用户名: 密码: 验证码:
中华鳖肠道、脾脏和脑垂体的主要功能细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华鳖是我国重要的水产养殖动物,具有很高的营养价值和药用价值。在生物学方面,中华鳖属于爬行纲,具有冬眠现象和变温特点,其消化、免疫和内分泌等的生理活动和代谢过程有别于其它动物。随着我国人工饲养的规模不断扩大,中华鳖一些传染病的流行和扩散也越来越严重。以往,关于中华鳖的试验研究较多都集中在与疾病相关领域,对于其特殊结构的基础性研究,资料比较缺乏。本文以具有我国特色的中华鳖为模式动物,详细研究了其代表性的器官组织:消化系统的肠道,免疫系统的脾脏,内分泌系统的脑垂体等的细胞学特征,并分析了其功能意义。论文主要内容包括鳖肠道黏膜机械屏障和免疫屏障细胞组成和结构特征;Cajal间质细胞在肠道的分布差异和超微结构特征;脾脏椭球高内皮毛细血管的发现及淋巴细胞迁移的细胞学基础;腺垂体内分泌细胞超微结构及其季节性变化。从以上三个方面,阐述了中华鳖的细胞特征及其意义,为进一步研究其生理功能、免疫机能、冬眠期和非冬眠期的生理周期变化奠定了理论的基础,同时为人工饲养、疾病预防和治疗方面提供科学依据。
     试验Ⅰ中华鳖肠道上皮内黏膜屏障的结构与细胞特征通过光镜和电镜观察正常情况下,中华鳖肠道上皮内黏膜屏障的结构特征,统计分析了中华鳖不同月份肠免疫屏障的主要成分—上皮内淋巴细胞(IEL)在小肠和大肠的分布规律。结果显示:小肠黏膜上皮为单层柱状或假复层柱状上皮。黏膜上皮顶部的上皮细胞之间排列紧密,有发达的紧密连接,中间连接和桥粒等细胞连接复合体。黏膜上皮中部和基底部的上皮细胞之间也存在桥粒和嵌合连接。小肠黏膜上皮大多数上皮细胞胞质内含有少量线粒体,少量上皮细胞胞质含有丰富线粒体和脂滴。大肠黏膜上皮为假复层柱状上皮,所有的上皮细胞胞质内未见脂滴分布。黏膜上皮顶部的上皮细胞排列紧密,而中部和基底部的上皮细胞排列疏松,细胞之间的间隙宽大而明显。许多黏液细胞散在分布于整个肠道的黏膜上皮细胞之间,有的细胞胞质内黏液颗粒电子密度低,而有的电子密度高。黏液细胞分泌的黏液覆盖于肠黏膜表面。肠黏膜上皮内缺乏微皱褶细胞。肠道黏膜上皮细胞之间存在直径为1-7gm的通道,有时可见通道内有淋巴细胞分布。IEL(直径4-9μm)位于肠道黏膜上皮细胞之间,并在它们之间伸出伪足,显示出IEL具有迁移趋势。肠腔内可见完整的游离淋巴细胞。在上皮细胞之间发现了浆细胞的分布,一般位于肠道黏膜上皮的中部和基底部,浆细胞有两种形态:一种粗面内质网为扩张状态,另一种是扁平囊状。IEL细胞数量从5月、9月到12月逐渐减少。以上试验结果提示,鳖肠道黏膜上皮具有黏膜屏障功能。上皮细胞及其紧密连接复合体、黏液细胞分泌的黏液构成机械屏障;浆细胞、IEL和通道构成免疫屏障。鳖肠道黏膜免疫细胞分布也受季节影响。
     试验Ⅱ中华鳖肠黏膜免疫屏障中CD3+T、CD22+B淋巴细胞的分布采用免疫细胞化学SABC法,观察中华鳖肠道免疫屏障内CD3+T、CD22+B淋巴细胞的分布特征,统计并分析了中华鳖各肠段CD3+T淋巴细胞、CD22+B淋巴细胞的分布规律。结果发现:CD3+T淋巴细胞主要分布在固有膜内,少量见于黏膜上皮内。而大部分CD22+B淋巴细胞分布于黏膜上皮,固有膜内却少见。在上皮内,CD3+T淋巴细胞在小肠从前到后依次递增,小肠后段数量最多;而在大肠CD3+T淋巴细胞依次递减。在固有膜内,CD3+T淋巴细胞在小肠中段密度最高,而在大肠依次递减。上皮内,固有膜内CD3+T淋巴细胞各肠段相比,大部分肠段之间差异显著。固有膜CD3+T淋巴细胞数量是上皮内的3.11倍,小肠CD3-T淋巴细胞数量是大肠的2倍。对于CD22+B淋巴细胞而言,在上皮内,CD22+B淋巴细胞在小肠后段数量最多,而在大肠从前到后逐渐减少;在固有膜,CD22+B淋巴细胞从小肠前到小肠后段依次减少,在大肠依次降低。上皮内CD22+B淋巴细胞各肠段相比,大部分肠段之间差异不显著,固有膜内CD22+B淋巴细胞在各肠段之间没有显著差异。上皮内CD22+B淋巴细胞数量是固有膜的7.99倍,小肠CD22+B淋巴细胞数量是大肠的1.75倍。以上试验结果说明鳖肠道各段免疫屏障中T、B淋巴细胞的分布存在差异,提示它们在肠道黏膜免疫应答中发挥着不同的生物学作用。
     试验Ⅲ中华鳖肠道S-100蛋白免疫细胞化学反应研究应用免疫组织化学技术,研究了S-100蛋白阳性细胞在中华鳖肠道的分布规律。结果显示:S-100蛋白阳性细胞可以分为两种类型:第一种类型S-100阳性细胞形态不规则,细胞突起粗细长短不一,主要分布于小肠固有膜和黏膜下层,大肠内几乎没有阳性细胞分布。第二种类型S-100蛋白阳性细胞分为双极和星形细胞。双极S-100蛋白阳性细胞突起有的长,有的短。它们分布于小肠和大肠的黏膜下层和环形肌之间,环形肌内,环形肌和纵形肌之间,大肠的黏膜下层。星形S-100蛋白阳性细胞仅分布于大肠前段固有膜,这些细胞含有多个突起,突起之间相互交织在一起形成网络状结构。S-100蛋白是树突状细胞的特异性抗体,但在Cajal司质细胞、神经胶质细胞也有表达。根据形态和分布位置,本实验第一种类型S-100蛋白阳性细胞为树突状细胞,第二种类型S-100蛋白阳性细胞可能是Cajal间质细胞或神经胶质细胞。目前研究认为,树突状细胞具有抗原呈递作用,Cajal间质细胞是肠道蠕动的起搏点,神经胶质细胞可以维护肠黏膜上皮完整性。因此,推测树突状细胞参与的免疫屏障功能主要在鳖小肠,Cajal间质细胞和神经胶质细胞分别具有调节肠道运动和肠黏膜屏障功能。
     试验ⅣCajal间质细胞在中华鳖肠道的分布差异和超微特征本文应用c-Kit免疫细胞化学技术和透射电镜研究了Cajal间质细胞(ICC)在中华鳖肠道中的分布和超微结构特征。c-Kit免疫细胞化学反应显示,Cajal间质细胞分为双极和星形细胞。双极c-Kit+ICC细胞突起有的长,有的短或不明显。这些细胞分布于大肠黏膜下层,小肠和大肠的黏膜下层与环肌层之间、环形肌内、环形肌和纵形肌之间、浆膜。在黏膜下层,双极c-Kit+ICC围绕血管分布。在黏膜下层与环形肌之间,环形肌和纵形肌之间,呈线形或呈簇分布,有时围绕在血管周围。在环形肌内,双极c-Kit+ICC围绕在血管周围或与平滑肌细胞平行分布。在浆膜内,双极c-Kit+ICC散在分布。星形c-Kit+ICC细胞只分布在大肠固有膜内,这些细胞具有多个突起,突起之间相互交织形成网状结构,主要围绕在血管周围分布。电镜下,双极和星形ICC细胞胞质内含有线粒体,膜内陷小泡,粗面内质网和多个不规则的胞浆突起。ICC细胞与ICC细胞之间、ICC细胞与神经、ICC细胞与平滑肌细胞之间具有缝隙连接。以上试验结果提示中华鳖肠道ICC细胞具有独特的分布特点和超微结构,其形态特点与其在维护肠道蠕动中的重要作用相一致。
     试验V中华鳖脾脏椭球高内皮毛细血管的发现及淋巴细胞迁移的细胞学基础本文应用光镜和电镜等技术,对中华鳖脾脏白髓组织结构进行了研究,发现中华鳖脾脏椭球血管不同于其它动物,其血管属于高内皮毛细血管,内皮细胞呈高柱状或立方形,相当于哺乳动物高内皮微静脉。脾脏内存在血-脾屏结构,一方面可以阻止外来异物抗原(碳粒)进入椭球周围淋巴鞘(PELS),另一方面可以形成特殊临时性通道,允许淋巴细胞在其中迁移,到达PELS.通道结构是由网状细胞、网状纤维、迁移细胞(淋巴细胞、巨噬细胞、红细胞)、支持细胞、椭球相关细胞、通道共同构成的复合结构。它们形成了一个有利于淋巴细胞运动的微环境。本试验发现淋巴细胞迁移过程如下:椭球高内皮毛细血管内皮细胞之间形成通道,淋巴细胞沿着通道,穿过椭球高内皮毛细血管基膜,到达椭球;淋巴细胞在支持细胞及其突起作用下,沿着通道,从椭球到达PELS外;淋巴细胞与椭球相关细胞及其突起相联系,从PELS外进入PELS。以上试验结果为深入研究爬行动物淋巴细胞归巢提供了细胞学基础。
     试验Ⅵ中华鳖腺垂体内分泌细胞超微结构及其季节性变化研究采用透射电镜技术对冬眠期和非冬眠期的中华鳖腺垂体中各种内分泌细胞的超微结构进行了观测分析。结果显示,腺垂体主要有5种内分泌细胞:生长激素(GH)细胞、催乳激素(PRL)细胞、促甲状腺激素(TSH)细胞、促肾上腺皮质激素(ACTH)细胞和促性腺激素(GTH)细胞。它们各有其超微结构特征:GH细胞呈圆形或椭圆形,直径为10-12μm;分泌颗粒分布稠密,呈圆形。PRL细胞椭圆形或不规则形,长径为7-9μm,细胞核形状不规则,胞质电子密度高。TSH细胞呈卵圆形或不规则的多角形,直径为8-12μm,细胞核椭圆形,分泌颗粒数量不多,主要分布在细胞周边。ACTH细胞不规则,直径8-10μm,细胞核为椭圆形,分泌颗粒较少。GTH细胞圆形或卵圆形,直径12-15μm,细胞核为圆形或椭圆形,胞质内有大、小两种分泌颗粒。同时,鳖腺垂体中各种内分泌细胞的结构特征和分泌颗粒密度等存在一定的季节性变化。冬眠期,GH细胞胞质内细胞器比非冬眠期明显减少;TSH细胞在非冬眠期数量高于冬眠期;冬眠期内GTH细胞内的分泌颗粒出现融合变大的现象,颗粒直径明显大于非冬眠期,最大的可以达到2μm。PRL细胞和ACTH细胞超微结构没有明显的季节变化。
Soft-shelled turtle, Pelodiseus Sinensis distributed widely in China and this species was famous for its important value in economy and in pharmacy. In the biology aspect, Pelodiseus Sinensis were belonged to Reptilia, they were ectothermic animal and had hibernation. The physiological action and metabolic process of the digest, immunity and endocrine secretion were different from other kinds of animals. With the scale of the turtle hand-feeding has rapid development, the communicable diseases became more and more serious. Most of the scholars were focused on the researches of turtle disease, there was almost no studies on the special structural feature of turtle. The present study was used Pelodiseus Sinensis as research target. We selected three typical tissues in the turtle, they were intestine of the digestive system, the spleen of the immune system and the pituitary gland of the endocrine system. The text included three parts, in the first part, we examined the structural feature and cell component of mechanical barrier and immunologic barrier, the distribution and ultrastructure of interstitial cells of Cajal in the turtle gut. In the second part, the ellipsoid high endothelial capillary and lymphocytes migration cytologic basement in the spleen were studied. In the third part, the ultrastructure and seasonal change of endocrine cell were investigated in the adenohypophysis. All the aboved three parts, the turtle cytological feature and their significance were expounded in detail. The studies provided theoretical foundation for the further research on the physiologic and immunologic function, physiological aspection during the hibernation and non-hibernation of the turtle. At the same time, they also provided sciencific basis for the hand-feeding, disease prevention and cure in the Pelodiseus Sinensis.
     Experiment I The fine structure and cell character of barrier in the intestine mucosal epithelium of Chinese soft-shelled turtle, Pelodiseus Sinensis. Light and transmission electron microscopy were used to study the structural feature of barrier and the distribution pattern of intestinal intraepithelial lymphocyte (IELs) in different month in the normal turtles intestine mucosal epithelium. IELs was one of the most important part of the immunologic barrier. The results showed that in the small intestine, the mucosal epithelium was single layered or pseudostratified columnar epithelium. In the apical parts of the epithelium, enterocytes were arranged tightly. There have cell junctional complex of tight junction, intermediate junction and desmosomes. In the middle and basal parts of mucosal epithelium, enterocytes were connected by desmosomes and interdigitations. In the small intestinal epithelium, most of enterocytes contained several mitochondria in the cytoplasm. A few enterocytes were loaded with numerous mitochondria and lipid droplets. In the large intestine, the epithelium was pseudostratified. All the enterocytes did not contain lipid droplets. Enterocytes were arraged tight in the apical parts of the epithelium. They were arranged loosely and formed the obvious intercellular spaces in the middle and basal parts of mucosal epithelium. Numerous mucous cells were scattered between the enterocytes of the entire mucosal epithelium. Some of them contained mucus granules of low electron density in the cytoplasm, others had the high electron density. The mucus was secreted by mucous cells and covered the surface of intestinal mucosa. No microfold cells (M cells) were observed throughout intestinal epithelium. In the whole intestine mucosal epithelium, channels with a diameter of 1-7μm were found between the enterocytes. Sometimes, a lymphocyte resided in the channel. IELs (4-9μm in diameter) located in the whole intestinal epithelium, some of them had protruded pseudopodium between the enterocytes, showing the migration tendency, and others were found in the lumen of the intestine. In the nuclear layer and basal layer of the small and large intestinal epithelium, there were two types of plasma cells, one had the dilated rough endoplasmic reticulum and the other the parallel. The amounts of IELs decreased gradually from May to September, up to December. It was therefore suggested that the intestine mucosal epithelium have the mucosal barrier function in the normal turtle. Enterocytes and their tight junction complex, the mucus of mucous cell were composed of the mechanical barrier. Immunologic barrier contained plasma cell, IEL and channel. The distribution of mucosal immune cell in the turtle intestine was affected by the season.
     Experiment II Distribution of CD3+T、CD22+B lymphocytes in the intestine mucosal immunologic barrier of Chinese soft-shelled turtle, Pelodiseus Sinensis. Using immunocytochemistry SABC, we studied the distribution feature of CD3+T lymphocytes、CD22+B lymphocytes in the intestine mucosal immunologic barrier of Pelodiscus sinensis. At the same time, the distribution regularity of the CD3+T、CD22+B lymphocytes have been statisticed and analyzed in the different segment of turtle intestine. The results showed that CD3+T lymphocytes predominanted in the lamina propria and fewer in the epithelium. By contrast, great numbers of CD22+B lymphocytes were present in the epithelium and small numbers in the lamina propria. In the epithelium, the density of CD3+T lymphocytes in the distal small intestine was much greater than in any region of the small intestine. They increased from proximal to distal small intestine, decreased from proximal to distal large intestine. In the lamina propria, the highest density of CD3+T lymphocytes occurred in the middle small intestine. They reduced from proximal to distal large intestine. In the epithelium and lamina propria, CD3+T lymphocytes showed significant difference among the most segment of small and large intestine. Throughout the intestine, the total quantity of CD3+T lymphocytes in the lamina propria were 3.11 times of these cells in the epithelium. The number of CD3+T lymphocytes in the small intestine were 2 times of these positive cells in the large intestine. With regard to CD22+B lymphocytes, in the epithelium, the highest numbers of these cells were found in the distal small intestine, and they decreased from proximal to distal large intestine. In the lamina propria, CD22+B lymphocytes decreased in turn from proximal to distal small intestine, reduced from proximal to distal large intestine. In the epithelium, the amount of CD22+B lymphocytes showed no obvious difference during the most segment of small and large intestine. In the lamina propria, there was no remarkable difference among the each segment of small and large intestine. The numbers of CD22+B lymphocytes in the small intestine were 1.75 times of in the large intestine, and the total numbers of these cells in the epithelium were 7.99 times of these positive cells in the lamina propria of the whole intestine. The distributional difference of T and B lymphocytes in the turtle intestinal immunologic barrier suggested that they may play the different biologic function in the immune response of the intestinal mucosa.
     ExperimentⅢThe immunocytochemistry reaction of S-100 protein in the intestine of Chinese soft-shelled turtle, Pelodiseus Sinensis. By using immunohistochemistry, this paper studied the distribution of S-100 protein positive cells in the Pelodiscus sinensis intestinal tract. S-100 protein positive cells were classified into two groups. S-100 protein positive cells in the first group had irregular shape and processes with different thickness, length. Most of these cells were located in the lamina propria and submucosa of small intestine. Fewer cells were found in the large intestine. Cells in the second group included bipolar and stellate S-100 protein positive cells. Bipolar S-100 protein positive cells had long and short processes. They were observed in the interspace between the submucosa and circular muscle layer, within the circular muscle layer, as well between the longitudinal and circular muscle layers of whole intesinte and submucosa of large intestine. Stellate S-100 protein positive cells were only found in the large intestine lamina propria, their irregular processes were connected each other forming a network. S-100 protein was regarded as specific antibody for dendritic cell, it also expressed in the interstitial cells of Cajal and glial cells. According to the morphology and distribution of S-100 protein positive cells in the intestine. Cells in the first group were regard as dendritic cells. Cells in the second group were either interstitial cells of Cajal or glial cells. Previous researches suggested that dendritic cells could paly the function of antigen presentation. Interstitial cells of Cajal were regarded as pacemaker and glial cells were maintained the intestinal mucosal epithelium integrity. Base on the findings, we presumed that the mucosal immunologic barrier was correlated with dendritic cells in the turtle small intestine. Interstitial cells of Cajal and glial cells could regulate intestinal movement and barrier function, respectively.
     Experiment IV The distributional difference and ultrastructure of interstitial cells of Cajal in the intestinal tract of Chinese soft-shelled turtle, Pelodiseus Sinensis. By using c-Kit immuocytochemistry and transmission electron microscopy, this paper investigated the distribution and ultrastructure of interstitial cells of Cajal (ICCs) in the intestinal tract of Pelodiscus sinensis. The c-Kit immuocytochemistry results showed that ICCs were bipolar and stellate cells. The processes of bipolar c-Kit+ICCs some were long, some were short or no obvious. Bipolar c-Kit+ICCs were present in the large intestine submucosa, in the interspace between the submucosa and circular muscle layer, the circular muscle layer, between circular and longitudinal muscle layer, serosa of small and large intestine. In the submucosa, bipolar c-Kit+ICCs were found arrounding the blood vessel. In the interspace between the submucosa and circular muscle layer, between circular and longitudinal muscle layer, bipolar c-Kit+ICCs showed as shape of line or cluster. Sometimes, these cells were surrounded the blood vessel. In the circular muscle layer, bipolar c-Kit+ICCs were appeared surrounding the blood vessel or parallel to the adjacent smooth muscle cell. Bipolar c-Kit+ICCs scattered in the serosa. Stellate c-Kit+ICCs had numerous long and short processes that formed a network in the villus. These cells were found only in the large intestine lamina propria, they were surrounded the blood vessel. Bipolar and stellate ICCs were identified in the turtle intestine by transmission electron microscope which contain many characteristics; viz., numerous mitochondria, caveolae, thin cytoplasmic extensions or processes, rough endoplasmic reticulum. Gap junctions were formed between ICCs and ICCs, ICCs and nerve, ICCs and smooth muscle cells. All the finding suggested that ICCs have unique cell networks and ultrastructure characterwhich were suitable with its functions.
     Experiment V The discovering of ellipsoid high endothelial capillary and lymphocytes migration cytologic base in the spleen of Chinese soft-shelled turtle, Pelodiseus Sinensis. By using microscopy and electron microscopy, the architecture feature of spleen white plup of the Chinese soft-shelled turtle, Pelodiseus Sinensis were examined in detail. The results showed that the ellipsoid capillary was different from capillary in the other kinds of animals, it belonged to high endothelial capillary. The endothelial cells of the ellipsoid capillary were cube or cylindroid. So, it was equaled to the mammalian high endothelial venule. There had blood-spleen barrier (BSB) in the turtle spleen. BSB could prevent the foreign antigen (carbon particles) enter the periellipsoidal lymphocyte sheath (PELS). At the same time, they could form special and temporary channel structure, allow lymphocyte movement and arrive at the PELS. The channel structure was composed of reticular cells and fibers, migrating cells (lymphocytes, macrophages, blood cells), supporting cells, ellipsoid associated cells (EACs), channels. All the components formed a microenvironment specific for lymphocytes migration. The processes of lymphocyte migration was showed following. First, channels were formed between the endothelial cells of ellipsoid high endothelial capillary. Lymphocytes were along the channel and passed the basement membrane of ellipsoid high endothelial capillary, moved in the ellipsoid. Then, by the supporting cells and their processes, lymphocytes along the channel, arrived outside of PELS. At last, lymphocytes were moved from external to the inner PELS by connecting with the EACs and their processes. This study was provided cytologic groundwork for further researching on the reptile lymphocyte homing.
     Experiment VI The ultrastructure and seasonal change of endocrine cell in the Pelodiscus sinensis's adenohypophysis. The ultrastructure of endocrine cells in the Pelodiscus sinensis's adenohypophysis were studied by the transmission electron microscope, during the hibernation and non-hibernation period. The results showed that it contained 5 types of endocrine cells in the adenohypophysis.They were growth hormone (GH) cells, prolactin (PRL) cells, thyrotropin (TSH) cells, adrenocorticotrophic hormone (ACTH) cells, gonadotrophin (GTH) cells. Their ultrastructural features appeared characteristically. GH cells were rounded or elliptic in shape, which about 10-12μm in diameter. Numerous round secretory granules were found in the cytoplasm. PRL cells were ovoid or irregular in shape, contained irregular nucleus. The cytoplasm had high electron density. Their diameter was about 7-9μm. TSH cells were ovoid or irregular polygon in shape, contained elliptic nucleus. The diameter was about 8-12μm. A few secretory granules which were occurred in cytoplasmic periphery. ACTH cells had irregular shape and elliptic nucleus. The diameter was reached 8-10μm. Small numbers of secretory granules were observed in the cytoplasm. GTH cells had rounded or elliptic shape, contained round or elliptic nucleus. The diameter was about 12-15μm. They contained two types of secretory granules, the large secretory granules and small ones. In the different seasons, the structural feature and secretory granules of endocrine cell in the turtle adenohypophysis were changed. The organelle of GH cells in the hibernation period was decreased than in the non-hibernation period. TSH cells had the higher numbers in the non-hibernation period. The several secretory granules of GTH cells were fused and became large in the hibernation period, their diameter were larger than in the non-hibernation period, the largest one was reached at 2μm. The ultrastructure of PRL cells and ACTH cells had no obvious differences during the different season.
