Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kainite model of epilepsy in the rat. Epilepsy Res,1998,32:172-182.
    [122]Buhl EH, Halasy K, Somogyi P.Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature.1994,368(6474):823-828.
    [123]Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci, 1998,18:3386-3403.
    [124]Xu H, Clement A, Wright TM, Wenner P.Developmental Reorganization of the Output of a GABAergic Interneuronal Circuit. J Neurophysiol,2007,97:2769-2779.
    [125]Dinocourt C, Petanjek Z, Freund TF, et al. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. The Journal of Comparative Neurology,2003,459:407-425.
    [126]Sun C, Mtchedlishvili Z, Bertram EH, et al. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol,2007,500(5):876-893.
    [127]Houser CR, Esclapez M. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res, 1996,26:207-218.
    [128]Wittner L, Eross L, Szabo Z, et al. Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience,2002,115:961-978.
    [129]Zappone CA, Sloviter RS. Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. The Journal of Neuroscience,2004,24(4):853-864.
    [130]Ribak CE, Seress L, Peterson GM, Seroogy KB, Fallon JH, Schmued LC. A GABAergic inhibitory component within the hippocampal commissural pathway. J Neurosci 1986.6:3492-3498.
    [131]C.KoE bberta, R. Appsb, I. Bechmannc, J.L. Lanciegod, J. Meye, S. Thanosa. Current concepts in neuroanatomical tracing. Progress in Neurobiology,2000, 62:327-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700