引文
[1]高金生,杨书良.肠黏膜屏障损伤的原因与机制研究进展[J].世界华人消化杂,2009,17(15):1540-1544
    [2]吴文明,张方信.高原缺氧与肠黏膜屏障损伤[J].国际内科学杂志,2009,36(8):449-452
    [3]Hecht G. Innate mechanisms of epithelial host defense:spotlight on intestine[J]. Am J Physiol. 1999,277(3 Pt 1):C351-358
    [4]Mayer L. Mucosal immunity and gastrointestinal antigen processing [J]. J Pediatr Gastroenterol Nutr.2000,30 (1):S4-12
    [5]Lievin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity [J]. Gut.2000,47(5):646-652
    [6]Schenk M, Mueller C. The mucosal immune system at the gastrointestinal barrier [J]. Best Pract Res Clin Gastroenterol,2008,22(3):391-409
    [7]Ohland C L, Macnaughton W K. Probiotic bacteria and intestinal epithelial barrier function [J]. Am J Physiol Gastrointest Liver Physiol,2010 Mar 18. [Epub ahead of print]
    [8]Liboni KC, Li N, Scumpia PO, et al. Glutamine modulates LPS-induced IL-8 production through IkappaB/NF-kappaB in human fetal and adult intestinal epithelium [J].2005,135(2): 245-251
    [9]Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability [J]. Gut.2006, 55(10):1512-1520
    [10]Barrett K E. New ways of thinking about (and teaching about) intestinal epithelial function [J]. Adv Physiol Educ.2008,32(1):25-34
    [11]吴国豪.肠道屏障功能[J].肠外与肠内营养,2004,11(1):44-47
    [12]Zaph C, Troy A E, Taylor B C, et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis [J]. Nature.2007,446(7135):552-556
    [13]杨书良,李兰梅,陈育民.肠黏膜屏障的构成与功能研究进展[J].临床荟萃,2008,23(24):1809-1811
    [14]王华,高杰英.肠粘膜上皮细胞在粘膜免疫凋节中的作用[J].微生物学免疫学进展,2001,29(1):69-73
    [15]Oswald IP. Role of intestinal epithelial cells in the innate immune defence of the pig intestine [J]. Vet Res,2006,37(3):359-368
    [16]Mayer L. Epithelial cell antigen presentation [J]. Curr Opin Gastroenterol,2000,16(6): 531-535
    [17]Canny G, Swidsinski A, McCormick B A. Interactions of intestinal epithelial cells with bacteria and immune cells:methods to characterize microflora and functional consequences [J]. Methods Mol Biol,2006,341:17-35
    [18]McGuckin MA, Eri R, Simms L A, et al. Intestinal barrier dysfunction in inflammatory bowel diseases[J]. Inflamm Bowel Dis.2009,15(1):100-113
    [19]Vora P, Youdim A, Thomas L S, Fukata M, et al. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells [J]. J Immunol,2004,173(9):5398-5405
    [20]Muller C A, Autenrieth I B, Peschel A. Innate defenses of the intestinal epithelial barrier [J]. Cell Mol Life Sci.2005,62(12):1297-1307
    [21]Mayer L. Mucosal immunity [J]. Pediatrics.2003,111(6 Pt 3):1595-1600
    [22]Corazziari E S. Intestinal mucus barrier in normal and inflamed colon [J]. J Pediatr Gastroenterol Nutr.2009,48 (Suppl 2):S54-55
    [23]Sheth S U, Lu Q, Twelker K, et al. Intestinal mucus layer preservation in female rats attenuates gut injury after trauma-hemorrhagic shock [J]. J Trauma.2010,68(2):279-288
    [24]Mantis N J, Cheung M C, Chintalacharuvu K R, et al. Selective adherence of IgA to murine Peyer's patch M cells: evidence for a novel IgA receptor [J]. J Immunol.2002,169(4):1844-1851
    [25]Boll G, Rudolphi A, Spiess S, et al. Regional specialization of intraepithelial T cells in the murine small and large intestine [J]. Scand J Immunol,1995,41 (2):103-113
    [26]罗治彬,吴嘉惠.肠道黏膜屏障结构的研究进展[J].胃肠病学和肝病学杂志,1997,6(4):372-375
    [27]Farhadi A, Banan A, Fields J, et al. Intestinal barrier: an interface between health and disease [J]. J Gastroenterol Hepatol,2003,18(5):479-497
    [28]李世荣,杨欣艳.肠黏膜屏障与疾病[J].中华医学杂志,2005,85(39):2796-2797
    [29]Marchiando A M, Graham W V, Turner J R. Epithelial barriers in homeostasis and disease [J]. Annu Rev Pathol,2010,5:119-144
    [30]张中伟,秦环龙.肠上皮细胞紧密连接的结构及功能研究进展[J].肠外与肠内营养,2005,12(6):367-370
    [31]Hossain Z, Hirata T. Molecular mechanism of intestinal permeability:interaction at tight junctions [J]. Mol Biosyst,2008,4(12):1181-1185
    [32]Groschwitz K R, Hogan S P. Intestinal barrier function: molecular regulation and disease pathogenesis [J]. J Allergy Clin Immunol.2009,124(1):3-20
    [33]Nusrat A, Parkos C A, Verkade P, et al. Tight junctions are membrane microdomins [J]. J Cell Sci,2000,113 (10):1771-1781
    [34]Otte J M, Rosenberg I M, Podolsky D K. Intestinal myofibroblasts in innate immune responses of the intestine [J].Gastroenterology,2003,124 (7):1866-1878
    [35]Suzuki K, Meek B, Doi Y, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut [J].Proc Natl Acad Sci USA,2004,101 (7):1981-1986
    [36]Smythies L E, Sellers M, Clements R H, et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity [J]. J Clin Invest, 2005,115(1):66-75
    [37]Niess J H, Brand S, Gu X, et al. CX3CRl-mediated dendritic cell access to the intestinal lumen and bacterial clearance [J].Science,2005,307 (5707):254-258
    [38]MacDonald T T, Vossenkamper A, Di Sabatino A. Antigen presenting cells and T cell interactions in the gastrointestinal tract [J]. Mol Nutr Food Res,2009,53(8):947-951
    [39]徐凯进,李兰娟.肠道正常菌群与肠道免疫[J].国外医学·流行病学传染病学分册,2005,32(3):181-183
    [40]Magalhaes J G, Tattoli I, Girardin S E. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens [J]. Semin Immunol,2007,19(2):106-115
    [41]Sato A, Iwasaki A. Peyer's patch dendritic cells as regulators of mucosal adaptive immunity [J]. Cell Mol Life Sci,2005,62(12):1333-1338
    [42]刘晓昌,梅俏,许建明.肠黏膜屏障功能检测研究进展[J].山东医药,2009,49(16):106-107
    [43]Walker W A. Development of the intestinal mucosal barrier [J]. J Pediatr Gastroenterol Nutr. 2002,34(1):S33-39
    [44]Gebert A, Rothkotter H J, Pabst R. M cells in Peyer's patches of the intestine [J]. Int Rev Cytol.1996,167:91-159
    [45]Owen RL. Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches-a personal and historical perspective [J]. Semin Immunol.1999,11(3): 157-163
    [46]Liang E, Kabcenell A K, Coleman J R, et al. Permeability measurement of macromolecules and assessment of mucosal antigen sampling using in vitro converted M cells [J]. J Pharmacol Toxicol Methods,2001,46(2):93-101
    [47]Gebert A. Identification of M-cells in the rabbit tonsil by vimentin immunohistochemistry and in vivo protein transport [J]. Histochem Cell Biol,1995,104(3):211-220
    [48]Kabok Z, Ermak T H, Pappo J. Microdissected domes from gut-associated lymphoid tissues: a model of M cell transepithelial transport in vitro [J]. Adv Exp Med Biol,1995,371A:235-238
    [49]Jang M H, Kweon M N, Iwatani K, et al. Intestinal villous M cells:an antigen entry site in the mucosal epithelium [J]. Proc Natl Acad Sci USA 2004,101(16):6110-6115
    [50]Kerneis S, Bogdanova A, Kraehenbuhl J P, et al. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria [J]. Science 1997,277(5328):949-952
    [51]Hase K, Kawano K, Nochi T, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response [J]. Nature,2009,462(7270):226-230
    [52]Amerongen H M, Weltzin R, Farnet C M, et al. Transepithelial transport of HIV-1 by intestinal M cells:a mechanism for transmission of AIDS [J]. J Acquir Immune Defic Syndr,1991, 4(8):760-765
    [53]Corr S C, Gahan C C, Hill C. M-cells:origin, morphology and role in mucosal immunity and microbial pathogenesis [J]. FEMS Immunol Med Microbiol,2008,52(1):2-12
    [54]Kucharzik T, Lugering N, Rautenberg K, et al. Role of M cells in intestinal barrier function [J]. Ann N Y Acad Sci.2000,915:171-183
    [55]Miller H, Zhang J, Kuolee R, et al. Intestinal M cells:the fallible sentinels? [J]. World J Gastroenterol,2007,13(10):1477-1486
    [56]Cheroutre H. IELs:enforcing law and order in the court of the intestinal epithelium [J]. Immunol Rev,2005,206:114-131
    [57]Komoto S, Miura S, Koseki S, et al. Effect of specific antigen stimulation on intraepithelial lymphocyte migration to small intestinal mucosa [J]. Clin Exp Immunol,2005,140(2):249-257
    [58]Perez-Cano FJ, Castellote C, Gonzalez-Castro A M, et al. Developmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats [J]. Pediatr Res, 2005,58(5):885-889
    [59]Zhang X, Okutsu M, Kanemi O, et al. Repeated stress suppresses interferon-gamma production by murine intestinal intraepithelial lymphocytes [J]. Tohoku J Exp Med,2005,206(3): 203-212
    [60]Brown I, Mino-Kenudson M, Deshpande V, et al. Intraepithelial lymphocytosis in architecturally preserved proximal small intestinal mucosa: an increasing diagnostic problem with a wide differential diagnosis [J]. Arch Pathol Lab Med,2006,130(7):1020-1025
    [61]Bharhani M S, Grewal J S, Peppier R, et al. Comprehensive phenotypic analysis of the gut intra-epithelial lymphocyte compartment:perturbations induced by acute reovirus 1/L infection of the gastrointestinal tract [J]. Int Immunol,2007,19(4):567-579
    [62]Denning T L, Granger S W, Mucida D, et al. Mouse TCRalphabeta+CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses [J]. J Immunol,2007,178(7):4230-4239
    [63]Sun X, Yang H, Nose K, et al. Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition [J]. Am J Physiol Gastrointest Liver Physiol,2008,294(1):G139-147
    [64]Montufar-Solis D, Garza T, Klein J R. T-cell activation in the intestinal mucosa[J]. Immunol Rev,2007,215:189-201
    [65]Moretto M M, Weiss L M, Combe C L, et al. IFN-gamma-producing dendritic cells are important for priming of gut intraepithelial lymphocyte response against intracellular parasitic infection [J]. J Immunol,2007,179(4):2485-2492
    [66]Yang H, Sun X, Haxhija E Q, et al. Intestinal epithelial cell-derived interleukin-7:A mechanism for the alteration of intraepithelial lymphocytes in a mouse model of total parenteral nutrition [J]. Am J Physiol Gastrointest Liver Physiol,2007,292(1):G84-91
    [67]Olivares-Villagomez D, Mendez-Fernandez Y V, Parekh V V, et al. Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease [J]. Proc Natl Acad Sci USA.2008,105(46):17931-17936
    [68]成令忠,钟翠平,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003,805-810
    [69]Kapp J A, Kapp L M, McKenna K C, et al. Immunology. gammadelta T-cell clones from intestinal intraepithelial lymphocytes inhibit development of CTL responses ex vivo [J].2004, 111(2):155-164
    [70]Locke N R, Stankovic S, Funda D P, et al. TCR gamma delta intraepithelial lymphocytes are required for self-tolerance [J]. J Immunol,2006,176(11):6553-6559
    [71]Villarrubia N, Leon F, Bootello A. T gamma-delta lymphocytes and their role in hypersensitivity processes in the digestive and respiratory mucosa [J]. Allergol Immunopathol (Madr),2002,30(5):273-282
    [72]Van Damme N, De Keyser F, Demetter P, et al. The proportion of Thl cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome [J]. Clin Exp Immunol,2001,125(3): 383-390
    [73]Resendiz-Albor A A, Reina-Garfias H, Rojas-Hernandez S, et al. Regionalization of plgR expression in the mucosa of mouse small intestine [J]. Immunol Lett,2010,128(1):59-67
    [74]Brandtzaeg P. Mucosal immunity:induction, dissemination, and effector functions [J]. Scand J Immunol,2009,70(6):505-515
    [75]Bomsel M, Heyman M, Hocini H, et al. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dlgA or IgM [J]. Immunity,1998,9(2): 277-287
    [76]Burns J W, Siadat-Pajouh M, Krishnaney A A, et al. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity [J]. Science,1996, 272(5258):104-107
    [77]Mazanec M B, Kaetzel C S, Lamm M E, et al. Intracellular neutralization of virus by immunoglobulin A antibodies [J]. Proc Natl Acad Sci U S A.1992,89(15):6901-6905
    [78]Lamm ME, Phillips-Quagliata JM. Origin and homing of intestinal IgA antibody-secreting cells [J]. J Exp Med,2002,195 (2):F5-8
    [79]Golby S J, Spencer J. Where do IgA plasmma cell in the gut come from? [J]. Gut,2002,51 (2):150-151
    [80]Brandtzaeg P, Johansen F E. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties [J]. Immunol Rev,2005,206:32-63
    [81]MacDonald T T. The mucosal immune system [J]. Parasite Immunol,2003,25(5):235-246
    [82]Karczewski J, Groot J. Molecular physiology and pathophysiology of tight junction. Ⅲ: Tight junction regulation by intracellular messengers:difference in response within and between epithelia [J]. Physiology gastrointest Liver Physiology,2000,279(5):660-665
    [83]Brandtzaeg P, Pabst R. Let's go mucosal:communication on slippery ground [J]. Trends Immunol,2004,25(11):570-577
    [84]Favre L, Spertini F, Corthesy B. Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses [J]. J Immunol,2005,175(5):2793-2800
    [85]Baumgart D C, Dignass A U. Intestinal barrier function [J]. Curr Opin Clin Nutr Metab Care, 2002,5(6):685-694
    [86]Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases [J]. Immunol Lett,2004,93 (2-3):97-108
    [87]邓丽静,康焰.肠黏膜屏障与保护[J].中国呼吸与危重监护杂志,2004,3(5):327-328
    [88]Batt R M, Rutgers H C, Sancak A A. Enteric bacteria: friend or foe? [J]. J Small Anim Pract, 1996,37(6):261-267
    [89]Lu L, Walker W A. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium [J]. Am J Clin Nutr,2001,73(6):1124S-1130S
    [90]张会丰,李根山,田秀巧,等.初乳对早期新生儿肠道菌群的作用[J].世界华人消化杂志,1998,6(8):735-737
    [91]Kasravi F B, Wang L, Wang X D, et al. Bacterial translocation in acute liver injury induced by D-galactosamine [J]. Hepatology,1996,23(1):97-103
    [92]Sansonetti P J. Molecular and cellular mechanisms of invasion of the intestinal barrier by enteric pathogens. The paradigm of shigella [J]. Folia Microbiol (Praha),1998,43(3):239-246
    [93]Kennedy R J, Kirk S J, Gardiner K R. Mucosal barrier function and the commensal flora [J]. Gut,2002,50(3):441-442
    [94]周伟.双歧杆菌与婴幼儿健康[J].实用儿科临床杂志,2002,17(3):260-262
    [95]Kanno T, Matsuki T, Oka M, et al. Gastric acid reduction leads to an alteration in lower intestinal microflora [J]. Biochem Biophys Res Commun,2009,381(4):666-670
    [96]Gnewuch C, Liebisch G, Langmann T, et al. Serum bile acid profiling reflects enterohepatic detoxification state and intestinal barrier function in inflammatory bowel disease [J]. World J Gastroenterol,2009,15(25):3134-3141
    [97]Ogata Y, Nishi M, Nakayama H, et al. Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice in rats [J]. J Surg Res,2003, 115(1):18-23
    [98]Raimondi F, Santoro P, Barone M V, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation [J]. Am J Physiol Gastrointest Liver Physiol,2008,294(4):G906-913
    [99]Van Herreweghe J M, Vanderkelen L, Callewaert L, et al. Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme [J]. Cell Mol Life Sci,2010,67(7):1177-1188
    [100]刘冬妍,刘沛.肠道免疫防御[J].国外医学·流行病学传染病学分册,2005,32(3):184-187
    [101]牛海静,王邦茂.肠粘膜屏障与功能[J].解剖与临床,2007,12(2):831-833
    [102]Brandtzaeg P, Farstad I N, Johansen F E, et al. The B-cell system of human mucosae and exocrine glands [J], Immunol Rev,1999,171:45-87
    [103]范骏.肠道黏膜免疫[J].国际免疫学杂志,2006,29(2):111-115
    [104]Eurell J A, Frappier B L. Dellmann's textbook of veterinary histology [M].6Ed, Blackwell Publishing, Ames, Iowa,2006,194-201
    [105]陈秋生.兽医比较组织学[M].北京:中国农业科技出版社,2002,185-218
    [106]高英茂.组织学与胚胎学[M].北京:人民卫生出版社,2001,205-215
    [107]沈霞芬.家畜组织学与胚胎学[M].第四版.北京:中国农业出版社,2009,152-158
    [108]高英茂.Textbook of histology and embryology [M].北京:科学技术出版社,2006,259-262
    [109]Samuelson D A. Textbook of veterinary histology [M]. Saunders, London 2007,335-342
    [110]Owen R L, Jone A L. Epithelial cell specialization within human Peyer's patches:an ultrastructural study of intestinal lymphoid follicles [J]. Gastroenterol,1974,66(2):189-203
    [111]张力群.两种龟消化道形态结构及乌龟细胞的抗辐射研究[D].暨南大学,2009
    [112]华田苗,刘必融,陈士超.乌梢蛇十二指肠粘膜上皮的组织学研究[J].安徽师范大学 学报(自然科学版),2000,23(1):54-56
    [113]陈秋生,苏泽红,陈晓武.鳖消化道组织结构观察[J].中国兽医学报,2004,24(1):49-52
    [114]郭砺,包孟彩,栾雅文.三种沙蜥消化道的组织学研究[J].内蒙古大学学报(自然科学版).1998,29(2):291-293
    [115]陈发扬,蔡亚非,陈壁辉.无蹼壁虎消化道组织学及组化观察初报[J].安徽师大学报(自然科学版),1998,21(1):50-53
    [116]张盛周,吴孝兵,陈壁辉.扬子鳄肠上皮细胞的超微结构[J].动物学报,1999,45(4):466-468
    [117]张盛周,吴孝兵,陈壁辉.扬子鳄消化系统组织学和细胞学研究概况[J].四川动物,2003,22(2):76-79
    [118]徐金龙,李贵生.广东乌龟消化道组织学观察[J].生态科学,2009,28(2):189-192
    [119]Starck J M, Beese K. Structural flexibility of the intestine of Burmese python in response to feeding [J]. J Exp Biol,2001,204 (2):325-235
    [120]Starck J M, Beese K. Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting [J]. J Exp Biol,2002,205 (10):1377-1388
    [121]Starck J M, Cruz-Neto A P, Abe A S. Physiological and morphological responses to feeding in broad-nosed caiman (Caiman latirostris) [J]. J Exp Biol.2007,210(12):2033-2045
    [122]Lignot J H, Helmstetter C, Secor S M. Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus) [J]. Comp Biochem Physiol A Mol Integr Physiol,2005,141(3):280-291
    [123]姚崇勇.沙蟒皮肤、消化及雌雄尿殖器官的组织学研究[J].西北师范大学学报(自然科学版),1991,27(4):51-56
    [124]苏泽红,陈晓武,陈秋生.中华鳖肠道黏膜上皮细胞的超微结构[J].中国兽医学报,2006,20(1):82-85
    [125]Kotze S H, Soley J T. Scanning electron microscopic study of intestinal mucosa of the Nile crocodile (Crocodylus niloticus) [J]. J Morphol,1995,225(2),169-178
    [126]洪美玲,傅丽容,王力军,等.蜡皮蜥消化系统组织学初步研究[J].四川动物,2005,24(3):333-336
    [127]Kotze S H, Van der Merwe N J, Van Aswegen G, et al. A light microscopical study of the intestinal tract of the Nile crocodile (Crocodylus niloticus, Laurenti 1768) [J]. Onderstepoort J Vet Res,1992,59(4):249-252
    [128]傅丽容,洪美玲,史海涛,等.中华花龟消化系统的组织学初步研究[J].四川动物,2007,26(2):270-274
    [129]赵万鹏,李振峰,鞠长增,等.中华鳖消化道的组织学研究[J].信阳师范学院学报(自然科学版),1994,7(1):68-70
    [130]肖明松,陈庆榆,鲍方印,等.中华鳖消化系统组织学的研究[J].中国农学通报,2006,22(1):384-386
    [131]陈秋生,苏泽红,陈晓武.中华鳖肠道黏膜免疫相关细胞的形态学研究[J].水生生物学报,2005,29(6):654-660
    [132]Loo S K, Swam M. Epithelial mucins of the gastro-intestinal tract of Egernia cunninghami [J]. Acta Anat (Basel),1978,102(4):341-347
    [133]李洁,尤旭.丽斑麻蜥(Eremias argus)肖化系统组织结构研究[J].哈尔滨师范大学自然科学学报,1999,15(6):84-87
    [1]张西强,潘振宇.Cajal间质细胞与胃肠运动的起搏[J].山东医学高等专科学校学报,2009,31(2):139-140
    [2]Iino S, Horiguchi K, Horiguchi S, et al. c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature [J]. Histochem Cell Biol,2009,131(6):691-702
    [3]Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal [J]. Arch Histol Cytol,1999,62(4):295-316
    [4]Piotrowska A P, Rolle U, Chertin B, et al. Alterations in smooth muscle contractile and cytoskeleton proteins and interstitial cells of Cajal in megacystis microcolon intestinal hypoperistalsis syndrome [J]. J Pediatr Surg,2003,38(5):749-755
    [5]Fintl C, Pearson G T, Ricketts S W, et al. The development and distribution of the interstitial cells of Cajal in the intestine of the equine fetus and neonate [J]. J Anat,2004,205(1):35-44
    [6]Shafik A, El Sibai O, Ahmed I. The identification of specialized pacemaking cells in the anal sphincters [J]. Int J Colorectal Dis,2006,21(5):453-457
    [7]王伟,王景杰,黄裕新.胃肠道Cajal间质细胞的研究现状[J].中国中西医结合消化 杂志,2007,15(6):415-417
    [8]Streutker C J, Huizinga J D, Driman D K, et al. Interstitial cells of Cajal in health and disease. Part I:Normal ICC structure and function with associated motility disorders [J]. Histopathology, 2007,50(2):176-189
    [9]Ward S M, Sanders K M, Hirst G D. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles [J]. Neurogastroenterol Motil,2004,16 (1):112-117
    [10]Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling induces trans differentiation of interstitial cells of cajal to a smooth muscle phenotype [J]. Gastroenterology, 1999,117(1):140-148
    [11]Toman J, Turina M, Ray M, et al. Slow transit colon constipation is not related to the number of interstitial cells of Cajal [J]. Int J Colorectal Dis,2006,21(6):527-532
    [12]Prause A S, Stoffel M H, Portier C J, et al. Expression and function of 5-HT7 receptors in smooth muscle preparations from equine duodenum, ileum, and pelvic flexure [J]. Res Vet Sci, 2009,87(2):292-299
    [13]Ueda T, Yamada T, Hokuto D, et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells [J]. Biochem Biophys Res Commun,2010,391(1):38-42
    [14]Beckett E A, Ro S, Bayguinov Y, et al. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract [J]. Dev Dyn,2007,236(1):60-72
    [15]Antonescu C R. Targeted therapy of cancer: new roles for pathologists in identifying GISTs and other sarcomas [J]. Mod Pathol,2008,21(2):S31-36
    [16]Kurahashi M, Niwa Y, Cheng J, et al. Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut [J]. Neurogastroenterol Motil,2008,20(5):521-531
    [17]Rich A. A new high-content model system for studies of gastrointestinal transit: the zebrafish [J]. Neurogastroenterol Motil,2009,21(3):225-228
    [18]Nemeth L, Puri P. Three-dimensional morphology of c-Kit-positive cellular network and nitrergic innervation in the human gut [J]. Arch Pathol Lab Med,2001,125(7):899-904
    [19]谭婧,金孝岠Cajal司质细胞的研究进展[J].医学综述,2009,15(9):1294-1297
    [20]Wallace A S, Burns A J. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract [J]. Cell Tissue Res,2005,319(3): 367-382
    [21]Hanani M, Farrugia G, Komuro T. Intercellular coupling of interstitial cells of cajal in the digestive tract [J]. Int Rev Cytol,2005,242:249-282
    [22]Choi S, Choi J J, Jun J Y, et al. Induction of pacemaker currents by DA-9701, a prokinetic agent, in interstitial cells of Cajal from murine small intestine [J]. Mol Cells,2009,27(3):307-312
    [23]Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract [J]. J Physiol.2006,576(3):653-658
    [24]Faussone-Pellegrini M S, Thuneberg L. Guide to the identification of interstitial cells of Cajal [J]. Microsc Res Tech,1999,47(4):248-266
    [25]Nemeth L, Maddur S, Puri P. Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel [J]. J Pediatr Surg, 2000,35(6):823-828
    [26]Negreanu L M, Assor P, Mateescu B, et al. Interstitial cells of Cajal in the gut--gastroenterologist's point of view [J]. World J Gastroenterol.2008,14(41):6285-6288
    [27]Torihashi S, Fujimoto T, Trost C, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal:requirement of calcium influx and 1 ocalization of TRP4 in caveolae [J]. J Biol Chem,2002,277 (21):19191-19197
    [28]Ishii S, Tsuji S, Tsujii M, et al. Restoration of gut motility in Kit-deficient mice by bone marrow transplantation [J]. J Gastroenterol.2009,44(8):834-841
    [29]Huizinga J D, Faussone-Pellegrini M S. About the presence of interstitial cells of Cajal outside the musculature of the gastrointestinal tract [J]. J Cell Mol Med,2005,9(2):468-473
    [30]Min KW, Sook Seo I. Intestitial cells of Cajal in the human small intestine:immunochemical and ultrastructural study [J]. Ultrastruct Pathol,2003,27(2):67-78
    [31]Rumessen J J, Vanderwinden J M, Rasmussen H, et al. Ultrastructure of interstitial cells of Cajal in myenteric plexus of human colon [J]. Cell Tissue Res,2009,337(2):197-212
    [32]Cho W J, Daniel E. Proteins of interstitial cells of Cajal and intestinal smooth muscle, colocalized with caveolin-1 [J]. Am J Physiol Gastrointest Liver Physiol,2005,288(3):G571-585
    [33]Daniel E E, El-Yazbi A, Cho W J. Caveolae and calcium handling, a review and a hypothesis [J]. J Cell Mol Med,2006,10(2):529-544
    [34]Lee S E, Wi J S, Min Y I, et al. Distribution and three-dimensional appearance of the interstitial cells of Cajal in the rat stomach and duodenum [J]. Microsc Res Tech,2009,72(12): 951-956
    [35]Hudson N P, Pearson G T, Kitamura N, et al. An immunohistochemical study of interstitial cells of Cajal (ICC) in the equine gastrointestinal tract [J]. Res Vet Sci,1999,66(3):265-271
    [36]Marquez S G, Galotta J M, Portiansky E L, et al. Characterization of interstitial cells of Cajal in bowel of cattle (Bos taurus) [J]. Vet Res Commun,2006,30(3):221-229
    [37]Iino S, Horiguchi S, Horiguchi K, et al. Interstitial cells of Cajal in the gastrointestinal musculature of W mutant mice [J]. Arch Histol Cytol,2007,70(3):163-173
    [38]Junquera C, Martinez-Ciriano C, Castiella T, et al. Immunohistochemical and ultrastructural characteristics of interstitial cells of Cajal in the rabbit duodenum. Presence of a single cilium [J]. J Cell Mol Med,2007,11(4):776-787
    [39]Aranishi H, Kunisawa Y, Komuro T. Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon [J]. Cell Tissue Res,2009,335(2):323-329
    [40]Reynhout J K, Duke G E. Identification of interstitial cells of Cajal in the digestive tract of turkeys (Meleagris gallopavo) [J]. J Exp Zool,1999,283(4-5):426-440
    [41]Miyamoto-Kikuta S, Komuro T. Ultrastructural observations of the tunica muscularis in the small intestine of Xenopus laevis, with special reference to the interstitial cells of Cajal [J]. Cell Tissue Res,2007,328(2):271-279
    [42]Junquera C, Martinez-Ciriano C, Castiella T, et al. Intrinsic Innervation of a Reptilian Esophagus(Podarcis hlspanica) [J]. Neurochem Res,1998,23(4):493-504
    [43]Martinez-Ciriano C, Junquera C, Castiella T, et al. Intrinsic innervation in the intestine of the lizard Podarcis hispanica [J]. Histol Histopathol,2000,15(4):1093-1105
    [44]Junquera C, Martinez-Ciriano C, Castiella T, et al. Enteric plexus and interstitial cells of Cajal:interrelationship in the stomach of Podarcis hispanica (Reptilia). An ultrastructural study [J]. Histol Histopathol,2001,16(3):869-881
    [45]Rumessen J J, Vanderwinden J M. Interstitial cells in the musculature of the gastrointestinal tract: Cajal and beyond [J]. Int Rev Cytol,2003,229:115-208
    [46]De Ceulaer K M, Van Ginneken C J, Philips W A, et al. Interstitial cells of Cajal and their role in veterinary gastrointestinal pathologies [J]. Anat Histol Embryol,2007,36(4):300-310
    [47]Torihashi S, Horisawa M, Watanabe Y. c-Kit immunoreactive interstitial cells in the human gastrointestinal tract [J]. J Auton Nerv Syst.1999,75(1):38-50
    [48]R(?)mert P, Mikkelsen H B. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine [J]. Histochem Cell Biol,1998,109(3):195-202
    [49]Faussone-Pellegrini M S, Vannucchi M G, Alaggio R, et al. Morphology of the interstitial cells of Cajal of the human ileum from foetal to neonatal life [J]. J Cell Mol Med.2007,11(3): 482-494
    [50]Garcia-Lopez P, Garcia-Marin V, Martinez-Murillo R, et al. Updating old ideas and recent advances regarding the Interstitial Cells of Cajal [J]. Brain Res Rev,2009,61(2):154-169
    [51]Sanders K M, Koh S D, Ward S M. Interstitial cells of cajal as pacemakers in the gastrointestinal tract [J]. Annu Rev Physiol.2006,68:307-343
    [52]Nakayama S, Kajioka S, Goto K, et al. Calcium-associated mechanisms in gut pacemaker activity [J]. J Cell Mol Med,2007,11(5):958-968
    [53]de Lima MA, Cabrine-Santos M, Tavares M G, et al. Interstitial cells of Cajal in chagasic megaesophagus [J]. Ann Diagn Pathol.2008,12(4):271-274
    [54]Garrity M M, Gibbons S J, Smyrk T C, et al. Diagnostic challenges of motility disorders: optimal detection of CD 117+interstitial cells of Cajal [J]. Histopathology,2009,54(3):286-294
    [55]Huizinga J D, Lammers W J. Gut peristalsis is governed by a multitude of cooperating mechanisms [J]. Am J Physiol Gastrointest Liver Physiol,2009,296(1):G1-8
    [56]Bettolli M, De Carli C, Jolin-Dahel K, et al. Colonic dysmotility in postsurgical patients with Hirschsprung's disease. Potential significance of abnormalities in the interstitial cells of Cajal and the enteric nervous system [J]. J Pediatr Surg,2008,43(8):1433-1438
    [57]Lammers W J, Stephen B. Origin and propagation of individual slow waves along the intact feline small intestine [J]. Exp Physiol,2008,93(3):334-346
    [58]lino S, Horiguchi K, Nojyo Y. W(sh)/W(sh) c-Kit mutant mice possess interstitial cells of Cajal in the deep muscular plexus layer of the small intestine[J]. Neurosci Lett.2009,459(3): 123-126
    [59]Sanders K M, Ordog T, Koh S D, et al. A novel pacemaker mechanism drives gastrointestinal rhythmicity [J]. News Physiol Sci,2000,15:291-298
    [60]Midrio P, Vannucchi M G, Pieri L, et al. Delayed development of interstitial cells of Cajal in the ileum of a human case of gastroschisis [J]. J Cell Mol Med,2008,12(2):471-478
    [61]Ward SM, Sanders K M. Interstitial cells of Cajal:primary targets of enteric motor innervation [J]. Anat Rec,2001,262(1):125-135
    [62]Ward S M, Sanders K M. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract [J]. J Physiol,2006,576(3):675-682
    [63]Fintl C, Hudson N P, Pearson G T, et al. A study of the interstitial cells of Cajal in aged donkeys with and without intestinal disease[J]. J Comp Pathol,2010,142(2-3):242-247
    [64]Sanders K M, Ward S M. Kit mutants and gastrointestinal physiology [J]. J Physiol,2007, 578(1):33-42
    [65]Kinoshita K, Horiguchi K, Fujisawa M, et al. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis [J]. Histochem Cell Biol,2007,127(1):41-53
    [66]Ward S M, Burns A J, Torihashi S, et al. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine [J]. J Physiol,1994, 480(1):91-97
    [67]Huizinga J D, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity [J]. Nature,1995,373(6512):347-349
    [68]Sanders K M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology [J].1996,111(2):492-515
    [69]Dickens E J, Edwards F R, Hirst G D. Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach [J]. J Physiol,2001,531(3): 827-833
    [70]Nakayama S, Ohishi R, Sawamura K, et al. Microelectrode array evaluation of gut pacemaker activity in wild-type and W/W(v) mice [J]. Biosens Bioelectron,2009,25(1):61-67
    [71]Yin J, Hou X, Chen J D. Roles of interstitial cells of Cajal in intestinal transit and exogenous electrical pacing [J]. Dig Dis Sci,2006,51(10):1818-1823
    [72]Ward S M, McLaren G J, Sanders K M. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine [J]. J Physiol,2006,573(1): 147-159
    [73]Vannucchi M G. Receptors in interstitial cells of Cajal:identification and possible physilological roles [J]. Microsc Res Tech,1999,47(5):325-335
    [74]Takaki M. Gut pacemaker cells:the interstitial cells of Cajal (ICC) [J]. J Smooth Muscle Res, 2003,39(5):137-161
    [75]Belzer V, Nissan A, Freund H R, et al. Coupling among interstitial cells of Cajal in the human ileum [J]. Neurogastroenterol Motil,2004,16(1):75-80
    [76]Huizinga J D. Neural injury, repair, and adaptatio n in the GI tract. IV. Pathophysiology of GI motility related to interstitial cells of Cajal [J]. Am J Physiol,1998,275(3 Pt 1):G381-386
    [77]Rich A, Hanani M, Ermilov L G, et al. Physiological study of interstitial cells of Cajal identified by vital staining [J]. Neurogastroenterol Motil,2002,14(2):189-196
    [78]Poole D P, Van Nguyen T, Kawai M, et al. Protein kinases expressed by interstitial cells of Cajal [J]. Histochem Cell Biol,2004,121(1):21-30
    [79]Lee J C, Thuneberg L, Berezin I, et al. Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of Cajal [J]. Am J Physiol.1999,277(2 Pt 1):G409-423
    [80]Koh S D, Sanders K M, Ward S M. Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine [J]. J Physiol,1998,513 (1):203-213
    [81]Ordog T, Ward S M, Sanders K M. Interstitial cells of cajal generate electrical slow waves in the murine stomach [J]. J Physiol,1999,518 (1):257-269
    [82]Wang B, Kunze W A, Zhu Y, et al. In situ recording from gut pacemaker cells [J]. Pflugers Arch,2008,457(1):243-251
    [83]Sanders K M. A case for interstitial cells of Cajal as pacemakers and mediator of neurotransmission in the gastrointestinal tract [J]. Gastroenterology,1996,111(2):492-515
    [84]Zhu Y, Golden C M, Ye J, et al. ERG K+ currents regulate pacemaker activity in ICC [J]. Am J Physiol Gastrointest Liver Physiol,2003,285(6):G1249-1258
    [85]So KY, Kim S H, Sohn H M, et al. Carbachol regulates pacemaker activities in cultured interstitial cells of Cajal from the mouse small intestine [J]. Mol Cells,2009,27(5):525-531
    [86]Ordog T, Baldo M, Danko R, et al. Plasticity of electrical pacemaking by interstitial cells of Cajal and gastric dysrhythmias in W/W mutant mice [J]. Gastroenterology,2002,123(6): 2028-2040
    [87]Tong W D, Liu B H, Zhang L Y, et al. Analysis of the c-kit gene in patients with slow transit constipation. Gut,2006,55(8):1207-1208
    [88]Liu L W, Thuneberg L, Huizinga J D. Selective lesioning of interstitial cells of Cajal by methylene blue and light leads to loss of slow wave [J]. Am J Physiol,1994,266(3 Pt 1): G485-496
    [89]Sanders K M, Ordog T, Ward S M. Physiology and pathophysiology of the interstitial cells of Cajal:from bench to bedside. Ⅳ. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal [J]. Am J Physiol Gastrointest Liver Physiol,2002,282(5): G747-756
    [90]Pardi D S, Miller S M, Miller D L, et al. Paraneoplastic dysmotility:loss of interstitial cells of Cajal [J]. Am J Gastroenterol,2002,97(7):1828-1833
    [91]Yanagida H, Yanase H, Sanders K M, et al. Intestinal surgical resection disrupts electrical rhythmicity, neural responses, and interstitial cell networks[J]. Gastroenterology,2004,127(6): 1748-1759
    [92]Ordog T, Redelman D, Horowitz N N, et al. Immunomagnetic enrichment of interstitial cells of Cajal [J]. Am J Physiol Gastrointest Liver Physiol,2004,286(2):G351-360
    [93]Ward S M, Beckett E A, Wang X, et al. Interstitial cells of cajal mediate cholinergic neurotransmission from enteric motor neurons[J]. J Neurosci,2000,20(4):1393-1403
    [94]Faussone-Pellegrini M S. Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut[J]. J Cell Mol Med,2006,10(1):20-32
    [95]Burnstock G, Lavin S. Interstitial cells of Cajal and purinergic signaling [J]. Auton Neurosci, 2002,97(1):68-72
    [96]Hens J, Gajda M, Scheuermann D W, et al. The longitudinal smooth muscle layer of the pig small intestine is innervated by both myenteric and submucous neurons [J]. Histochem Cell Biol, 2002,117(6):481-492
    [97]Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit [J]. CellMol Life Sci,2004,61 (19/20):2535-2548
    [98]Rolle U, Brylla E, Tillig B, et al Demonstration of intrinsic innervation of the guinea pig upper urinary tract using whole-mount preparation [J]. Neurourol Urodyn,2008,27(4):341-347
    [99]Zhu Y, Huizinga J D. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel [J]. J Cell Mol Med,2008,12(5A):1718-1727
    [100]d'antonio C, Wang B, McKay C, et al. Substance P activates a non-selective cation channel in murine pacemaker ICC [J]. Neurogastroenterol Motil,2009,21(9):985-994
    [101]lino S, Ward S M, Sanders K M, et al. Interstitial cells of Cajal are functionally innervated by excitatory motor neurons in the murine intestine[J]. J Physiol,2004,556(2):521-530
    [102]Yamataka A, Fuji wara T, Kat o Y, et al. Lack of intestinal pacemaker (C-KIT-positive) cells in infanfile hypertrophic pyloric stenosis [J]. J Pediatr Surg,1996,31(1):96-99
    [103]Vanderwinden J M, Rumessen J J. Interstitial cells of Cajal in human gut and gastrointestinal disease [J]. Microsc Res Tech,1999,47(5):344-360
    [104]Ordog T, Redelman D, Horvath V J, et al. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract [J]. Cytometry A,2004,62(2):139-149
    [105]Langer JC, Berezin I, Daniel EE. Hypertrophic pyloric stenosis:ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal [J]. J Pediatr Surg,1995,30(11): 1535-1543
    [106]Piotrowska A P, Solari V, Puri P. Distribution of heme oxygenase-2 in nerves and interstitial cells of Cajal in the normal pylorus and in infantile hypertrophic pyloric stenosis [J]. Arch Pathol Lab Med,2003,127(9):1182-1186
    [107]Ibba Manneschi L, Pacini S, Corsani L, et al. Interstitital cells of Cajal in the human stomach:distribution and relationship with enteric innervation [J]. Histol Histopathol,2004,19(4): 1153-1164
    [108]Lin Z, Sarosiek I, Forster J, et al. Association of the status of interstitial cells of Cajal and electrogastrogram parameters, gastric emptying and symptoms in patients with gastroparesis [J]. Neurogastroenterol Motil,2010,22(1):56-61
    [109]Fintl C, Hudson N P, Mayhew I G, et al. Interstitial cells of Cajal (ICC) in equine colic:an immunohistochemical study of horses with obstructive disorders of the small and large intestines [J]. Equine Vet J,2004,36(6):474-479
    [110]Won K J, Suzuki T, Hori M, et al. Motility disorder in experimentally obstructed intestine: relationship between muscularis inflammation and disruption of the ICC network [J]. Neurogastroenterol Motil,2006,18(1):53-61
    [111]Becheanu G, Manuc M, Dumbrava M, et al. The evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders [J]. Rom J Morphol Embryol,2008,49(3):351-355
    [112]Zimmer V, Feiden W, Becker G, et al. Absence of the interstitial cell of Cajal network in mitochondrial neurogastrointestinal encephalomyopathy[J]. Neurogastroenterol Motil,2009,21(6): 627-631
    [113]Wang H, Zhang Y, Liu W, et al. Interstitial cells of Cajal reduce in number in recto-sigmoid Hirschsprung's disease and total colonic aganglionosis [J]. Neurosci Lett,2009,451(3):208-211
    [114]Shafik A, Shafik A A, El-Sibai O, et al. Electric activity of the colon in subjects with constipation due to total colonic inertia: an electrophysiologic study [J]. Arch Surg,2003,138(9): 1007-1011
    [115]Lyford G L, He C L, Soffer E, et al. Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation [J]. Gut,2002,51(4):496-501
    [116]Tong W D, Liu B H, Zhang L Y, et al. Decreased interstitial cells of Cajal in the sigmoid colon of patients with slow transit constipation [J]. Int J Colorectal Dis,2004,19(5):467-473
    [117]Tong W D, Liu B H, Zhang L Y, et al. Expression of c-kit messenger ribonucleic acid and c-kit protein in sigmoid colon of patients with slow transit constipation [J]. Int J Colorectal Dis, 2005,20(4):363-367
    [118]Schiller L R. New and emerging treatment options for chronic constipation [J]. Rev Gastroenterol Disord,2004,4 (Suppl 2):S43-51
    [119]Miettinen M, Lasota J. Gastrointestinal stromal tumors:review on morphology, molecular pathology, prognosis, and differential diagnosis [J]. Arch Pathol Lab Med,2006,130(10): 1466-1478
    [120]D'Adamo D. Advances in the treatment of gastrointestinal stromal tumor [J]. Adv Ther, 2009,26(9):826-837
    [121]Fernandez A, Aparicio J. Imatinib and gastrointestinal stromal tumor (GIST):a selective targeted therapy [J]. Rev Esp Enferm Dig.2004,96(10):723-729
    [122]Rasmussen H, Hansen A, Smedts F, et al. CD34-positive interstitial cells of the human detrusor[J].APMIS,2007,115(11):1260-1266
    [123]Yamaguchi U, Nakayama R, Honda K, et al. Distinct gene expression-defined classes of gastrointestinal stromal tumor [J]. J Clin Oncol,2008,26(25):4100-4108
    [124]Nakajima T, Miwa S, Ando T, et al. Interstitial cells of Cajal do not harbor c-kit or PDGFRA gene mutations in patients with sporadic gastrointestinal stromal tumors [J]. J Gastroenterol,2009,44(5):426-431
    [125]Kothari M S, Kosmoliaptsis V, Meyrick-Thomas J. Small bowel Gastrointestinal Stromal Tumors can physiologically alter gut motility before causing mechanical obstruction [J]. Int Semin Surg Oncol,2005,2:24
    [126]Kontogianni-Katsarou K, Lariou C, Tsompanaki E, et al. KIT-negative gastrointestinal stromal tumors with a long term follow-up:a new subgroup does exist [J]. World J Gastroenterol. 2007,13(7):1098-1102
    [1]成令忠.组织学与胚胎学[M].第4版,北京:人民卫生出版社,1995,126-127
    [2]Kawashima H. Roles of sulfated glycans in lymphocyte homing [J]. Biol Pharm Bull,2006, 29(12):2343-2349
    [3]Willard-Mack C L. Normal structure, function, and histology of lymph nodes [J]. Toxicol Pathol,2006,34(5):409-424
    [4]Kawashima H, Hirakawa J, Tobisawa Y, et al. Conditional gene targeting in mouse high endothelial venules [J]. J Immunol,2009,182(9):5461-5468
    [5]Ohtani O, Ohtani Y. Structure and function of rat lymph nodes [J]. Arch Histol Cytol,2008, 71(2):69-76
    [6]Welsch U, Schwertfirm S, Skirnisson K, et al. Histological, histochemical, and fine structural observations on the lymph node of the common seal (Phoca vitulina) and the grey seal (Halichoerus grypus) [J]. Anat Rec,1997,247(2):225-242
    [7]Kanda H, Newton R, Klein R, et al. Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs [J]. Nat Immunol,2008, 9(4):415-423
    [8]Sasaki K, Pabst R, Rothkotter H J. The unique ultrastructure of high-endothelial venules in inguinal lymph nodes of the pig [J]. Cell Tissue Res,1994,276(1):85-90
    [9]成令忠,钟翠平,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003,648-650
    [10]Girard J P, Springer T A. High endothelial venules (HEVs):specialized endothelium for lymphocyte migration [J]. Immunol Today,1995,16(9):449-457
    [11]Roozendaal R, Mebius R E, Kraal G. The conduit system of the lymph node [J]. Int Immunol, 2008,20(12):1483-1487
    [12]潘秀芳,孙品伟.高内皮微静脉的结构与功能[J].解剖学报,2000,31(3):981-983
    [13]Tangemann K, Bistrup A, Hemmerich S, et al. Sulfation of a high endothelial venule-expressed ligand for L-selectin. Effects on tethering and rolling of lymphocytes [J]. J Exp Med,1999,190(7):935-942
    [14]Indrasingh I, Chandi G, Vettivel S. Route of lymphocyte migration through the high endothelial venule (HEV) in human palatine tonsil [J]. Ann Anat,2002,184(1):77-84
    [15]Rosen SD, Arata-Kawai H. "Home sweet home" for lymphocytes [J]. Blood,2009,114(3): 499-500
    [16]Usui T, Murai T, Tanaka T, et al. Characterization of mac25/angiomodulin expression by high endothelial venule cells in lymphoid tissues and its identification as an inducible marker for activated endothelial cells [J]. Int Immunol,2002,14(11):1273-1282
    [17]Kobayashi M, Fukuda M, Nakayama J. Role of sulfated O-glycans expressed by high endothelial venule-like vessels in pathogenesis of chronic inflammatory gastrointestinal diseases [J]. Biol Pharm Bull,2009,32(5):774-779
    [18]储昭新,秦环龙.炎症性肠病肠道淋巴细胞归巢研究进展[J].世界华人消化杂志,2009,17(7):687-693
    [19]王春英,贺业春.喉癌组织中类高内皮微静脉的形态学观察[J].黑龙江医学,2007,31(8):365-367
    [20]腾河,刘丽,郑金华,等.皮肤肿瘤组织中类高内皮微静脉的形态学研究[J].解剖与临床,2006,11(1):12-14
    [21]Takaeda M, Yokoyama H, Segawa-Takaeda C, et al. High endothelial venule-like vessels in the interstitial lesions of human glomerulonephritis [J]. Am J Nephrol,2002,22(1):48-57
    [22]Shapiro L, Fannon A M, Kwong P D, et al. Structural basis of cell-cell adhesion by cadherins [J]. Nature,1995,374(6520):327-337
    [23]Nagira M, Imai T, Hieshima K, et al. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p 13 [J]. J Biol Chem,1997,272(31):19518-19524
    [24]Kim C H, Pelus L M, Appelbaum E, et al. CCR7 ligands, SLC/6Ckine/Exodus2/TCA4 and CKbeta-11/MIP-3beta/ELC, are chemoattractants for CD56(+)CD16(-) NK cells and late stage lymphoid progenitors [J]. Cell Immunol,1999,193(2):226-235
    [25]Pfau S, Leitenberg D, Rinder H, et al. Lymphocyte adhesion-dependent calcium signaling in human endothelial cells[J]. J Cell Biol,1995,128(5):969-978
    [26]Johnston B, Kim C H, Soler D, et al. Differential chemokine responses and homing patterns of murine TCR alpha beta NKT cell subsets [J]. J Immunol,2003,171(6):2960-2969
    [27]Carman C V, Springer T A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them [J]. J Cell Biol.2004,167(2):377-88
    [28]Kluger M S. Vascular endothelial cell adhesion and signaling during leukocyte recruitment [J]. Adv Dermatol,2004,20:163-201
    [29]Yang L, Froio R M, Sciuto T E, et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow [J]. Blood,2005, 106(2):584-592
    [30]Azzali G, Arcari M L, Caldara G F. The "mode" of lymphocyte extravasation through HEV of Peyer's patches and its role in normal homing and inflammation [J]. Microvasc Res,2008,75(2): 227-237
    [31]Feng D, Nagy J A, Pyne K, et al. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP [J]. J Exp Med,1998,187(6):903-915
    [32]Carman C V, Jun C D, Salas A, et al. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1 [J]. J Immunol,2003,171(11):6135-6144
    [33]Nieminen M, Henttinen T, Merinen M, et al. Vimentin function in lymphocyte adhesion and transcellular migration [J]. Nat Cell Biol,2006,8(2):156-162
    [34]Sperandio M. Selectins and glycosyltransferases in leukocyte rolling in vivo [J]. FEBS J, 2006,273(19):4377-4389
    [35]Schramm R, Schafers H J, Harder Y, et al. The cervical lymph node preparation:a novel approach to study lymphocyte homing by intravital microscopy [J]. Inflamm Res,2006,55(4): 160-167
    [36]Kawashima H. Functions of glycans revealed by gene inactivation of L-selectin ligand sulfotransferases in mice [J]. Methods Enzymol,2006,416:279-290
    [37]Hiraoka N, Petryniak B, Kawashima H, et al. Significant decrease in alphal,3-linked fucose in association with increase in 6-sulfated N-acetylglucosamine in peripheral lymph node addressin of FucT-Ⅶ-deficient mice exhibiting diminished lymphocyte homing [J]. Glycobiology,2007, 17(3):277-293
    [38]Galkina E, Florey O, Zarbock A, et al. T lymphocyte rolling and recruitment into peripheral lymph nodes is regulated by a saturable density of L-selectin (CD62L) [J]. Eur J Immunol,2007, 37(5):1243-1253
    [39]Suzawa K, Kobayashi M, Sakai Y, et al. Preferential induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis [J]. Am J Gastroenterol,2007,102(7):1499-1509
    [40]Kashiwazaki M, Tanaka T, Kanda H, et al. A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions [J]. Int Immunol,2003, 15(10):1219-1227
    [41]Faveeuw C, Di Mauro M E, Price A A, et al. Roles of alpha(4) integrins/VCAM-1 and LFA-1/ICAM-1 in the binding and transendothelial migration of T lymphocytes and T lymphoblasts across high endothelial venules [J]. Int Immunol,2000,12(3):241-251
    [42]Xu B, Wagner N, Pham L N, et al. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, alpha4betal integrin/VCAM-1, and LFA-1 adhesion pathways [J]. J Exp Med,2003,197(10):1255-1267
    [43]Schramm R, Menger M D, Harder Y, et al. Statins inhibit lymphocyte homing to peripheral lymph nodes [J]. Immunology,2007,120(3):315-324
    [44]Kim C H. The greater chemotactic network for lymphocyte trafficking: chemokines and beyond [J]. Curr Opin Hematol,2005,12(4):298-304
    [45]Charo I F, Ransohoff R M. The many roles of chemokines and chemokine receptors in inflammation [J]. N Engl J Med,2006,354(6):610-621
    [46]Bono M R, Elgueta R, Sauma D, et al. The essential role of chemokines in the selective regulation of lymphocyte homing [J]. Cytokine Growth Factor Rev,2007,18(1-2):33-43
    [47]Schaerli P, Moser B. Chemokines: control of primary and memory T-cell traffic [J]. Immunol Res,2005,31(1):57-74
    [48]Stein JV, Nombela-Arrieta C. Chemokine control of lymphocyte trafficking: a general overview [J]. Immunology,2005,116(1):1-12
    [49]Bromley S K, Mempel T R, Luster A D. Orchestrating the orchestrators:chemokines in control of T cell traffic [J]. Nat Immunol,2008,9(9):970-980
    [50]Yang B G, Tanaka T, Jang M H, et al. Binding of lymphoid chemokines to collagen Ⅳ that accumulates in the basal lamina of high endothelial venules:its implications in lymphocyte trafficking [J]. J Immunol,2007,179(7):4376-4382
    [51]Grabner R, Lotzer K, Dopping S, et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/-mice [J]. J Exp Med,2009, 206(1):233-248
    [52]Salmi M, Jalkanen S. Lymphocyte homing to the gut: attraction, adhesion, and commitment [J]. Immunol Rev,2005,206:100-113
    [53]Sackstein R. The lymphocyte homing receptors:gatekeepers of the multistep paradigm [J]. Curr Opin Hematol,2005,12(6):444-450
    [1]石长青,安铁洙,谭建华.哺乳动物脑垂体研究进展[J].塔里木农垦大学报,2003,15(3):50-55
    [2]Chapman S C, Sawitzke A L, Campbell D S, et al. A three-dimensional atlas of pituitary gland development in the zebrafish [J]. J Comp Neurol,2005,487(4):428-440
    [3]Cowan D F, Haubold E M, Tajima Y. Histological, immunohistochemical and pathological features of the pituitary gland of odontocete cetaceans from the Western gulf of Mexico [J]. J Comp Pathol,2008,139(2-3):67-80
    [4]Naik D R, Shirasawa N, Nogami H, et al. Immunohistochemistry of the pituitary pars distalis of the musk shrew, Suncus murinus[J]. Gen Comp Endocrinol,1991,84(1):27-35
    [5]Kawauchi H, Suzuki K, Yamazaki T, et al. Identification of growth hormone in the sea lamprey, an extant representative of a group of the most ancient vertebrates [J]. Endocrinology, 2002,143(12):4916-4921
    [6]de Lima A R, Nyengaard J R, Jorge A A, et al. Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers [J]. Growth Horm IGF Res, 2007,17(6):480-491
    [7]沈霞芬.家畜组织学与胚胎学[M].第四版.北京:中国农业出版社,2009:137-141
    [8]成令忠,钟翠萍,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003:534-539
    [9]Chien J T, Chowdhury I, Lin Y S, et al. Molecular cloning and sequence analysis of a cDNA encoding pituitary thyroid stimulating hormone beta-subunit of the Chinese soft-shell turtle Pelodiscus sinensis and regulation of its gene expression[J]. Gen Comp Endocrinol,2006,146(2): 74-82
    [10]MacKenzie D S, Jones R A, Miller T C. Thyrotropin in teleost fish [J]. Gen Comp Endocrinol,2009,161(1):83-89
    [11]祝彼得,勾敏慧,周坤福.组织学与胚胎学[M].上海:上海科学技术出版社.2006:122-124
    [12]Anand I S, Gurden J, Wander G S, et al. Cardiovascular and hormonal effects of calcitonin gene-related peptide in congestive heart failure [J]. J Am Coll Cardiol,1991,17(1):208-217
    [13]Pandolfi M, Pozzi A G, Canepa M, et al. Presence of beta-follicle-stimulating hormone and beta-Iuteinizing hormone transcripts in the brain of Cichlasoma dimerus(Perciformes: Cichlidae): effect of brain-derived gonadotropins on pituitary hormone release [J]. Neuroendocrinology,2009, 89(1):27-37
    [14]Kawauchi H, Sower S A. The dawn and evolution of hormones in the adenohypophysis [J]. Gen Comp Endocrinol,2006,148(1):3-14
    [15]Sower S A, Moriyama S, Kasahara M, et al. Identification of sea lamprey GTHbeta-like cDNA and its evolutionary implications[J]. Gen Comp Endocrinol,2006,148(1):22-32
    [16]Bastings E, Beckers A, Reznik M, et al. Immunocytochemical evidence for production of luteinizing hormone and follicle-stimulating hormone in separate cells in the bovine [J]. Biol Reprod,1991,45(5):788-796
    [17]Desantis S, Labate M, Corriero A. Immunohistochemical localization of FSH and LH in the pituitary of male ruin lizards(Podarcis sicula campestris De Betta) [J]. Eur J Histochem,1998, 42(1):77-84
    [18]Proudman J A, Vandesande F, Berghman L R. Immunohistochemical evidence that follicle-stimulating hormone and luteinizing hormone reside in separate cells in the chicken pituitary [J]. Biol Reprod,1999,60(6):1324-1328
    [19]Desantis S, Labate M, Corriero A, et al. Immunohistochemical evidence of seasonal changes of gonadotropes in male ruin lizard(Podarcis sicula campestris De Betta) [J]. Eur J Histochem, 2000,44(4):385-395
    [20]Chien J T, Shen S T, Lin Y S, et al Molecular cloning of the cDNA encoding follicle-stimulating hormone beta subunit of the Chinese soft-shell turtle Pelodiscus sinensis, and its gene expression[J]. Gen Comp Endocrinol,2005,141(2):190-200
    [21]Pandolfi M, Lo Nostro F L, Shimizu A, et al. Identification of immunoreactive FSH and LH cells in the cichlid fish Cichlasoma dimerus during the ontogeny and sexual differentiation [J]. Anat Embryol (Berl),2006,211(5):355-365
    [22]Diaz-Espineira M M, Mol J A, van den Ingh T S, et al. Functional and morphological changes in the adenohypophysis of dogs with induced primary hypothyroidism:loss of TSH hypersecretion, hypersomatotropism, hypoprolactinemia, and pituitary enlargement with transdifferentiation [J]. Domest Anim Endocrinol,2008,35(1):98-111
    [23]郝建明,刘平,张平,等.黄体生成素和卵泡刺激素在大鼠垂体前叶的细胞共定位研究[J],解剖学报.1997,28(1):53-58
    [24]Molter-Gerard C, Fontaine J, Guerin S, et al. Differential regulation of the gonadotropin storage pattern by gonadotropin-releasing hormone pulse frequency in the ewe [J]. Biol Reprod, 1999,60(5):1224-1230
    [25]Eagle R C, Tortonese D J. Characterization and distribution of gonadotrophs in the pars distalis and pars tuberalis of the equine pituitary gland during the estrous cycle and seasonal anestrus[J]. Biol Reprod,2000,63(3):826-832
    [26]Tortonese D J, Gregory S J, Eagle R C, et al. The equine hypophysis:a gland for all seasons [J]. Reprod Fertil Dev,2001,13(7-8):591-597
    [27]Okada Y, Fujii Y, Moore JP Jr, et al. Androgen receptors in gonadotrophs in pituitary cultures from adult male monkeys and rats[J]. Endocrinology,2003,144(1):267-273
    [28]Kumar T R, Fairchild-Huntress V, Low M J. Gonadotrope-specific expression of the human follicle-stimulating hormone beta-subunit gene in pituitaries of transgenic mice [J]. Mol Endocrinol,1992,6(1):81-90
    [29]Messaoud-Toumi L H, Taragnat C, Durand P. Heterogeneity in the storage of gonadotropins in the ovine fetus and evidence for luteinizing hormone-follicle-stimulating hormone cells in the fetal pituitary [J]. Biol Reprod,1993,48(6):1239-1245
    [30]Pinelli C, Fiorentino M, D'Aniello B, et al. Immunohistochemical demonstration of FSH and LH in the pituitary of the developing frog, Rana esculenta [J]. Gen Comp Endocrinol,1996, 104(2):189-196
    [31]Thomas SG, Clarke IJ. The positive feedback action of estrogen mobilizes LH-containing, but not FSH-containing secretory granules in ovine gonadotropes[J]. Endocrinology,1997,138(3): 1347-1350
    [32]Hammouche S, Gernigon T, Exbrayat J M. Immunocytochemical localization and ultrastructural study of gonadotroph cells in the female desert lizard Uromastyx acanthinura [J]. Tissue and Cell,2007,39 (1):13-25
    [33]Console GM, Gomez Dumm CL, Goya RG. Immunohistochemical and radioimmunological study of pituitary gonadotrophs during aging in male rats [J]. Mech Ageing Dev,1994,73(2): 87-95
    [34]Cheung C C, Lustig R H. Pituitary development and physiology [J]. Pituitary,2007,10(4): 335-350
    [35]陈秋生.兽医比较组织学(中国博士专著)[M].北京:中国农业科技出版社,2002:138-139
    [36]赵显玲,郝利铭,高元奇.法国鹌鹑脑垂体神经叶的超微结构研究[J].东北师大学报(自然科学版),2000,32(4):59-62
    [37]Mohanty B, Das S, Naik D R. Immunocytochemistry of the pars tuberalis of the pituitary gland in some Indian wild birds: a comparative study [J]. Gen Comp Endocrinol,1997,108(1): 109-118
    [38]Mikami S, Yamada S. Immunohistochemistry of the hypothalamic neuropeptides and anterior pituitary cells in the Japanese quail [J]. J Exp Zool,1984,232(3):405-417
    [39]Mohanty KC, Naik DR. Immunohistochemistry and tinctorial affinity of adenohypophysial cells of the rat snake Ptyas mucosus (Colubridae) [J]. Gen Comp Endocrinol,1997,105(3): 302-313
    [40]Ferrandino I, Grimaldi M C. Immunohistochemical study of adenohypophysial cells during embryonic development in the reptile Chalcides chalcides (Squamata, Scincidae) [J]. J Mol Histol, 2004,35(1):55-61
    [41]刘文生,李勇.鸟龟脑垂体显微及其腺垂体超微结构的研究[J].水生生物学报,2005,29(6):661-666
    [42]Naik D R, Sar M, Stumpf W E. Immunohistochemical identification of cells in the pars distalis of the pituitary of the lizard Anolis carolinensis [J]. Histochemistry,1980,69(1):19-26
    [43]Pearson A K, Wurst G Z, Cadle J E. Ontogeny and immunocytochemical differentiation of the pituitary gland in a sea turtle, Caretta caretta [J]. Anat Embryol (Berl),1983,167(1):13-37
    [44]Garcia Ayala A, Villaplana M, Garcia Hernandez MP, Chaves Pozo E, Agulleiro B. FSH-, LH-, and TSH-expressing cells during development of Sparus aurata L. (Teleostei). An immunocytochemical study [J]. Gen Comp Endocrinol,2003,134(1):72-79
    [45]余必先,谢碧文,陈晓骞,张耀.长薄鳅脑垂体的组织学和组织化学研究[J].安徽农学通报,2008,14(3):24-26
    [46]刘小红,何翔,耿相昌,等.贝氏高原鳅脑垂体显微结构观察[J].四川动物,2009,28(6):810-814
    [47]Nozaki M, Ominato K, Shimotani T, et al.. Identity and distribution of immunoreactive adenohypophysial cells in the pituitary during the life cycle of sea lampreys, Petromyzon marinus [J]. Gen Comp Endocrinol,2008,155(2):403-412
    [48]Amemiya Y, Sogabe Y, Nozaki M, et al. Somatolactin in the white sturgeon and African lungfish and its evolutionary significance [J]. Gen Comp Endocrinol,1999,114(2):181-190
    [49]Segura-Noguera M M, Laiz-Carrion R, del Rio M P, et al. An immunocytochemical study of the pituitary gland of the white seabream (Diplodus sargus) [J]. Histochem J,2000,32(12): 733-742
    [50]Villaplana M, Garcia Ayala A, Garcia Hernandez M P, et al. Immunocytochemical and ultrastructural characterization of somatolactin cells from the gilthead sea bream (Sparus aurata L., Teleostei):an ontogenic study (from newly hatched to adults) [J]. Anat Embryol (Berl),2001, 203(6):449-460
    [51]Fukamachi S, Sugimoto M, Mitani H, et al. Somatolactin selectively regulates proliferation and morphogenesis of neural-crest derived pigment cells in medaka [J]. Proc Natl Acad Sci U S A, 2004,101(29):10661-10666
    [52]Einarsdottir I E, Silva N, Power D M, et al. Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut [J]. Anat Embryol (Berl), 2006,211(1):47-60
    [53]魏震,周定刚,任永林.鱼类生长催乳素的研究现状[J].饲料工业,2008,29(12):54-56
    [54]Kakizawa S, Ishimatsu A, Takeda T, et al. Possible involvement of somatolactin in the regulation of plasma bicarbonate for the compensation of acidosis in rainbow trout [J]. J Exp Biol, 1997,200(21):2675-2683
    [55]Saga T, Yamaki K, Doi Y, Yoshizuka M. Chronological study of the appearance of adenohypophysial cells in the ayu (Plecoglossus altivelis) [J]. Anat Embryol (Berl),1999,200(5): 469-475
    [56]Zhu Y, Thomas P. Effects of somatolactin on melanosome aggregation in the melanophores of red drum (Sciaenops ocellatus) scales [J]. Gen Comp Endocrinol,1997,105(1):127-133
    [57]Company R, Astola A, Pendon C, et al. Somatotropic regulation of fish growth and adiposity: growth hormone (GH) and somatolactin (SL) relationship[J]. Comp Biochem Physiol C Toxicol Pharmacol,2001,130(4):435-445
    [58]Matsumoto M, Watanabe Y G. Differentiating ability of the pars intermedia in hypothalectomized frog tadpoles [J]. Gen Comp Endocrinol,2000,119(1):37-42
    [59]Kar S, Naik D R. Cytodifferentiation and immunocharacteristics of adenohypophysial cells in the toad, Bufo melanostictus [J]. Anat Embryol (Berl),1986,175(1):137-146
    [60]Kawamura K, Kikuyama S. Induction from posterior hypothalamus is essential for the development of the pituitary proopiomelacortin (POMC) cells of the toad (Bufo japonicus) [J]. Cell Tissue Res,1995,279(2):233-239
    [61]Schulte B A, Seal U S, Plotka E D, et al. Seasonal changes in prolactin and growth hormone cells in the hypophyses of white-tailed deer(Odocoileus virginianus borealis) studied by light microscopic immunocytochemistry and radioimmunoassay [J]. Am J Anat,1980,159(4):369-377
    [62]Schulte B A, Seal U S, Plotka E D, et al. Characterization of seasonal changes in prolactin and growth hormone cells in the hypophyses of white-tailed deer(Odocoileus borealis) by ultrastructural and immunocytochemical techniques [J]. Am J Anat,1981,160(3):277-284
    [63]Yip D Y, Lofts B. Adenohypophysial cell-types in the pituitary gland of the soft-shelled turtle, Trionyx sinensis. I. Seasonal cycles [J]. Cell Tissue Res,1976,170(4):523-537
    [64]符路娣,方展强.生殖期间鳜脑垂体的超微结构观察[J].华南师范大学学报(自然科学版),2008,4:114-122
    [65]郑文彪,陈旻.冬季革胡子鳃中腺垂体细胞超微结构的研究[J].动物学研究,1994,15(4):31-35
    [66]王晓清,莫艳秀,文祝友,等.长吻鮑脑垂体的组织学观察[J].中国水产科学,2005,12(4):390-396
    [67]方展强,何艾文.尼罗非鲫腺垂体中外侧部的超微结构[J].中国水产科学,2002,9(3):207-213
    [68]McCormick S D. Endocrine control of osmoregulation in teleost fish [J]. Am zool,2001,41: 781-794
    [69]Wada T, Aritaki M, Tanaka M. Effects of low-salinity on the growth and development of spotted halibut Verasper variegatus in the larva-juvenile transformation period with reference to pituitary prolactin and gill chloride cells responses [J]. J Exp Mar Biol Ecol,2004,308(1): 113-126
    [70]Filippa V, Mohamed F. Morphological and morphometric changes of pituitary lactotrophs of viscacha (Lagostomus maximus maximus) in relation to reproductive cycle, age, and sex [J]. Anat Rec (Hoboken),2010,293(1):150-161
    [71]Hodson D J, Townsend J, Gregory S J, et al. Role of prolactin in the gonadotroph responsiveness to gonadotrophin-releasing hormone during the equine annual reproductive cycle [J]. J Neuroendocrinol,2010, Mar 2 [Epub ahead of print]
    [72]Fitzgerald B P, Affleck K J, Barrows S P, et al. Changes in LH pulse frequency and amplitude in intact mares during the transition into the breeding season [J]. J Reprod Fertil,1987, 79(2):485-493
    [73]Worthy K, Colquhoun K, Escreet R, et al. Plasma prolactin concentrations in non-pregnant mares at different times of the year and in relation to events in the cycle [J]. J Reprod Fertil Suppl, 1987,35:269-276
    [74]Sharp D C. Transition into the breeding season:clues to the mechanisms of seasonality [J]. Equine Vet J.1988,20(3):159-161
    [75]Licht P, Denver RJ, Pavgi S. Temperature dependence of in vitro pituitary, testis, and thyroid secretion in a turtle, Pseudemys scripta[J]. Gen Comp Endocrinol,1989,76(2):274-285
    [76]庄乾兴.繁殖期与非繁殖期鸟鳢、鲫鱼腺垂体内分泌细胞的研究[D].南昌大学,2007
    [77]谢碧文,岳兴建,张耀光,等.瓦氏黄颡鱼脑垂体组织学和组织化学研究[J].西南师范大学学报(自然科学版),2004,29(1):114-118
    [78]Mikami S, Chiba S, Hojo H, et al. Immunocytochemical studies on the pituitary pars distalis of the Japanese long-fingered bat, Miniopterus schreibersii fuliginosus [J]. Cell Tissue Res,1988, 251(2):291-299
    [79]Filippa V, Mohamed F. ACTH cells of pituitary pars distalis of viscacha (Lagostomus maximus maximus):immunohistochemical study in relation to season, sex, and growth[J]. Gen Comp Endocrinol,2006,146(3):217-225
    [80]Pramoda S, Saidapur S K. Seasonal changes in the cytomorphology of hypophyseal ACTH cells in relation to the reproduction cycle of the female of the frog Rana tigerina (Daud.) [J]. Funct Dev Morphol,1991,1(1):47-50
    [81]谢碧文.南方鲇脑垂体结构与发育的研究[D].西南师范大学,2002
    [82]Mousa S A, Mousa M A. Involvement of corticotropin-releasing factor and adrenocorticotropic hormone in the ovarian maturation, seawater acclimation, and induced spawning of Liza ramada[J]. Gen Comp Endocrinol,2006,146(2):167-179
    [83]Gregory SJ, Brooks J, McNeilly A S, et al. Gonadotroph-lactotroph associations and expression of prolactin receptors in the equine pituitary gland throughout the seasonal reproductive cycle [J]. J Reprod Fertil,2000,119(2):223-231
    [84]舒琥,刘晓春,张勇,等.赤点石斑鱼脑垂体超微结构的初步研究[J].中山大学学报(白然科学版),2008,47(4):68-71
    [1]Zhou X, Guo Q, Dai H. Identification of differentially expressed immune-relevant genes in Chinese soft-shelled turtle(Trionyx sinensis) infected with Aeromonas hydrophila [J]. Vet Immunol Immunopathol,2008,125 (1-2):82-91
    [2]Schenk M, Mueller C. The mucosal immune system at the gastrointestinal barrier [J]. Best Pract Res Clin Gastroenterol,2008,22(3):391-409
    [3]Ohland C L, Macnaughton W K. Probiotic bacteria and intestinal epithelial barrier function [J]. Am J Physiol Gastrointest Liver Physiol,2010, Mar 18 [Epub ahead of print]
    [4]Deitch E A. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? [J]. Surgery,2002,131 (3):241-244
    [5]Bezuidenhout A J, Van Aswegen G. A light microscopic and immunocytochemical study of the gastrointestinal tract of the ostrich (Struthio camelus L.) [J]. Onderstepoort J Vet Res,1990,57(1): 37-48
    [6]Chikilian M, De Speroni N B. Comparative study of the digestive system of three species of tinamou. I. Crypturellus tataupa, Nothoprocta cinerascens, and Nothura maculosa (Aves: tinamidae) [J]. J Morphol,1996,228(1):77-88
    [7]郝海邦,张鹏,郭延蜀,等.雕鸮消化系统形态学的初步研究[J].四川动物,2006,25(4):845-847
    [8]Karcher D M, Applegate T. Survey of enterocyte morphology and tight junction formation in the small intestine of avian embryos [J]. Poult Sci,2008,87(2):339-350
    [9]Solas M T, Zapata A. Gut-associated lymphoid tissue (GALT) in reptiles:intraepithelial cells [J]. Dev Comp Immunol,1980,4(1):87-97
    [10]赵万鹏.中华鳖消化道的组织学研究[J].信阳师范学院学报(自然科学版),1994,7(1):68-71
    [11]王文,杜开和.中华鳖消化系统的组织学研究[J].南京师范大学学报(自然科学版),1996,19(2):52-56
    [12]华苗田.鸟梢蛇十二指肠黏膜上皮的组织学研究[J].安徽师范大学学报(自然科学版),2000,23(1):54-56
    [13]苏泽红,陈秋生.鳖消化道组织结构观察[J].中国兽医学报,2004,24(1):49-51
    [14]肖明松,陈庆榆,鲍方印,等.中华鳖消化系统组织学的研究[J].水产渔业科学,2006,22(1):384-386
    [15]苏泽红,陈晓武,陈秋生.中华鳖肠道黏膜上皮细胞的超微结构[J].中国兽医学报.2006,26(1):82-85
    [16]张力群.两种龟消化道形态结构及乌龟细胞的抗辐射研究[D].暨南大学,2009
    [17]Chin K N, Wong W C. Some ultrastructural observations on the intestinal mucosa of the toad (Bufo melanostictus) [J]. J Anat,1977,123(Pt 2):331-339
    [18]李仲杰,安书成.山溪鲵消化系统组织学的初步研究[J].浙江大学学报(理学版)2001,28(6):692-697
    [19]Bizjak Mali L, Bulog B. Histology and ultrastructure of the gut epithelium of the neotenic cave salamander, Proteus anguinus (Amphibia, Caudata) [J]. J Morphol,2004,259 (1):82-89
    [20]赵艳艳,王丽文,梁传成,等.爪鲵消化系统的解剖学和组织学初步研究[J].四川动物,2005,24(3):290-293
    [21]徐敬明.斑腿树蛙消化道组织学的初步研究[J].安徽农业科学,2008,36(30):13187-13189
    [22]李家洲,李桂芬,贺华丽,等.版纳鱼螈消化道解剖学和组织学观察[J].动物学杂志,2009,44(6):96-102
    [23]Gargiulo A M, Ceccarelli P, Dall'Aglio C, et al. Histology and ultrastructure of the gut of the tilapia (Tilapia spp.),a hybrid teleost [J]. Anat Histol Embryol,1998,27(2):89-94
    [24]Domeneghini C, Arrighi S, Radaelli G, et al. Morphological and histochemical peculiarities of the gut in the white sturgeon, Acipenser transmontanus [J]. Eur J Histochem,1999,43(2): 135-145
    [25]Morrison C M and Wright Jr JR. A study of the histology of the digestive tract of the Nile tilapia [J]. J Fish Biol,1999,54(3):597-606
    [26]Park J Y and Kim I S. Histology and mucin histochemistry of the gastrointestinal tract of the mud loach in relation to respiration [J]. J Fish Biol,2001,58(3):861-872
    [27]Suicmez M, Ulus E. A study of the anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae Steindachner,1897 [J]. Folia Biol (Krakow),2005,53 (1-2):95-100
    [28]Carrasson M, Grau A, Dopazo LR, et al. A histological, histochemical and ultrastructural study of the digestive tract of Dentex dentex(Pisces, Sparidae) [J]. Histol Histopathol,2006, 21(6):579-593
    [29]Chatchavalvanich K, Marcos R, Poonpirom J, et al. Histology of the digestive tract of the freshwater stingray Himantura signifer Compagno and Roberts,1982 (Elasmobranchii, Dasyatidae) [J]. Anat Embryol (Berl),2006,211(5):507-518
    [30]王健鑫,石戈,李鹏,等.条石鲷消化道的形态学和组织学[J].水产学报,2006,30(5):618-626
    [31]Diaz A O, Garcia A M, Figueroa D E, et al. The mucosa of the digestive tract in Micropogonias furnieri:a light and electron microscope approach [J]. Anat Histol Embryol,2008, 37(4):251-256
    [32]Cao X J, Wang W M. Histology and mucin histochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco [J]. Anat Histol Embryol,2009,38(4):254-261
    [33]Gargiulo A M. Ultrastructural features of the gastrointestinal tract in some freshwater teleost fish [J]. Ital J Anat Embryol,2009,114(1):37-38
    [34]Griebel P J, Hein W R. Expending the role of Peyer's patches in B cell ontogency [J]. Immunol Today,1996,17(1):30-39
    [35]熊建美,李贞,李务荣,等.人小肠各段粘膜上皮及固有层淋巴细胞分布规律的研究[J].泰山医学院学报,2006,27(6):532-533
    [36]Bharhani MS, Grewal JS, Peppier R, et al. Comprehensive phenotypic analysis of the gut intraepithelial lymphocyte compartment:perturbations induced by acute reovirus 1/L infection of the gastrointestinal tract [J]. Int Immunol,2007,19(4):567-579
    [37]Eberl G, Littman D R. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+cells [J]. Science,2004,305(5681):248-251
    [38]Shibahara T, Miyazaki K, Sato D, et al. Alteration of intestinal epithelial function by intraepithelial lymphocyte homing [J]. J Gastroenterol,2005,40(9):878-886
    [39]Olivares-Villagomez D, Mendez-Fernandez Y V, Parekh V V, et al. Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease [J]. Proc Natl Acad Sci U S A,2008,105(46):17931-17936
    [40]Walker M M, Talley N J, Prabhakar M, et al. Duodenal mastocytosis, eosinophilia and intraepithelial Iymphocytosis as possible disease markers in the irritable bowel syndrome and functional dyspepsia [J]. Aliment Pharmacol Ther,2009,29(7):765-773
    [41]German A J, Hall E J, Day M J. Analysis of leucocyte subsets in the canine intestine [J]. J Comp Pathol,1999,120(2):129-145
    [42]Waly N, Gruffydd-Jones T J, Stokes C R, et al. The distribution of leucocyte subsets in the small intestine of healthy cats [J]. J Comp Pathol.2001,124(2-3):172-182
    [43]Mahadeva S, Wyatt J I, Howdle P D. Is a raised intraepithelial lymphocyte count with normal duodenal villous architecture clinically relevant [J]? J Clin Pathol,2002,55(6):424-428
    [44]邓峰.人胎儿小肠上皮内淋巴细胞分布及其计数[J].江西医药,2003,3(5):320-322
    [45]朱清仙,邓峰,江鹏飞,等.人胎大肠和小肠上皮内淋巴细胞的比较分析[J].中国体视学与图像分析,2004,9(2):84-87
    [46]Stevens R, Howard K E, Nordone S, et al. Oral immunization with recombinant listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus [J]. J Virol,2004,78(15):8210-8218
    [47]Veress B, Franzen L, Bodin L, et al. Duodenal intraepithelial lymphocyte-count revisited [J]. Scand J Gastroenterol,2004,39(2):138-144
    [48]Memeo L, Jhang J, Hibshoosh H, et al. Duodenal intraepithelial lymphocytosis with normal villous architecture:common occurrence in H. pylori gastritis [J]. Mod Pathol,2005,18(8): 1134-1144
    [49]Cabanne A, Vazquez H, Argonz J, et al. Clinical utility of counting intraepithelial lymphocytes in celiac disease intestinal mucosa [J]. Acta Gastroenterol Latinoam,2007,37(1): 20-28
    [50]Nasseri-Moghaddam S, Mofid A, Nouraie M, et al. The normal range of duodenal intraepithelial lymphocytes [J]. Arch Iran Med,2008,11(2):136-142
    [51]Jiang Y B, Yin Q Q, Yang Y R. Effect of soybean peptides on growth performance, intestinal structure and mucosal immunity of broilers [J]. J Anim Physiol Anim Nutr (Berl),2009,93(6): 754-760
    [52]Shivatcheva T M, Hadjioloff A I. Seasonal involution of gut-associated lymphoid tissue of the European ground squirrel [J]. Dev Comp Immunol,1987,11(4):791-799
    [53]Connolly J H, Canfield P J, McClure S J, et al. Histological and immunohistological investigation of lymphoid tissue in the platypus (Ornithorhynchus anatinus) [J]. J Anat,1999,195 (2):161-171
    [54]Kurtz C C, Carey H V. Seasonal changes in the intestinal immune system of hibernating ground squirrels [J]. Dev Comp Immunol,2007,31(4):415-428
    [55]Hussein M F, Badir N, el-Ridi R, et al. Effect of seasonal variation on lymphoid tissues of the lizards, Mabuya quinquetaeniata Licht. and Uromastyx aegyptia Forsk [J]. Dev Comp Immunol,1978,2(3):469-478
    [56]Hussein M F, Badir N, el-Ridi R, et al. Differential effect on seasonal variation on lymphoid tissue of the lizard, Chalcides ocellatus [J]. Dev Comp Immunol,1978,2(2):297-309
    [57]Hussein MF, Badir N, El Ridi R, et al. Lymphoid tissues of the snake, Spalerosophis diadema, in the different seasons [J]. Dev Comp Immunol,1979,3(1):77-88
    [58]Hussein M F, Badir N, El Ridi R, et al. Effect of seasonal variation on immune system of the lizard, Scincus scincus [J]. J Exp Zool,1979,209(1):91-96
    [59]Zapata A, Solas M T. Gut-associated lymphoid tissue (GALT) in reptilla: structure of mucosal accumulations [J]. Dev Comp Immunol,1979,3(3):477-487
    [60]Starck J M, Beese K. Structural flexibility of the intestine of Burmese python in response to feeding [J]. J Exp Biol,2001,204 (2):325-235
    [61]Starck J M, Beese K. Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting [J]. J Exp Biol,2002,205 (10):1377-1388
    [62]Lignot J H, Helmstetter C, Secor S M. Postprandial morphological response of the intestinal epithelium of the Burmese python(Python molurus) [J]. Comp Biochem Physiol A Mol Integr Physiol,2005,141(3):280-291
    [63]Starck J M, Cruz-Neto A P, Abe A S. Physiological and morphological responses to feeding in broad-nosed caiman(Caiman latirostris) [J]. J Exp Biol,2007,210 (Pt 12):2033-2045
    [64]Cramp R L, Franklin C E. Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs [J]. Comp Biochem Physiol A Mol Integr Physiol,2005,142(4):451-460
    [65]Cramp R L, Franklin C E, Meyer E A. The impact of prolonged fasting during aestivation on the structure of the small intestine in the green-striped burrowing frog, Cyclorana alboguttata [J]. Acta Zool,2005,86(1):13-24
    [66]Cowden R B, Dyer R F, Gebhardt B M, et al. Amphibian plasma cells [J]. J Immunol,1968, 100(6):1293-1295
    [67]Campbell F R. Ultrastructure of the bone marrow of the frog [J]. Am J Anat,1970,129 (3): 329-355
    [68]Borysenko M. Ultrastructural analysis of normal and immunized spleen of the snapping turtle, Chelydra serpentina [J]. J Morphol,1976,149(2):243-263
    [69]Macdonald T T. The mucosal immune system [J]. Parasite Immunol,2003,25(5):235-246
    [70]张永振,徐建国.黏膜免疫系统与黏膜免疫应答的诱导[J].细胞生物学杂志,2001,23(1):11-16
    [71]Bailey M, Haverson K, Inman C, et al.The influence of environment on development of the mucosal immune system [J].Vet Immunol Immunopathol,2005,108(1-2):189-198
    [72]Brandtzaeg P. Mucosal immunity:induction, dissemination, and effector functions [J]. Scand J Immunol,2009,70(6):505-515
    [73]Schippers A, Leuker C, Pabst O, et al. Mucosal addressin cell-adhesion molecule-1 controls plasma-cell migration and function in the small intestine of mice [J]. Gastroenterology,2009, 137(3):924-933
    [74]Yuvaraj S, Dijkstra G, Burgerhof J G, et al. Evidence for local expansion of IgA plasma cell precursors in human ileum [J]. J Immunol,2009,183(8):4871-4878
    [75]吴国豪.肠道屏障功能[J].肠外与肠内营养,2004,11(1):44-47
    [76]刘晓昌,梅俏,许建明.肠黏膜屏障功能检测研究进展[J].山东医药,2009,49(16):106-107
    [77]于洪贤.两栖爬行动物学[M].哈尔滨:东北林业大学出版社,2001,108-115
    [78]Hayat M, Cairns A, Dixon M F, et al. Quantitation of intraepithelial lymphocytes in human duodenum:what is normal [J]? J Clin Pathol,2002,55(5):393-394
    [79]Biagi F, Luinetti O, Campanella J, et al. Intraepithelial lymphocytes in the villous tip:do they indicate potential coeliac disease [J]? J Clin Pathol,2004,57(8):835-839
    [80]Hayday A, Theodoridis E, Ramsburg E, et al. Intraepithelial lymphocytes:exploring the third way in immunology [J]. Nat Immunol,2001,2 (11):997-1003
    [81]Staats H F, Nichols W G, Palker T J. Mucosal immunity to HIV-1:systemic and vaginal antibody responses after intranasal immunization with the HIV-1 C4/V3 peptide T1SP10 MN(A). [J]. J Immunol,1996,157(1):462-472
    [82]刘文庆,魏振华,谢遵江,等.经口抗原诱导的肠道粘膜免疫反应-小肠上皮内淋巴细胞作用的形态学研究[J].齐齐哈尔医学院学报,1998,19(3):177-179
    [83]谢遵江,刘文庆,贺业春,等.小鼠肠上皮内淋巴细胞在黏膜免疫应答中的形态学研究[J].解剖学报,1997,28(3):309-313
    [84]沙永刚,程国富,邵华斌.家禽黏膜免疫研究进展[J].湖北农业科学,2003,3:87-89
    [85]赵太平.大鼠小肠、大肠上皮及固有层淋巴细胞的分布差异[J].哈尔滨医科大学学报,2004,38(1):42-44
    [86]陈秋生,苏泽红,陈晓武.中华鳖肠道黏膜免疫相关细胞的形态学研究[J].水生生物学报,2005,29(6):654-660
    [1]苏敏,胡蓉,李红,等.CD3和CD8免疫反应阳性细胞在人胎回肠的发育[J].世界华人消化杂志,2009,17(35):3606-3610
    [2]杨书良,李兰梅,陈育民.肠黏膜屏障的构成与功能研究进展[J].临床荟萃,2008,23(24):1809-1811
    [3]Vega-Lopez M A, Arenas-Contreras G, Bailey M, et al. Development of intraepithelial cells in the porcine small intestine [J]. Dev Immunol,2001,8(2):147-158
    [4]Tamura A, Soga H, Yaguchi K, et al. Distribution of two types of lymphocytes (intraepithelial and lamina-propria-associated) in the murine small intestine [J]. Cell Tissue Res,2003,313(1): 47-53
    [5]陈林莺.T、B细胞表型抗体免疫组化敏感性与特异性分析[J].临床与实验病理学杂志,1999,15(1):15-17
    [6]Gao J, Ding X, Chu C, et al. Dry powder inhalations containing thymopentin and its immunomodulating effects in Wistar rats [J]. Eur J Pharm Sci,2009,36(4-5):572-579
    [7]Wang E, Stoecker M. Primary mediastinal (thymic) large B cell lymphoma with aberrant expression of CD3:a case report with review of the literature [J]. Int J Hematol,2010, 91(3):509-515
    [8]Mahendra G, Pandit H, Kliskey K, et al. Necrotic and inflammatory changes in metal-on-metal resurfacing hip arthroplasties [J]. Acta Orthop,2009,80(6):653-659
    [9]Ricardo J S, Cartner L, Oliver S J, et al. No effect of a 30-h period of sleep deprivation on leukocyte trafficking, neutrophil degranulation and saliva IgA responses to exercise [J]. Eur J Appl Physiol,2009,105(3):499-504
    [10]Villatoro-Hernandez J, Arce-Mendoza A Y, Rosas-Taraco A G, et al. Murine interferon-gamma inducible protein-10 (1P-10) secreted by Lactococcus lactis chemo-attracts human CD3+lymphocytes [J]. Biotechnol Lett,2009,31(11):1795-1800
    [11]Yue Q, Ma R, Mao D W, et al. Effects of laparoscopically-assisted vaginal hysterectomy compared with abdominal hysterectomy on immune function [J]. J Int Med Res,2009,37(3): 855-861
    [12]Austin E D, Rock M T, Mosse C A, et al. T lymphocyte subset abnormalities in the blood and lung in pulmonary arterial hypertension [J]. Respir Med,2010,104(3):454-462
    [13]Baka Z, Senolt L, Vencovsky J, et al. Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis [J]. Immunol Lett,2010,128(2):124-130
    [14]Li W X, Pan H F, Hu J L, et al. Assay of T-and NK-cell subsets and the expression of NKG2A and NKG2D in patients with new-onset systemic lupus erythematosus [J]. Clin Rheumatol,2010,29(3):315-233
    [15]Giusca S E, Eloae Zugun F, Tarcoveanu E, et al. Immunohistochemical study of colorectal cancer liver metastases:the immune/inflammatory infiltrate [J]. Rom J Morphol Embryol,2010, 51(1):73-79
    [16]Yang G B, Lackner A A. Proximity between 5-HT secreting enteroendocrine cells and lymphocytes in the gut mucosa of rhesus macaques (Macaca mulatta) is suggestive of a role for enterochromaffin cell 5-HT in mucosal immunity [J]. J Neuroimmunol,2004,146(1-2):46-49
    [17]Zanninelli G, Vetuschi A, Sferra R, et al. Smad3 knock-out mice as a useful model to study intestinal fibrogenesis [J]. World J Gastroenterol,2006,12(8):1211-1218
    [18]Miller T A, Schaefer F W 3rd. Characterization of a Cryptosporidium muris infection and reinfection in CF-1 mice [J]. Vet Parasitol,2007,144(3-4):208-221
    [19]Randall K J, Pearse G. A dual-label technique for the immunohistochemical demonstration of T-lymphocyte subsets in formalin-fixed, paraffin-embedded rat lymphoid tissue [J]. Toxicol Pathol, 2008,36(6):795-804
    [20]Huang Z, Dauer D J, Ha G K, et al. Interleukin-2 deficiency-induced T cell autoimmunity in the mouse brain [J]. Neurosci Lett,2009,463(1):44-48
    [21]Prykhod'ko O, Fed'kiv O, Linderoth A, et al. Precocious gut maturation and immune cell expansion by single dose feeding the lectin phytohaemagglutinin to suckling rats [J]. Br J Nutr, 2009,101(5):735-742
    [22]Thuille N, Lutz-Nicoladoni C, Letschka T, et al. PKCtheta and Itk functionally interact during primary mouse CD3+T cell activation [J]. Immunol Lett,2009,126(1-2):54-59
    [23]Old J M, Deane E M. The lymphoid and immunohaematopoietic tissues of the embryonic brushtail possum (Trichosurus vulpecula) [J]. Anat Embryol (Berl),2003,206(3):193-197
    [24]Witthauer J, Schlereth B, Brischwein K., et al. Ex vivo Therapie maligner Pleuraergusse beim metastasierten Mammakarzinom mit dem bispezifischen anti EpCAM/CD3 Antikorper MT110 [M]. (Deutsche Gesellschaft fur Chirurgie. Volume 37) Chirurgisches Forum 2008,2008, 129
    [25]Wilkinson R, Barton M, Kotlarski I. Identification of koala T lymphocytes using an anti-human CD3 antibody [J]. Dev Comp Immunol,1995,19(6):537-545
    [26]Kreiss A, Obendorf D L, Hemsley S, et al. A histological and immunohistochemical analysis of lymphoid tissues of the Tasmanian devil [J]. Anat Rec (Hoboken),2009,292(5):611-620
    [27]Chang J M, Kim W G. Time-related histopathologic changes in fresh frozen carotid xenografts in a pig-to-goat implantation model [J]. Artif Organs,2009,33(10):827-834
    [28]Herich R, Levkut M, Bomba A, et al. Differences in the development of the small intestine between gnotobiotic and conventionally bred piglets [J]. Berl Munch Tierarztl Wochenschr,2004, 117(1-2):46-51
    [29]Vanherberghen M, Day M J, Delvaux F, et al. An immunohistochemical study of the inflammatory infiltrate associated with nasal carcinoma in dogs and cats [J]. J Comp Pathol,2009, 141(1):17-26
    [30]Sakai M, Otani I, Ishigaki K, et al. Phenotypic analysis of hepatic T lymphocytes in a dog with chronic hepatitis [J]. J Vet Med Sci,2006,68(11):1219-1221
    [31]Kleinschmidt S, Meneses F, Nolte I, et al. Distribution of mast cell subtypes and immune cell populations in canine intestines:evidence for age-related decline in T cells and macrophages and increase of IgA-positive plasma cells [J]. Res Vet Sci,2008,84(1):41-48
    [32]Mori A, Lee P, Izawa T, et al. Assessing the immune state of dogs suffering from pituitary gland dependent hyperadrenocorticism by determining changes in peripheral lymphocyte subsets [J]. Vet Res Commun,2009,33(7):757-769
    [33]Yasuda N, Masuda K, Tsukui T, et al. Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor alpha chain [J]. Vet Immunol Immunopathol,2009, 132(2-4):224-231
    [34]Harley R, Gruffydd-Jones T J, Day M J. Characterization of immune cell populations in oral mucosal tissue of healthy adult cats [J]. J Comp Pathol,2003,128(2-3):146-155
    [35]Pantin-Jackwood M J, Brown T P, Huff G R. Proventriculitis in broiler chickens: immunohistochemical characterization of the lymphocytes infiltrating the proventricular glands [J]. Vet Pathol,2004,41(6):641-648
    [36]Jaber J R, Perez J, Arbelo M, et al. Pathological and immunohistochemical study of gastrointestinal lesions in dolphins stranded in the Canary Islands [J]. Vet Rec,2006,159(13): 410-414
    [37]Wu C, Gan J, Jin Q, et al. Revaccination with Marek's disease vaccines induces productive infection and superior immunity [J]. Clin Vaccine Immunol,2009,16(2):184-193
    [38]Bertram E M, Wilkinson R G, Lee B A, et al. Identification of duck T lymphocytes using an anti-human T cell (CD3) antiserum [J]. Vet Immunol Immunopathol,1996,51(3-4):353-363
    [39]Bernard D, Six A, Rigottier-Gois L, et al. Phenotypic and functional similarity of gut intraepithelial and systemic T cells in a teleost fish [J]. J Immunol,2006,176(7):3942-3949
    [40]Jaber J R, Fernandez A, Herraez P, et al. Cross-reactivity of human and bovine antibodies in striped dolphin paraffin wax-embedded tissues [J]. Vet Immunol Immunopathol,2003,96(1-2): 65-72
    [41]Jaber J R, Perez J, Arbelo M, et al. Immunophenotypic characterization of hepatic inflammatory cell infiltrates in common dolphins (Delphinus delphis) [J]. J Comp Pathol,2003, 129(2-3):226-230
    [42]Cook M T, Morrison R N, Wilkinson R, et al. A screen of mammalian antibodies on snapper (Pagrus auratus, Sparidae) peripheral blood leukocytes reveals cross reactivity of an anti-human CD3 antibody with a population of mIg(-) cells [J]. Dev Comp Immunol,2001,25(7):553-559
    [43]Gobel T W, Meier T L, Du pasquier L. Biochemical analysis of the Xenopus laevis TCR/CD3 complex supports the "stepwise evolution" model [J]. Eur J Immunol,2000,30(10): 2775-2781
    [44]Munoz F A, Estrada-Parra S, Romero-Rojas A, et al. Identification of CD3+ T lymphocytes in the green turtle Chelonia mydas [J]. Vet Immunol Immunopathol,2009,131(3-4):211-217
    [45]O'Donnell R T, Ma Y, McKnight H C, et al. Dose, timing, schedule, and the choice of targeted epitope alter the efficacy of anti-CD22 immunotherapy in mice bearing human lymphoma xenografts [J]. Cancer Immunol Immunother,2009,58(12):2051-2058
    [46]Fujimoto M, Kuwano Y, Watanabe R, et al. B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation [J]. J Immunol,2006,176(2):873-879
    [47]Toda M, Hisano R, Yurugi H, Akita K, Maruyama K, Inoue M, Adachi T, Tsubata T, Nakada H. Ligation of tumour-produced mucins to CD22 dramatically impairs splenic marginal zone B-cells [J]. Biochem J,2009,417(3):673-683
    [48]Loomis K, Smith B, Feng Y, et al. Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv [J]. Exp Mol Pathol,2010,88(2):238-249
    [49]Nitschke L. CD22 and Siglec-G:B-cell inhibitory receptors with distinct functions [J]. Immunol Rev,2009,230(1):128-143
    [50]Stanciu-Herrera C, Morgan C, Herrera L. Anti-CD19 and anti-CD22 monoclonal antibodies increase the effectiveness of chemotherapy in Pre-B acute lymphoblastic leukemia cell lines [J]. Leuk Res,2008,32(4):625-632
    [51]Margaix-Munoz M, Bagan J V, Poveda R, et al. Sjogren's syndrome of the oral cavity. Review and update [J]. Med Oral Patol Oral Cir Bucal,2009,14(7):E325-330
    [52]O'Reilly M K, Paulson J C. Siglecs as targets for therapy in immune-cell-mediated disease [J]. Trends Pharmacol Sci,2009,30(5):240-248
    [53]Sharkey R M, Karacay H, Goldenberg D M. Improving the treatment of non-Hodgkin lymphoma with antibody-targeted radionuclides [J]. Cancer,2010,116(4 Suppl):1134-1145
    [54]Asprer J M, Llido L O, Sinamban R, et al. Effect on immune indices of preoperative intravenous glutamine dipeptide supplementation in malnourished abdominal surgery patients in the preoperative and postoperative periods [J]. Nutrition,2009,25(9):920-925
    [55]Manikhas G M, Akhytin V A, Fridman M Kh, et al. Effect of enterosorption on immunologic parameters of patients with colorectal cancer in the postoperative period [J]. Vopr Onkol,2009, 55(1):66-71
    [56]van Baarsen L G, Wijbrandts C A, Timmer T C, et al. Synovial tissue heterogeneity in rheumatoid arthritis in relationship to disease activity and biomarkers in peripheral blood [J]. Arthritis Rheum,2010, Feb 22 [Epub ahead of print]
    [57]赵太平,徐玉东,魏岚,等.大鼠小肠、大肠上皮及固有层淋巴细胞的分布差异[J].哈尔滨医科大学学报,2004,38(1):42-44
    [58]李霄凌,李公启,徐玉东.免疫大鼠肠道上皮内淋巴细胞的实验研究[J].齐齐哈尔医学院学报,2005,26(3):241-242
    [59]李霄凌,刘冰华,徐玉东.免疫大鼠肠道固有层内淋巴细胞的实验研究[J].齐齐哈尔医学院学报,2005,26(2):121-122
    [60]彭胜男,朱清仙,邵立健,等.正常大鼠小肠上皮内T细胞的形态计量学研究[J].中国体视学与图像分析,2006,11(3):183-186
    [61]苏泽红.鳖消化道功能的细胞学[D].南京:南京农业大学,2002
    [62]刘岗.中华鳖消化道固有层免疫细胞的形态学观察[J].中国兽医科技.2004,34(6):75-77
    [63]陈秋生,苏泽红,陈晓武.中华鳖肠道黏膜免疫相关细胞的形态学研究[J].水生生物学报,2005,29(6):654-660
    [64]王华.粘膜免疫细胞研究进展[J].国外医学免疫学分册,2000,23(3):143-145
    [65]Boll G, Reimann J. Lamina propria T cell subsets in the small and large intestine of euthymic and athymic mice [J]. Scand J Immunol,1995,42(2):191-201
    [66]Veazey R S, Rosenzweig M, Shvetz D E, et al. Characterization of gut-associated lymphoid tissue (GALT) of normal rhesus macaques [J]. Clin Immunol Immunopathol,1997,82(3):230-242
    [67]Macdonald T T. The mucosal immune system [J]. Parasite Immunology,2003,25:235-246
    [68]Howard K E, Fisher I L, Dean G A, et al. Methodology for isolation and phenotypic characterization of feline small intestinal leukocytes [J]. J Immunol Methods,2005,302(1-2): 36-53
    [69]刘端勇,赵海梅,赵宁,等.八味锡类散对大鼠溃疡性结肠炎CD3,CD4,CD8 T淋巴细胞的影响[J].中国中药杂志,2008,33(11):1301-1304
    [70]朱清仙,邓锋,江鹏飞.等.人胎大肠和小肠上皮内淋巴细胞的比较分析[J].中国体视学与图像分析,2004,9(2):84-87
    [71]Zhang X, Okutsu M, Kanemi O, et al. Repeated stress suppresses interferon-gamma production by murine intestinal intraepithelial lymphocytes [J]. Tohoku J Exp Med,2005,206(3): 203-212
    [72]Brown I, Mino-Kenudson M, Deshpande V, et al. Intraepithelial lymphocytosis in architecturally preserved proximal small intestinal mucosa: an increasing diagnostic problem with a wide differential diagnosis [J]. Arch Pathol Lab Med,2006,130(7):1020-1025
    [73]Bharhani M S, Grewal J S, Peppler R, et al. Comprehensive phenotypic analysis of the gut intra-epithelial lymphocyte compartment:perturbations induced by acute reovirus 1/L infection of the gastrointestinal tract [J]. Int Immunol,2007,19(4):567-579
    [74]Denning T L, Granger S W, Mucida D, et al. Mouse TCRalphabeta+CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses [J]. J Immunol,2007,178(7):4230-4239
    [75]Kunisawa J, Kurashima Y, Higuchi M, et al. Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium [J]. J Exp Med,2007,204(10): 2335-2348
    [76]Yang H, Sun X, Haxhija E Q, et al. Intestinal epithelial cell-derived interleukin-7:A mechanism for the alteration of intraepithelial lymphocytes in a mouse model of total parenteral nutrition [J]. Am J Physiol Gastrointest Liver Physiol,2007,292(1):G84-91
    [77]Cheroutre H, Lambolez F. The thymus chapter in the life of gut-specific intra epithelial lymphocytes [J]. Curr Opin Immunol,2008,20(2):185-191
    [78]Jarillo-Luna A, Rivera-Aguilar V, Martinez-Carrillo B E, et al. Effect of restraint stress on the population of intestinal intraepithelial lymphocytes in mice [J]. Brain Behav Immun,2008, 22(2):265-275
    [79]Binda E, Erhart D, Schenk M, et al. Quantitative isolation of mouse and human intestinal intraepithelial lymphocytes by elutriation centrifugation [J]. J Immunol Methods,2009,344(1): 26-34
    [80]Mcmillan D N and Secombes C J. Isolation of rainbow trout(Oncorhynchus mykiss) intestinal intraepithelial lymphocytes (IEL) and measurement of their cytotoxic activity [J].1997, 7(8):527-541
    [81]刘文庆,魏振华,谢遵江,等.经口抗原诱导的肠道粘膜免疫反应—小肠上皮内淋巴细胞作用的形态学研究[J].齐齐哈尔医学院学报,1998,19(8):177-179
    [82]Resendiz-Albor A A, Esquivel R, Lopez-Revilla R, et al. Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice [J]. Life Sci, 2005,76(24):2783-2803
    [83]Little M C, Bell L V, Cliffe L J, et al. The characterization of intraepithelial lymphocytes, lamina propria leukocytes, and isolated lymphoid follicles in the large intestine of mice infected with the intestinal nematode parasite Trichuris muris [J]. J Immunol,2005,175(10):6713-6722
    [84]Bourges D, Chevaleyre C, Wang C, et al. Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae:implications for T and sIgA+ B-lymphocyte recruitment [J]. Immunology,2007,122(4):551-561
    [85]Hunziker W, Kraehenbuhl J P. Epithelial transcytosis of immunoglobulins [J]. J Mammary Gland Biol Neoplasia,1998,3(3):287-302
    [86]Inoue Y, Miki C, Kusunoki M. Nutritional status and cytokine-related protein breakdown in elderly patients with gastrointestinal malignancies [J]. J Surg Oncol,2004,86(2):91-98
    [1]Moore B W. A soluble protein characteristic of the nervous system [J]. Biochem Biophys Res Commun,1965,19(6):739-744
    [2]Heizmann C W. The multifunctional S100 protein family [J]. Methods Mol Biol,2002,172: 69-80
    [3]陈建魁,尹秀云,牟兆饮.神经生化标志物S100蛋白的分子生物学基础及临床应用[J].军事医学科学院院刊,2003,27(1):70-72
    [4]黄平,王振原,托娅.神经生化标志物是S100p蛋白研究进展[J].法医学杂志,2005,21(2):149-151
    [5]路常东,张素芳,王俊生.S-100蛋白、PCNA在胃癌中的表达及意义[J].中原医刊,2006,33(6):1-3
    [6]Jaber J R, Fernandez A, Herraez P, et al. Cross-reactivity of human and bovine antibodies in striped dolphin paraffin wax-embedded tissues [J]. Vet Immunol Immunopathol,2003,96(1-2): 65-72
    [7]Carbone A, Poletti A, Manconi R, et al. Demonstration of S-100 protein distribution in human lymphoid tissues by the avidin-biotin complex immunostaining method [J]. Hum Pathol, 1985,16(11):1157-1164
    [8]Pavli P, Maxwell L, Van de Pol E, et al. Distribution of human colonic dendritic cells and macrophages [J]. Clin Exp Immuno,1996,104 (1):124-132
    [9]Niess J H, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance [J].Science,2005,307 (5707):254-258
    [10]MacDonald T T, Vossenkamper A, Di Sabatino A. Antigen presenting cells and T cell interactions in the gastrointestinal tract [J]. Mol Nutr Food Res,2009,53(8):947-951
    [11]Scheuermann D W, Stach W, Timmermans J P, et al. Neuron-specific enolase and S-100 protein immunohistochemistry for defining the structure and topographical relationship of the different enteric nerve plexuses in the small intestine of the pig [J]. Cell Tissue Res,1989,256(1): 65-75
    [12]Cornet A, Savidge T C, Cabarrocas J, et al. Enterocolitis induced by autoimmune targeting of enteric glial cells:a possible mechanism in Crohn's disease? [J]. Proc Natl Acad Sci U S A, 2001,98(23):13306-13311
    [13]Ruhl A. Glial cells in the gut [J]. Neurogastroenterol Motil,2005,17(6):777-790
    [14]Bassotti G, Villanacci V, Fisogni S, et al. Enteric glial cells and their role in gastrointestinal motor abnormalities:introducing the neuro-gliopathies [J]. World J Gastroenterol,2007,13(30): 4035-4041
    [15]Kobayashi S, Suzuki M, Endo T, et al. Framework of the enteric nerve plexuses:an immunocytochemical study in the guinea pig jejunum using an antiserum to S-100 protein [J]. Arch Histol Jpn,1986,49(2):159-188
    [16]Horisawa M, Isiguro Y, Ito T, et al. Distribution of nervous system-specific enolase (NSE) and S-100 protein in the gastrointestinal tract of congenital aganglionosis rat [J]. Nippon Heikatsukin Gakkai Zasshi,1985,21(1):11-24
    [17]Fekete E, Timmermans J P, Resch B A, et al. Different distribution of S-100 protein and glial fibrillary acidic protein (GFAP) immunoreactive cells and their relations with nitrergic neurons in the human fetal small intestine [J]. Histol Histopathol,1999,14(3):785-790
    [18]Sugimura M, Miura M, Suzuki Y, et al. S-100 immunoreactive cells in non-nervous duck tissues [J]. Avian Pathol,1989,18(3):503-510
    [19]Ridinger K, Schafer BW, Durussel I, et al. S100A13.Biochemical characterization and subcellular localization in different cell lines[J]. J Biol Chem,2000,275(12):8686-8694
    [20]Moroz O V,Antson A A, Murshudov G N., et al. The three dimensional structure of human S100A12 [J]. Acta Crystallogr D Biol Crystallogr,2001,57(1):20-29
    [21]Fritz G, Heizmann C W. Handbook of Metalloproteins [M]. Eds. Messerschmidt A W, Bode A M, Cygler M, New York: Wiley,2004:529-540
    [22]Kusewitt D F, Reece R L, Miska K B. S-100 immunoreactivity in melanomas of two marsupials, a bird, and a reptile [J]. Vet Pathol,1997,34(6):615-618
    [23]Ferrer L, Rabanal R M, Fondevila D, et al. Immunocytochemical demonstration of intermediate filament proteins, S-100 protein and CEA in apocrine sweat glands and apocrine gland derived lesions of the dog [J]. Zentralbl Veterinarmed A,1990,37(8):569-576
    [24]LaRock R G, Ginn P E. Immunohistochemical staining characteristics of canine gastrointestinal stromal tumors [J]. Vet Pathol,1997,34(4):303-311
    [25]Gallego M, del Cacho E, Arnal C, et al. Immunocytochemical detection of dendritic cell by S-100 protein in the chicken [J]. Eur J Histochem,1992,36(2):205-213
    [26]Gallego M, Olah I, Del Cacho E, et al. Anti-S-100 antibody recognizes ellipsoid-associated cells and other dendritic cells in the chicken spleen [J]. Dev Comp Immunol,1993,17(1):77-83
    [27]Jaber J R, Perez J, Arbelo M, et al. Immunophenotypic characterization of hepatic inflammatory cell infiltrates in common dolphins (Delphinus delphis) [J]. J Comp Pathol,2003, 129(2-3):226-230
    [28]Saidel W M, Presson J C, Chang J S. S-100 immunoreactivity identifies a subset of hair cells in the utricle and saccule of a fish [J]. Hear Res,1990,47(1-2):139-146
    [29]Gracia-Navarro F, Porter D, Garcia-Navarro S, et al. Immunocytochemical and ultrastructural study of the frog (Rana pipiens) pars distalis with special reference to folliculo-stellate cell function during in vitro superfusion [J]. Cell Tissue Res,1989,256(3): 623-630
    [30]Bao H J, Li M Y, Wang J, et al. Architecture of the blood-spleen barrier in the soft-shelled turtle, Pelodiseus sinensis[J]. Anat Rec (Hoboken),2009,292(8):1079-1087
    [31]Trujillo-Cenoz O, Fernandez A, Radmilovich M, et al.Cytological organization of the central gelatinosa in the turtle spinal cord [J]. J Comp Neurol,2007,502(2):291-308
    [32]Fondevila D, Ferrer L, Ramos J A, et al. Immunohistochemical localization of S-100 protein and lysozyme in canine lymph nodes and lymphomas [J]. Zentralbl Veterinarmed A,1989,36(1): 71-77
    [33]Ramis A, Ramos J, Fondevila D, et al. Histochemical and immunohistochemical study of the lymphoid tissue of swine:lymphatic ganglia, spleen and thymus [J]. Anat Histol Embryol,1991, 20(2):154-168
    [34]Kusewitt D F, Miska K B, Ley R D. S-100 immunoreactivity in melanomas of the South American opossum Monodelphis domestica [J]. Vet Pathol,1997,34(4):346-350
    [35]Perez J, Garcia P M, Mozos E, et al. Immunohistochemical characterization of hepatic lesions associated with migrating larvae of Ascaris suum in pigs [J]. J Comp Pathol,2001, 124(2-3):200-206
    [36]Ramos-Vara J A, Miller M A, Johnson G C, et al. Melan A and S100 protein immunohistochemistry in feline melanomas:48 cases [J]. Vet Pathol,2002,39(1):127-132
    [37]del Cacho E, Gallego M, Marcotegui M A, et al. Follicular dendritic cell activation in the harderian gland of the chicken [J]. Vet Immunol Immunopathol,1993,35(3-4):339-351
    [38]孔令平,朱清仙,曾慧红.胚胎小肠S-100+树突状细胞的组织分布[J].解剖学杂志 2004,27(2):169-171
    [39]Johansson C, Kelsall B L. Phenotype and function of intestinal dendritic cells [J]. Semin Immunol,2005,17(4):284-294
    [40]Niess J H, Reinecker H C. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract [J]. Curr Opin Gastroenterol,2005,21(6):687-691
    [41]Silva M A, Porras M, Jury J, et al. Characterization of ileal dendritic cell distribution in a rat model of acute and chronic inflammation [J]. Inflamm Bowel Dis,2006,12(6):457-470
    [42]Iwasaki A. Mucosal dendritic cells [J]. Annu Rev Immunol,2007,25:381-418
    [43][58] Coombes J L, Powrie F. Dendritic cells in intestinal immune regulation [J]. Nat Rev Immunol,2008,8(6):435-446
    [44]Rescigno M, Matteoli G. Lamina propria dendritic cells:for whom the bell TOLLs? [J]. Eur J Immunol,2008,38(6):1483-1486
    [45]Varol C, Vallon-Eberhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions [J]. Immunity,2009,31(3):502-512
    [46]Rescigno M. Before they were gut dendritic cells [J]. Immunity,2009,31(3):454-456
    [47]Huang J, Huang H, Peng Q B, et al. S-100 protein-positive dendritic cells and the significance of their density in gastric precancerous lesions [J]. Proc. CAMS and PUMC,1990, 5(2):93-96
    [48]武一曼,葛振华,周凡,等.人慢性胄炎粘膜内CD3+细胞,S-100+树突状细胞和nNOS表达的意义[J].中国组织化学与细胞化学杂志,2001,10(4):421-424
    [49]许亚明,池诏丞,任明.树突状细胞的研究进展[J].吉林医学.2008,29(13):1127-1130
    [50]Steinman RM, Hemmi H. Dendritic cells:translating innate to adaptive immunity [J]. Curr Top Microbiol Immunol.2006,311:17-58
    [51]Adema GJ. Dendritic cells from bench to bedside and back [J]. Immunol Lett.2009,122(2): 128-130
    [52]Joffre O, Nolte MA, Sporri R, et al. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity[J]. Immunol Rev.2009,227(1):234-247
    [53]成令忠,钟翠平,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003,607-609
    [54]Popescu L M,Ciontea S M,Cretoiu D, et al. Novel type of interstitial cell(Cajal-like) in human fallopian tube [J]. J Cell Mol Med,2005,9(2):479-523
    [55]Junquera C, Martinez-Ciriano C, Castiella T, et al. Intrinsic Innervation of a Reptilian Esophagus(Podarcis hlspanica) [J]. Neurochem Res,1998,23(4):493-504
    [56]Junquera C, Martinez-Ciriano C, Castiella T, et al. Enteric plexus and interstitial cells of Cajal:interrelationship in the stomach of Podarcis hispanica (Reptilia). An ultrastructural study [J]. Histol Histopathol,2001,16(3):869-881
    [57]Martinez-Ciriano C, Junquera C, Castiella T, et al. Intrinsic innervation in the intestine of the lizard Podarcis hispanica [J]. Histol Histopathol,2000,15(4):1093-1105
    [58]Rich A, Hanani M, Ermilov L G, et al.Physiological study of interstitial cells of Cajal identified by vital staining [J]. Neurogastroenterol Motil 2002; 14(2):189-196.
    [59]Hanani M, Farrugia G, Komuro T. Intercellular coupling of interstitial cells of cajal in the digestive tract [J]. Int Rev Cytol,2005,242:249-282
    [60]Hwang S J, Blair P J, Britton F C, et al. Expression of anoctamin 1/Tmem16a by inrerstitial cells of cajal is fundamental for slow wave activity in gastointestinal muscles [J]. J Physiol,2009, 587(20):4887-4904
    [61]Ishii S, Tsuji S, Tsujii M, et al. Restoration of gut motility in Kit-deficient mice by bone marrow transplantation [J]. J Gastroenterol,2009,44(8):834-841
    [62]Garcia-Lopez P, Garcia-Marin V, Martfnez-Murillo R, et al. Updating old ideas and recent advances regarding the Interstitial Cells of Cajal [J]. Brain Res Rev,2009,61(2):154-169
    [63]Sanders K M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract [J]. Gastroenterology,1996,111(2):492-515
    [64]Huizinga J D, Thuneberg L, Vanderwinden J M, et al. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders [J]. Trends Pharmacol Sci,1997, 18(10):393-403
    [65]Malysz J, Huizinga J D. Searching for intrinsic properties and functions of interstitial cells of Cajal [J]. Curr Opin Gastroenterol,1999,15(1):26-31
    [66]Hanani M, Freund H R. Interstitial cells of Cajal--their role in pacing and signal transmission in the digestive system [J]. Acta Physiol Scand,2000,170(3):177-190
    [67]Hirst G D, Ward S M. Interstitial cells:involvement in rhythmicity and neural control of gut smooth muscle [J]. Physiol,2003,550(2):337-346
    [68]Romero-Aleman M M, Monzon-Mayor M, Yanes C, et al. Radial glial cells, proliferating periventricular cells, and microglia might contribute to successful structural repair in the cerebral cortex of the lizard Gallotia galloti [J]. Exp Neurol,2004,188(1):74-85
    [69]Castagna C, Viglietti-Panzica C, Carlo Panzica G. Protein S100 immunoreactivity in glial cells and neurons of the Japanese quail brain [J]. J Chem Neuroanat,2003,25(3):195-212
    [70]Romero-Aleman Mdel M, Monzon-Mayor M, Yanes C, et al. S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny [J]. J Neurobiol, 2003,57(1):54-66
    [71]Germana A, Levanti M B, Monjil D F, et al. Immunohistochemical detection of TrkB in the enteric nervous system of the small intestine in pigeon (Columba livia) [J]. Eur J Histochem,2004, 48(4):373-376
    [72]Vukojevic K, Skobic H, Saraga-Babic M. Proliferation and differentiation of glial and neuronal progenitors in the development of human spinal ganglia [J]. Differentiation,2009, 78(2-3):91-98
    [73]da Silveira A B, Freitas M A, de Oliveira E C, et al. Glial fibrillary acidic protein and S-100 colocalization in the enteroglial cells in dilated and nondilated portions of colon from chagasic patients [J]. Hum Pathol,2009,40(2):244-251
    [74]Gabella G. Ultrastructure of the nerve plexuses of the mammalian intestine:the enteric glial cells [J]. Neuroscience,1981,6(3):425-436
    [75]Bjorklund H, Dahl D, Seiger A. Neurofilament and glial fibrillary acid protein-related immunoreactivity in rodent enteric nervous system [J]. Neuroscience,1984,12(1):277-287
    [76]Hanani M, Reichenbach A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig [J]. Cell Tissue Res,1994,278(1):153-160
    [77]Mestres P, Diener M, Rummel W. Electron microscopy of the mucosal plexus of the rat colon [J]. Acta Anat (Basel),1992,143(4):275-282
    [78]Bernstein CN, Vidrich A. Isolation, identification, and culture of normal mouse colonic glia [J].Glia,1994,12(2):108-116
    [79]Bush T G, Savidge T C, Freeman T C, et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice [J]. Cell,1998,93(2):189-201
    [80]Wedel T, Roblick U, Gleiss J, et al. Organization of the enteric nervous system in the human colon demonstrated by wholemount immunohistochemistry with special reference to the submucous plexus [J]. Ann Anat,1999,181(4):327-337
    [81]Cabarrocas J, Savidge T C, Liblau R S. Role of enteric glial cells in inflammatory bowel disease [J]. Glia,2003,41(1):81-93
    [1]Cajal S R. Texture of the nervous system of man and the vertebrates [M], Volume 3. Springer-Verlag, Edited by Pasik, P and Pasik. T. Vienna,2002
    [2]Piotrowska A P, Rolle U, Chertin B, et al. Alterations in smooth muscle contractile and cytoskeleton proteins and interstitial cells of Cajal in megacystis microcolon intestinal hypoperistalsis syndrome [J]. J Pediatr Surg,2003,38(5):749-755
    [3]Zarate N, Mearin F, Wang X Y, et al. Severe idiopathic gastroparesis due to neuronal and interstitial cells of Cajal degeneration:pathological findings and management [J]. Gut,2003,52(7): 966-970
    [4]Hanani M, Farrugia G, Komuro T. Intercellular coupling of interstitial cells of cajal in the digestive tract [J]. Int Rev Cytol,2005,242:249-282
    [5]Ogasawara N, Tsukamoto T, Inada K, et al. Frequent c-Kit gene mutations not only in gastrointestinal stromal tumors but also in interstitial cells of Cajal in surrounding normal mucosa [J]. Cancer Lett,2005,230(2):199-210
    [6]Wang B, Kunze W A, Zhu Y, et al. In situ recording from gut pacemaker cells [J]. Pflugers Arch,2008,457(1):243-251
    [7]Won K J, Sanders K M, Ward S M. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach [J]. Proc Natl Acad Sci USA,2005,102(41),14913-14918
    [8]Sanders KM, Ward SM. Kit mutants and gastrointestinal physiology [J]. J Physiol,2007, 578(1):33-42
    [9]Garcia-Lopez P, Garcia-Marin V, Martinez-Murillo R, et al. Updating old ideas and recent advances regarding the Interstitial Cells of Cajal [J]. Brain Res Rev,2009,61(2):154-169
    [10]Hwang S J, Blair P J, Britton F C, et al. Expression of anoctamin 1/Tmeml6a by interstitial cells of cajal is fundamental for slow wave activity in gastointestinal muscles [J]. J Physiol,2009, 587(20):4887-4904
    [11]Ishii S, Tsuji S, Tsujii M, et al. Restoration of gut motility in Kit-deficient mice by bone marrow transplantation [J]. J Gastroenterol,2009,44(8):834-841
    [12]Ward S M, Sanders K M. Interstitial cells of Cajal:primary targets of enteric motor innervation [J]. Anat Rec,2001,262(1):125-135
    [13]Horiguchi K, Semple G S, Sanders K M, et al. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum [J]. J Physiol,2001,537(1):237-250
    [14]Beckett E A, Horiguchi K, Khoyi M, et al. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl (d) mice [J]. J Physiol,2002,543(3):871-887
    [15]Beckett E A, McGeough C A, Sanders K M, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum:neurally mediated and direct stimulation [J]. J Physiol,2003,553(2): 545-559
    [16]Suzuki H, Ward SM, Bayguinov YR, et al. Involvement of intramuscular interstitial cells in nitrergic inhibition in the mouse gastric antrum [J]. J Physiol,2003,546(3):751-763
    [17]Ward S M, Sanders K M. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract [J]. J Physiol,2006,576(3):675-682
    [18]Iino S, Horiguchi S, Horiguchi K, et al. Interstitial cells of Cajal in the gastrointestinal musculature of W mutant mice [J]. Arch Histol Cytol,2007,70(3):163-173
    [19]Pieri L, Vannucchi M G, Faussone-Pellegrini M S. Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut [J]. J Cell Mol Med,2008,12(5):1944-1955
    [20]Min K W, Sook Seo I. Intestitial cells of Cajal in the human small intestine: immunochemical and ultrastructural study [J]. Ultrastruct Pathol,2003,27(2):67-78
    [21]Faussone-Pellegrini M S, Vannucchi M G, Alaggio R, et al. Morphology of the interstitial cells of Cajal of the human ileum from foetal to neonatal life [J]. J Cell Mol Med,2007,11(3): 482-494
    [22]de Lima M A, Cabrine-Santos M, Tavares M G, et al. Interstitial cells of Cajal in chagasic megaesophagus [J]. Ann Diagn Pathol,2008,12(4):271-274
    [23]Midrio P, Vannucchi M G, Pieri L, et al. Delayed development of interstitial cells of Cajal in the ileum of a human case of gastroschisis [J]. Cell Mol Med,2008,12(2):471-478
    [24]Lin Z, Sarosiek I, Forster J, et al. Association of the status of interstitial cells of Cajal and electrogastrogram parameters, gastric emptying and symptoms in patients with gastroparesis [J]. Neurogastroenterol Motil,2010,22(1):56-61
    [25]Radenkovic G, Savic V, Mitic D, et al. Development of c-Kit immunopositive interstitial cells of Cajal in the human stomach [J]. J Cell Mol Med,2009, Feb 27 [Epub ahead of print]
    [26]Richter A, Wit C, Vanderwinden J M, et al. Interstitial cells of Cajal in the vermiform appendix in childhood [J]. Eur J Pediatr Surg,2009,19(1):30-33
    [27]Rumessen J J, Vanderwinden J M, Rasmussen H, et al. Ultrastructure of interstitial cells of Cajal in myenteric plexus of human colon [J]. Cell Tissue Res,2009,337(2):197-212
    [28]Taniguchi K, Matsuura K, Matsuoka T, et al. A morphological study of the pacemaker cells of the aganglionic intestine in Hirschsprung's disease utilizing ls/ls model mice [J]. Med Mol Morphol,2005,38(2):123-129
    [29]Shimojima N, Nakaki T, Morikawa Y, et al. Interstitial cells of cajal in dysmotility in intestinal ischemia and reperfusion injury in rats [J]. J Surg Res,2006,135(2):255-261
    [30]Matsuura T, Masumoto K, Ieiri S, et al. Morphological and physiological changes of interstitial cells of Cajal after small bowel transplantation in rats [J]. Transpl Int,2007,20(7): 616-624
    [31]Iino S, Horiguchi K, Nojyo Y. W(sh)/W(sh) c-Kit mutant mice possess interstitial cells of Cajal in the deep muscular plexus layer of the small intestine [J]. Neurosci Lett,2009,459(3): 123-126
    [32]Lee S E, Wi J S, Min Y I, et al. Distribution and three-dimensional appearance of the interstitial cells of Cajal in the rat stomach and duodenum [J]. Microsc Res Tech,2009,72(12): 951-956
    [33]Faussone-Pellegrini M S, Vannucchi M G, Ledder O, et al. Plasticity of interstitial cells of Cajal:a study of mouse colon [J]. Cell Tissue Res,2006,325:211-217
    [34]Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract [J]. J Physiol,2006,576(3):653-658
    [35]Ye J, Zhu Y, Khan W I, et al. IL-9 enhances growth of ICC, maintains network structure and strengthens rhythmicity of contraction in culture [J]. J Cell Mol Med,2006,10(3):687-694
    [36]楼征,黎介寿.大鼠小肠cajal细胞网络结构及超微结构分析[J].肠外与肠内营养,2008,15(1):4-6
    [37]Belzer V, Kobilo T, Rich A, et al. Intercellular coupling among interstitial cells of Cajal in the guinea pig small intestine [J]. Cell Tissue Res,2002,307(1):15-21
    [38]Kunisawa Y, Komuro T. Interstitial cells of Cajal associated with the submucosal plexus of the Guinea-pig stomach [J]. Neurosci Lett,2008,434(3):273-276
    [39]Aranishi H, Kunisawa Y, Komuro T. Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon [J]. Cell Tissue Res,2009,335(2):323-329
    [40]Junquera C, Martinez-Ciriano C, Castiella T, et al. Immunohistochemical and ultrastructural characteristics of interstitial cells of Cajal in the rabbit duodenum. Presence of a single cilium [J]. J Cell Mol Med,2007,11(4):776-787
    [41]Komuro T. Comparative morphology of interstitial cells of Cajal:ultrastructural characterization [J]. Microsc Res Tech,1999,47(4):267-285
    [42]Metzger R, Neugebauer A, Rolle U, et al. C-Kit receptor (CD117) in the porcine urinary tract [J]. Pediatr Surg Int,2008,24(1):67-76
    [43]李卫东,陈云,连至诚.小型猪胃肠道Cajal司质细胞超微结构的研究[J].解剖学研究,2006,28(1):55-57
    [44]Marquez S G, Galotta J M, Portiansky E L, et al. Characterization of interstitial cells of Cajal in bowel of cattle (Bos taurus) [J]. Vet Res Commun,2006,30(3):221-229
    [45]Velarde R, Mentaberre G, Sanchez J, et al. KIT-positive gastrointestinal stromal tumours in two Spanish ibex (Capra pyrenaica hispanica) [J]. Vet J,2008,177(3):445-447
    [46]Fintl C, Hudson N P, Mayhew I G, et al. Interstitial cells of Cajal (ICC) in equine colic:an immunohistochemical study of horses with obstructive disorders of the small and large intestines [J]. Equine Vet J,2004,36(6):474-479
    [47]Fintl C, Pearson G T, Ricketts S W, et al. The development and distribution of the interstitial cells of Cajal in the intestine of the equine fetus and neonate [J]. J Anat,2004,205(1):35-44
    [48]Milne E M, Fintl C, Hudson N P, et al. Observations on the interstitial cells of Cajal and neurons in a recovered case of equine dysautonomia (grass sickness) [J]. J Comp Pathol,2005, 133(1):33-40
    [49]Fintl C, Pearson G T, Mayhew I G, et al. Comparative analysis of c-kit gene expression and c-Kit immunoreactivity in horses with and without obstructive intestinal disease [J]. Vet J,2009, Aug 26 [Epub ahead of print]
    [50]Prause A S, Stoffel M H, Portier C J, et al. Expression and function of 5-HT7 receptors in smooth muscle preparations from equine duodenum, ileum, and pelvic flexure [J]. Res Vet Sci, 2009,87(2):292-299
    [51]Morini M, Bettini G, Preziosi R, et al. C-kit gene product (CD117) immunoreactivity in canine and feline paraffin sections [J]. J Histochem Cytochem,2004,52(5):705-708
    [52]Wang X Y, Liu LW, Diamant N E, et al. Unique distribution of interstitial cells of Cajal in the feline pylorus [J]. Cell Tissue Res,2007,329(1):13-24
    [53]Huizinga J D, Reed D E, Berezin I, et al. Survival dependency of intramuscular ICC on vagal afferent nerves in the cat esophagus [J]. Am J Physiol Regul Integr Comp Physiol,2008, 294(2):R302-310
    [54]Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel [J]. Development,1996,122(3):725-733
    [55]Reynhout J K, Duke G E. Identification of interstitial cells of Cajal in the digestive tract of turkeys (Meleagris gallopavo) [J]. J Exp Zool,1999,283(4-5):426-440
    [56]Rich A, Leddon S A, Hess S L, et al. Kit-like immunoreactivity in the zebrafish gastrointestinal tract reveals putative ICC [J]. Dev Dyn,2007,236(3):903-911
    [57]Prosser C L. Rhythmic electrical and mechanical activity in stomach of toad and frog [J]. Am J Physiol,1995,269(3 Pt 1):G386-395
    [58]Miyamoto-Kikuta S, Komuro T. Ultrastructural observations of the tunica muscularis in the small intestine of Xenopus laevis, with special reference to the interstitial cells of Cajal [J]. Cell Tissue Res,2007,328(2):271-279
    [59]Junquera C, Martinez-Ciriano C, Castiella T, et al. Intrinsic innervation of a reptilian esophagus(Podarcis hlspanica) [J]. Neurochem Res,1998,23(4):493-504
    [60]Martinez-Ciriano C, Junquera C, Castiella T, et al. Intrinsic innervation in the intestine of the lizard Podarcis hispanica [J]. Histol Histopathol,2000,15(4):1093-1105
    [61]Junquera C, Martinez-Ciriano C, Castiella T, et al. Enteric plexus and interstitial cells of Cajal:interrelationship in the stomach of Podarcis hispanica (Reptilia). An ultrastructural study [J]. Histol Histopathol,2001,16(3):869-881
    [62]R(?)mert P, Mikkelsen H B. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine [J]. Histochem Cell Biol,1998,109(3):195-202
    [63]Wester T, Eriksson L, Olsson Y, et al. Interstitial cells of Cajal in the human fetal small bowel as shown by c-kit immunohistochemistry [J]. Gut,1999,44(1):65-71
    [64]Mitsui R, Komuro T. Distribution and ultrastructure of interstitial cells of Cajal in the gastric antrum of wild-type and Ws/Ws rats [J]. Anat Embryol (Berl),2003,206(6):453-460
    [65]Fintl C, Hudson N P, Pearson G T, et al. A study of the interstitial cells of Cajal in aged donkeys with and without intestinal disease[J]. J Comp Pathol,2010,142(2-3):242-247
    [66]Hudson N P, Pearson G T, Kitamura N, et al. An immunohistochemical study of interstitial cells of Cajal (ICC) in the equine gastrointestinal tract [J]. Res Vet Sci,1999,66(3):265-271
    [67]Gibson P C, Cooper K. CD117 (KIT):a diverse protein with selective applications in surgical pathology [J]. Adv Anat Pathol,2002,9(1):65-69
    [68]Rumessen J J, Vanderwinden J M. Interstitial cells in the musculature of the gastrointestinal tract: Cajal and beyond [J]. Int Rev Cytol,2003,229:115-208
    [69]De Ceulaer K M, Van Ginneken C J, Philips W A, et al. Interstitial cells of Cajal and their role in veterinary gastrointestinal pathologies [J]. Anat Histol Embryol,2007,36(4):300-310
    [70]Rich A, Hanani M, Ermilov L G, et al. Physiological study of interstitial cells of Cajal identified by vital staining [J]. Neurogastroenterol Motil,2002,14(2):189-196
    [71]Hanani M, Freund H R. Interstitial cells of Cajal-their role in pacing and signal transmission in the digestive system [J]. Acta Physiol Scand,2000,170(3):177-190
    [72]Hirst GD, Ward SM. Interstitial cells:involvement in rhythmicity and neural control of gut smooth muscle [J]. Physiol,2003,550(2):337-346
    [73]张西强,潘振宇.Cajal间质细胞与胃肠运动的起搏[J].山东医学高等专科学校学报,2009,31(2):139-140
    [74]Antonescu C R. Gastrointestinal stromal tumor (GIST) pathogenesis, familial GIST, and animal models [J]. Semin Diagn Pathol,2006,23(2):63-69
    [75]Streutker C J, Huizinga J D, Driman D K, et al. Interstitial cells of Cajal in health and disease. Part Ⅱ:ICC and gastrointestinal stromal tumours [J]. Histopathology,2007,50(2): 190-202
    [76]Yamaguchi U, Nakayama R, Honda K, et al. Distinct gene expression-defined classes of gastrointestinal stromal tumor [J]. J Clin Oncol,2008,26(25):4100-4108
    [77]Nakajima T, Miwa S, Ando T, et al. Interstitial cells of Cajal do not harbor c-kit or PDGFRA gene mutations in patients with sporadic gastrointestinal stromal tumors [J]. J Gastroenterol,2009, 44(5):426-431
    [78]Versaci A, Macri A, Ieni A, et al. Gastrointestinal stromal tumour: our experience [J]. Chir Ital,2009,61(2):161-169
    [79]Forster J, Damjanov I, Lin Z, et al. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings [J]. J Gastrointest Surg,2005,9(1):102-108
    [80]Battaglia E, Bassotti G, Bellone G, et al. Loss of interstitial cells of Cajal network in severe idiopathic gastroparesis [J]. World J Gastroenterol,2006,12(38):6172-6177
    [81]Piotrowska A P, Solari V, Puri P. Distribution of heme oxygenase-2 in nerves and interstitial cells of Cajal in the normal pylorus and in infantile hypertrophic pyloric stenosis [J]. Arch Pathol Lab Med,2003,127(9):1182-1186
    [82]Ordog T, Redelman D, Horvath V J, et al. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract [J]. Cytometry A,2004,62(2):139-149
    [83]Chang I Y, Glasgow N J, Takayama I, et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction [J]. J Physiol,2001, 536(2):555-568
    [84]Feldstein A E, Miller S M, El-Youssef M, et al. Chronic intestinal pseudoobstruction associated with altered interstitial cells of cajal networks [J]. J Pediatr Gastroenterol Nutr,2003, 36(4):492-497
    [85]Streutker C J, Huizinga J D, Campbell F, et al. Loss of CD117 (c-kit)-and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction [J]. Am J Surg Pathol,2003,27(2):228-235
    [86]Sanders K M, Ordog T, Ward S M. Physiology and pathophysiology of the interstitial cells of Cajal:from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal [J]. Am J Physiol Gastrointest Liver Physiol,2002,282(5): G747-756
    [87]Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of Cajal in motility disorders of the bowel [J]. Am J Gastroenterol,2003,98(3):618-624
    [88]Basilisco G, Gebbia C, Peracchi M, et al. Cerebellar degeneration and hearing loss in a patient with idiopathic myenteric ganglionitis [J]. Eur J Gastroenterol Hepatol,2005,17(4): 449-452
    [89]Garrity M M, Gibbons S J, Smyrk T C, et al. Diagnostic challenges of motility disorders: optimal detection of CD117+interstitial cells of Cajal [J]. Histopathology,2009,54(3):286-294
    [90]Schiller L R. New and emerging treatment options for chronic constipation [J]. Rev Gastroenterol Disord,2004, (4 Suppl 2):S43-51
    [91]Tong W D, Liu B H, Zhang L Y, et al. Decreased interstitial cells of Cajal in the sigmoid colon of patients with slow transit constipation [J]. Int J Colorectal Dis,2004,19(5):467-473
    [92]Tong W D, Liu B H, Zhang L Y, et al. Expression of c-kit messenger ribonucleic acid and c-kit protein in sigmoid colon of patients with slow transit constipation [J]. Int J Colorectal Dis, 2005,20(4):363-367
    [93]Wang L M, McNally M, Hyland J, et al. Assessing interstitial cells of Cajal in slow transit constipation using CD117 is a useful diagnostic test [J]. Am J Surg Pathol,2008,32(7):980-985
    [94]Taguchi T, Suita S, Masumoto K, et al. An abnormal distribution of C-kit positive cells in the normoganglionic segment can predict a poor clinical outcome in patients with Hirschsprung's disease [J]. Eur J Pediatr Surg,2005,15(3):153-158
    [95]Bettolli M, Rubin S Z, Staines W, et al. The use of rapid assessment of enteric ICC and neuronal morphology may improve patient management in pediatric surgery: a new clinical pathological protocol [J]. Pediatr Surg Int,2006,22(1):78-83
    [96]Bettolli M, De Carli C, Jolin-Dahel K, et al. Colonic dysmotility in postsurgical patients with Hirschsprung's disease. Potential significance of abnormalities in the interstitial cells of Cajal and the enteric nervous system [J]. J Pediatr Surg,2008,43(8):1433-1438
    [97]Wang H, Zhang Y, Liu W, et al. Interstitial cells of Cajal reduce in number in recto-sigmoid Hirschsprung's disease and total colonic aganglionosis [J]. Neurosci Lett,2009,451(3):208-211
    [98]侯豫,杨烨,赵新,仝海霞,等.Cajal间质细胞在先天性巨结肠不同肠段的分布[J].实用儿科临床杂志,2009,24(7):508-510
    [99]Robinson T L, Sircar K, Hewlett B R, et al. Gastrointestinal stromal tumors may originate from a subset of CD34-positive interstitial cells of Cajal [J]. Am J Pathol,2000,156(4): 1157-1163
    [100]Kwon J G, Hwang S J, Hennig G W, et al. Changes in the structure and function of ICC networks in ICC hyperplasia and gastrointestinal stromal tumors [J]. Gastroenterology,2009, 136(2):630-639
    [101]Gromova P, Ralea S, Lefort A, et al. Kit K641E oncogene up-regulates Sprouty homolog 4 and Trophoblast glycoprotein in interstitial cells of Cajal in a murine model of gastrointestinal stromal tumours [J]. J Cell Mol Med,2009,13(8A):1536-1548
    [102]Ordog T, Takayama I, Cheung W K, et al. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis [J]. Diabetes,2000,49(10):1731-1739
    [103]Horvath V J, Vittal H, Lorincz A, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis [J]. Gastroenterology,2006, 130(3):759-770
    [104]Sandgren K, Larsson L T, Ekblad E. Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice:an explanation for persisting dysmotility after operation for Hirschsprung's disease? [J]. Dig Dis Sci,2002,47(5): 1049-1064
    [105]Won K J, Suzuki T, Hori M, et al. Motility disorder in experimentally obstructed intestine: relationship between muscularis inflammation and disruption of the ICC network [J]. Neurogastroenterol Motil,2006,18(1):53-61
    [106]Wang X Y, Berezin I, Mikkelsen H B, et al. Pathology of interstitial cells of Cajal in relation to inflammation revealed by ultrastructure but not immunohistochemistry [J]. Am J Pathol, 2002,160(4):1529-1540
    [107]Wang X Y, Vannucchi M G, Nieuwmeyer F, et al. Changes in interstitial cells of Cajal at the deep muscular plexus are associated with loss of distention-induced burst-type muscle activity in mice infected by Trichinella spiralis [J]. Am J Pathol,2005,167(2):437-453
    [108]Yamamoto T, Watabe K, Nakahara M, et al. Disturbed gastrointestinal motility and decreased interstitial cells of Cajal in diabetic db/db mice [J]. J Gastroenterol Hepatol,2008,23(4): 660-667
    [109]Ro S, Park C, Jin J, et al. A model to study the phenotypic changes of interstitial cells of Cajal (ICC) in gastrointestinal diseases [J]. Gastroenterology,2010,138(3):1068-1078
    [110]Hudson N, Mayhew I, Pearson G. A reduction in interstitial cells of Cajal in horses with equine dysautonomia (grass sickness) [J]. Auton Neurosci,2001,92(1-2):37-44
    [111]Hudson N, Mayhew I, Pearson G. Presence of in vitro electrical activity in the ileum of horses with enteric nervous system pathology:equine dysautonomia (grass sickness) [J]. Auton Neurosci,2002,99(2):119-126
    [112]Aronoff N, Keegan K G, Johnson P J, et al. Management of pyloric obstruction in a foal [J]. J Am Vet Med Assoc,1997,210(7):902-905
    [113]Frost D, Lasota J, Miettinen M. Gastrointestinal stromal tumors and leiomyomas in the dog: a histopathologic, immunohistochemical, and molecular genetic study of 50 cases [J]. Vet Pathol, 2003,40(1):42-54
    [114]Schulze C, Schanen H, Pohlenz J. Canine dysautonomia resembling the Key-Gaskell syndrome in Germany [J]. Vet Rec,1997,141(19):496-497
    [115]Schoenberg R A, Kluth D. Experimental small bowel obstruction in chick embryos:Effects on the developing enteric nervous system [J]. J Pediatr Surg,2002,37(5):735-740
    [1]Nolte M A, Hamann A, Kraal G, et al. The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors [J]. Immunology,2002,106 (3):299-307
    [2]Cesta M F. Normal structure, function, and histology of mucosa-associated lymphoid tissue [J]. Toxicol Pathol,2006,34 (5):599-608
    [3]Bajenoff M, Glaichenhaus N, Germain RN. Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone [J]. J Immunol,2008,181 (6):3947-3954
    [4]李宗芳,张澍.脾脏的基础研究进展与展望[J].西安交通大学学报(医学版),2008,29(1):1-6
    [5]Khalil M, Sultana S Z, Rahman M, et al. Study of prenatal and postnatal development of spleen of Gallus Domesticus (deshi chicken) [J]. Mymensingh Med J,2009,18 (2):169-174
    [6]Balogh P, Horvath G, Szakal A K. Immunoarchitecture of distinct reticular fibroblastic domains in the white pulp of mouse spleen [J]. J Histochem Cytochem,2004,52 (10):1287 1298
    [7]Rothkotter H J. Anatomical particularities of the porcine immune system--a physician's view [J]. Dev Comp Immunol,2009,33 (3):267-272
    [8]蒋登金,郭光金,张天飞,等.血脾屏障的天然免疫作用的初步观察[J].第三军医大学学报,2001,23(12):1442-1443
    [9]朱安龙,姜洪池,刘连新,等.血—脾屏障形态学的实验研究[J].中华外科杂志,2005,43(9):591-594
    [10]蒋登金,郭光金,陈维佩,等.血一脾屏障结构与功能的实验研究[J].中华肝胆外科杂志,2002,8(1):49-52
    [11]郭光金,叶明福,蒋登金,等.血脾屏障的形态学研究[J].第四军医大学学报,2000,21(7):S177-179
    [12]El Ridi R, Badir N, El Rouby S. Effect of seasonal variations on the immune system of the snake, Psammophis schokari [J]. J Exp Zool,1981,216 (3):357-365
    [13]Kroese F G, Leceta J, Dopp E A, et al. Dendritic immune complex trapping cells in the spleen of the snake, Python reticulates[J]. Dev Comp Immunol,1985,9 (4):641-652
    [14]Wetherall J D, Turner K J. Immune response of the lizard, Tiliqua rugosa [J]. Aust J Exp Biol Med Sci,1972,50 (1):79-95
    [15]Pitchappan R, Muthukkaruppan V. Thymus-dependent lymphoid regions in the spleen of the lizard, Calotes versicolor [J]. J Exp Zool,1977,199 (2):177-188
    [16]Hussein MF, Badir N, el-Ridi R, et al. Differential effect on seasonal variation on lymphoid tissue of the lizard, Chalcides ocellatus [J]. Dev Comp Immunol,1978,2 (2):297-309
    [17]Hussein MF, Badir N, el-Ridi R, et al. Effect of seasonal variation on lymphoid tissues of the lizards, Mabuya quinquetaeniata Licht and Uromastyx aegyptia Forsk [J]. Dev Comp Immunol, 1978,2 (3):469-478
    [18]Hussein M F, Badir N, El Ridi R, et al. Effect of seasonal variation on immune system of the lizard, Scincus scincus [J]. J Exp Zool,1979,209 (1):91-96
    [19]Hussein M F, Badir N, El Ridi R, et al. Lymphoid tissues of the snake, Spalerosophis diadema, in the different seasons [J]. Dev Comp Immunol,1979,3 (1):77-88
    [20]Tanaka Y, Elsey R M. Light microscopic study of the alligator(Alligator mississippiensis) spleen with special reference to vascular architecture [J]. J Morphol,1997,233 (1):43-52
    [21]Rooney AA, Bermudez DS, Guillette LJ Jr. Altered histology of the thymus and spleen in contaminant-exposed juvenile American alligators [J]. J Morphol,2003,256 (3):349-359
    [22]Kroese F G, van Rooijen N. The architecture of the spleen of the Red-eared Slider, Chrysemys scripta elegans (Reptilia, Testudines) [J]. J Morphol,1982,173 (3):279-284
    [23]Borysenko M, Cooper E L. Lymphoid tissue in the snapping turtle, Chelydra serpentina [J]. J Morphol,1972,138 (4):487-497
    [24]Borysenko M. Changes in spleen histology in response to antigenic stimulation in the snapping turtle, Chelydra serpentine [J]. J Morphol,1976,149 (2):224-241
    [25]Borysenko M. Ultrastructual analysis of normal and immunized spleen of the snapping turtle, Chelydra serpentine [J]. J Morphol,1976,149 (2):243-263
    [26]Zapata A, Leceta J, Barrutia MG. Ultrastructure of splenic white pulp of the turtle, Mauremys caspica [J]. Cell Tissue Res,1981,220 (4):845-855
    [27]Kroese FG, Van Rooijen N. Antigen trapping in the spleen of the turtle, Chrysemys scripta elegans [J]. Immunology,1983,49 (1):61-68
    [28]Leceta J, Zapata A. Seasonal changes in the thymus and spleen of the turtle, Mauremys caspica. A morphometrical, light microscopical study [J]. Dev Comp Immunol,1985,9(4): 653-668
    [29]Varas A, Torroba M, Zapata AG.Changes in the thymus and spleen of the turtle Mauremys caspica after testosterone injection:a morphometric study [J]. Dev Comp Immunol,1992,16 (2-3): 165-174
    [30]陈秋生,聂其灼.中华鳖脾脏白髓的组织结构与组织化学特性[J].甘肃农业大学学报,1993,28(3):220-223
    [31]陈秋生,聂其灼.中华鳖脾脏的显微与亚显微结构研究[J].南京农业大学学报,1995,18(4):91-97
    [32]李福荣.鳖的肝脾是免疫器官[J].信阳师范学院学报(自然科学版).2000,13(2):178-181
    [33]赵万鹏,别立洁.鳖脾脏的正常组织学和病理组织学[J].信阳师范学院学报(自然科学版).2003,16(1):45-50
    [34]李梅英.中华鳖脾脏的特殊结构及雄激素受体mRNA表达[D].南京:南京农业大学,2008
    [35]Bao HJ, Li MY, Wang J, et al. Architecture of the blood-spleen barrier in the soft-shelled turtle, Pelodiseus sinensis [J]. Anat Rec (Hoboken),2009,292 (8):1079-1087
    [36]李梅英,包慧君,王江,等.中华鳖脾脏椭球的微细结构及其循环特征[J].解剖学报,2009,40(6):983-987
    [37]杜卓民.实用组织学技术[M].北京:人民卫生出版社,1998:75-76
    [38]贲长恩,李叔庚.组织化学[M].北京:人民卫生出版社,2001:287-289
    [39]黄长文,傅华群.血脾屏障的功能及其调节[J].中华普通外科学文献(电子版),2008,2(6):494-497
    [40]Olah I, Glick B. Splenic white pulp and associated vascular channels in chicken spleen [J]. Am J Anat,1982,165 (4):445-480
    [41]Buyssens N, Paulus G, Bourgeois N. Ellipsoids in the human spleen [J].Virchows Arch A Pathol Anat Histopathol,1984,403 (1):27-40
    [42]Blue J, Weiss L. Electron microscopy of the red pulp of the dog spleen including vascular arrangements, periarterial macrophage sheaths (ellipsoids), and the contractile, innervated reticular meshwork[J].Am J Anat,1981,161 (2):189-218
    [43]Hayes T G. Structure of the ellipsoid sheath in the spleen of the armadillo(Dasypus novemcinctus). A light and electron microscopic study [J]. J Morphol,1970,132 (2):207-223
    [44]Graf R, Schliins J. Ultrastructural and histochemical investigation of the terminal capillaries in the spleen of the carp (Cyprinus carpio L.) [J]. Cell Tissue Res,1979,196 (2):289-306
    [45]潘秀芳,孙品伟.高内皮微静脉的结构与功能[J].解剖学报,2000,31(3):981-983Girard J P, Springer T A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration [J]. Immunol Today,1995,16 (9):449-457
    [46]Kawashima H. Roles of sulfated glycans in lymphocyte homing [J]. Biol Pharm Bull,2006, 29(12):2343-2349
    [47]Willard-Mack CL. Normal structure, function, and histology of lymph nodes [J]. Toxicol Pathol,2006,34(5):409-424
    [48]Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules:dogmas and enigmas [J]. Nat Rev Immunol,2004,4 (5):360-370
    [49]Rosen S D. Ligands for L-selectin:homing, inflammation, and beyond [J]. Annu Rev Immunol,2004,22:129-156
    [50]Wrobel T, Dziegiel P, Mazur G, et al. LYVE-1 expression on high endothelial venules (HEVs) of lymph nodes [J]. Lymphology,2005,38 (3):107-110
    [51]Liao S, Bentley K, Lebrun M, et al. Transgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules [J]. Proc Natl Acad Sci U S A,2007,104 (11):4577-4582
    [52]Nakasaki T, Tanaka T, Okudaira S, et al. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions [J]. Am J Pathol, 2008,173(5):1566-1576
    [53]Roozendaal R, Mebius R E, Kraal G. The conduit system of the lymph node [J]. Int Immunol, 2008,20(12):1483-1487
    [54]成令忠,钟翠平,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003,648-650
    [55]Girard JP, Springer TA. High endothelial venules (HEVs):specialized endothelium for lymphocyte migration [J]. Immunol Today.1995,16(9):449-457
    [1]Xiangkun H, Li Z, Meiying L, et al. Seasonal changes of sperm storage and correlative structures in male and female soft-shelled turtles, Trionyx sinensis [J]. Anim Reprod Sci,2008, 108(3-4):435-445
    [2]Grandi G, Colombo G, Chicca M. Immunocytochemical studies on the pituitary gland of Anguilla anguilla L., in relation to early growth stages and diet-induced sex differentiation [J]. Gen Comp Endocrinol,2003,131(1):66-76
    [3]Bazina M, Stefanovic V, Bozanic D, et al. Ultrastructural and immunohistochemical characteristics of developing human pituitary gland [J]. Acta Histochem,2007,109(5):366-376
    [4]Ishikawa T, Michiue T, Quan L, et al. Morphological and functional alterations in the adenohypophysis in cases of brain death[J]. Leg Med (Tokyo),2009,11(1):S234-237
    [5]Bock N, Bockers T M, Bockmann J, et al. The Pars tuberalis of the monkey (Macaca fascicularis) hypophysis:cell types and hormone expression [J]. Cells Tissues Organs,2001, 169(1):55-63
    [6]李玉谷,张媛,钟毅敏,等.恒河猴脑垂体远侧部细胞的电镜观察[J].中国兽医学报.2002,22(1):56-58
    [7]李玉谷,张媛,孔小明,程树军,黄韧.比格犬脑垂体远侧部细胞的电镜观察[J].畜牧兽医学报,2003,34(5):468-470
    [8]康顺之,刘进辉.中国水牛脑垂体的光镜与电镜观察[J].湖南农学院学报,1992,18(2):337-342
    [9]宋小白,潘琼,潘堂峰,等.摩杂一代水牛脑垂体前叶的超微结构研究[J].中国畜牧兽医,2009,36(7):41-44
    [10]Gomez M A, Garces-Abadias B, Munoz A, et al. Structural and ultrastructural study of GH, PRL and SMT cells in male goat by immunocytochemical methods [J]. Cells Tissues Organs,1999, 165(1):22-29
    [11]Vasquez F A, Gomez M A, Serrano J, et al. Structural and ultrastructural studies of GH, PRL and SMT cells in goat fetus (Capra hircus) using immunocytochemical methods [J]. Arch Histol Cytol,2000,63(4):319-326
    [12]Vasquez F, Gomez M A, Serrano J, et al. Immunocytochemical light-and electron-microscopic studies of growth hormone, prolactin and somatomammotroph cells in female goat [J]. Cells Tissues Organs,2002,170(4):258-265
    [13]Kurosumi K, Ozawa H, Akiyama K, et al. Immunoelectron microscopic studies of gonadotrophs in the male and female rat anterior pituitaries, with special reference to their changes with aging [J]. Arch Histol Cytol,1991,54(5):559-571
    [14]Kurosumi K. Ultrastructural immunocytochemistry of the adenohypophysis in the rat: a review [J]. J Electron Microsc Tech,1991,19(1):42-56
    [15]Harvey S, Baumbach W R, Sadeghi H, et al. Ultrastructural colocalization of growth hormone binding protein and pituitary hormones in adenohypophyseal cells of the rat [J]. Endocrinology,1993,133(3):1125-1130
    [16]Perez Romera E, Mohamed F, Filippa V, et al. Ultrastructural and immunocytochemical studies of the viscacha (Lagostomus maximus maximus) pituitary pars tuberalis [J]. Anat Rec A Discov Mol Cell Evol Biol,2005,284(1):431-438
    [17]曹能,李勇,和青春,等.树鼩脑垂体和松果体细胞的超微结构研究[J].云南师范大学学报(自然科学版),2000,20(6):62-64
    [18]Liu R C, Lea R W, Sharp P J, et al. Ultrastructure of lipid-containing cells of the anterior pituitary gland of the domestic chicken, Gallus domesticus [J]. Anat Rec,1993,237(4):506-511
    [19]Neumeier C, Lametschwandtner A. The vascularization of the pituitary gland of the chicken (Gallus domesticus). A scanning electron microscope study of vascular corrosion casts [J]. Arch Histol Cytol,1994,57(3):213-233
    [20]朱元招,吴学祥,祝寿康.四季鹅产蛋前后腺垂体远侧部细胞的超微结构比较[J]中国兽医学报,1998,18(4):390-393
    [21]赵显玲,郝利铭,高元奇.法国鹌鹑脑垂体神经叶的超微结构研究[J].东北师大学报 (自然科学版),2000,32(4):59-62
    [22]Doerr-Schott J. "Pars tuberalis" of Rana temporaria L:cytology and ultrastructure [J]. Gen Comp Endocrinol,1971,16(3):516-523
    [23]Dellmann H D, Stoeckel M E, Hindelang-Gertner C, et al. A comparative ultrastructural study of the pars tuberalis of various mammals, the chicken and the newt [J]. Cell Tissue Res, 1974,148(3):313-329
    [24]Guastalla A, Campantico E, Yamamoto K, et al. Immunocytochemical and ultrastructural study of Rana dalmatina PRL and GH pituitary cells during larval development [J]. Gen Comp Endocrinol,1993,89(3):364-377
    [25]Mizutani F, Iwasawa H, Tanaka S. A morphometric analysis of the subcellular distribution of LH beta and FSH beta in secretory granules in the pituitary gonadotrophs of the frog (Rana japonica) [J]. Cell Tissue Res,1994,277(3):417-426
    [26]张育辉,任耀辉,刘全宏,等.中国大鲵垂体的显微与超微结构观察[J].解剖学报,1997,28(3):244-248
    [27]Mancera J M, Fernandez-Llebrez P, Grondona J M, et al. Influence of environmental salinity on prolactin and corticotropic cells in the gilthead sea bream (Sparus aurata L.) [J]. Gen Comp Endocrinol,1993,90(2):220-231
    [28]Villaplana M, Garcia Ayala A, Garcia Hernandez M P, et al. Early organization of the pituitary gland in Sparus aurata L. (Teleostei). An ultrastructural study [J]. Anat Embryol (Berl), 1996,193(5):441-452
    [29]Garcia-Ayala A, Garcia-Hernandez M P, Quesada J A, et al. Immunocytochemical and ultrastructural characterization of prolactin, growth hormone, and somatolactin cells from the Mediterranean yellowtail (Seriola dumerlii, Risso 1810) [J]. Anat Rec,1997,247(3):395-404
    [30]Villaplana M, Garcia Ayala A, Garcia Hernandez M P, et al. Immunocytochemical and ultrastructural characterization of somatolactin cells from the gilthead sea bream(Sparus aurata L., Teleostei):an ontogenic study (from newly hatched to adults) [J]. Anat Embryol (Berl),2001, 203(6):449-460
    [31]Villaplana M, Garcia Ayala A, Agulleiro B. Immunocytochemical demonstration of melanotropic and adrenocorticotropic cells from the gilthead sea bream (Sparus aurata L., Teleostei) by light and electron microscopy:an ontogenic study [J]. Gen Comp Endocrinol.2002, 125(3):410-425
    [32]Pilar Garcia Hernandez M, Garcia Ayala A, Zandbergen M A, et al. Investigation into the duality of gonadotropic cells of Mediterranean yellowtail (Seriola dumerilii, Risso 1810): immunocytochemical and ultrastructural studies [J]. Gen Comp Endocrinol,2002,128(1):25-35
    [33]方展强,何艾文.尼罗非鲫腺垂体中外侧部的超微结构[J].中国水产科学,2002,9(3):207-210
    [34]林国辉,方展强,林爱薇.三角鲂脑垂体的超微结构[J].华南师范大学学报(自然科学版),2003,4:93-99
    [35]谢碧文,岳兴建,张耀光,等.南方鲇脑垂体发育的研究[J].水生生物学报,2004,28(6):599-606
    [36]王晓清,莫艳秀,欧燎原,等.长吻鮑不同时期脑垂体的超微结构[J].中国水产科学,2005,12(4):390-396
    [37]Long Y, Liu S, Huang W, et al. Comparative studies on histological and ultra-structure of the pituitary of different ploidy level fishes [J]. Sci China C Life Sci,2006,49(5):446-453
    [38]方展强.唐以杰.鲇脑垂体的超微结构研究[J].电子显微学报,2007,26(3):229-237
    [39]Ferrandino I, Grimaldi M C. Ultrastructural study of the pituicytes in the pituitary gland of the teleost Diplodus sargus [J]. Brain Res Bull,2008,75(1):133-137
    [40]舒琥,刘晓春,张勇,等.赤点石斑鱼脑垂体超微结构的初步研究[J].中山大学学报(自然科学版),2008,47(4):68-71
    [41]符路娣,方展强.生殖期间鳜脑垂体的超微结构观察[J].华南师范大学学报(自然科学版),2008,4:114-122
    [42]刘文彬,张轩杰.黄颡鱼脑垂体的组织学和超微结构的研究[J].生命科学研究,2008,12(2):163-167
    [43]Zuber-Vogeli M, Lemire M. Ultrastructure of different cells of the adenohypophysis of the Saharian lizard Uromastix acanthinuris Bell 1825 (Sauria Agamidae) [J]. Gen Comp Endocrinol, 1982,46(3):333-344
    [44]Pearson AK, Licht P. Morphology and immunocytochemistry of the turtle pituitary gland with special reference to the pars tuberalis [J]. Cell Tissue Res,1982,222(1):81-100
    [45]Okia N O. The fine structure of the basal lamina in the lizard pituitary gland [J]. J Ultrastruct Res,1983,83(3):335-338
    [46]Mikami S, Miyasaka S, Taniguchi K. Light and electron microscopic immunocytochemistry of the pituitary gland of the tortoise [J]. Arch Histol Jpn,1985,48(4):373-388
    [47]Desantis S, Labate M, Corriero A, et al. Immunohistochemical evidence of seasonal changes of gonadotropes in male ruin lizard (Podarcis sicula campestris De Betta) [J]. Eur J Histochem, 2000,44(4):385-395
    [48]Ferrandino I, Viscardi G, Grimaldi M C. et al. An immunohistochemical study of adenohypophyseal cells in the viviparous reptile Chalcides chalcides [J]. Histochem J,2001,33(1): 1-8
    [49]Hammouche S, Gernigon T, Exbrayat J M. Immunocytochemical localization and ultrastructural study of gonadotroph cells in the female desert lizard Uromastyx acanthinura [J]. Tissue Cell,2007,39(1):13-25
    [50]刘文生,李勇.乌龟脑垂体显微及其腺垂体超微结构的研究[J].水生生物学报,2005,29(6):661-666
    [51]Leatherland J F, Ball J N, Hyder M. Structure and fine structure of the hypophyseal pars distalis in endigenous African species of the genus Tilapia [J]. Cell Tissue Res,1974,149(2): 245-266
    [52]Hammouche S, Gernigon Spychalowicz T, Khammar F, et al. Etude immunohistochimique des cellules gonadothropes chez le lezard femelle Uromastix acanthinurus au cours du cycle reproducteur [J]. Bull Soc Zool Fr,2002,127(1):49-55
    [53]刘振华,章纯熙,黄海鹏.中国水牛研究进程及产业化现状[C].北京:中央编译出版社,2006,542-548
    [54]叶华,林浩然.鳜鱼脑垂体的组织化学研究[J].宜宾师专学报(自然版),1997,2:80-89
    [55]宋海霞,温海深,翁幼竹.养殖牙鲆脑垂体的显微和超微结构观察[J].台湾海峡,2007,26(3):387-394
    [56]周寿康,戴茂征,谢衷明,等.大白鼠促性腺激素细胞分泌周期中颗粒和液泡结构的周期性变化[J].生殖与避孕,1990,10(1):18-23
    [57]Gregory S J, Brooks J, McNeilly A S, et al. Gonadotroph-lactotroph associations and expression of prolactin receptors in the equine pituitary gland throughout the seasonal reproductive cycle [J]. J Reprod Fertil,2000,119(2):223-231
    [58]Young C L, Gregory S J, Townsend J, et al. The equine pars tuberalis:seasonal and gonadal effects on the gonadotroph population [J]. J Reprod Fertil Abstr,2001, Ser 27, Abstr 1
    [59]谢碧文.南方鲇脑垂体结构与发育的研究[D].西南师范大学,2002
    [60]谢碧文,王芳.鱼类脑垂体结构与发育研究进展[J].内江师范学院学报,2003,18(2):53-55
    [61]Nozaki M, Ominato K, Shimotani T, et al. Identity and distribution of immunoreactive adenohypophysial cells in the pituitary during the life cycle of sea lampreys, Petromyzon marinus [J]. Gen Comp Endocrinol,2008,155(2):403-412
    [62]Herrero-Turrion M J, Rodriguez R E, Velasco A, et al. Growth hormone expression in ontogenic development in gilthead sea bream [J]. Cell Tissue Res,2003,313(1):81-91
    [63]Schulte B A, Seal U S, Plotka E D, et al. Seasonal changes in prolactin and growth hormone cells in the hypophyses of white-tailed deer(Odocoileus virginianus borealis) studied by light microscopic immunocytochemistry and radioimmunoassay [J]. Am J Anat,1980,159(4):369-377
    [64]Schulte B A, Seal U S, Plotka E D, et al. Characterization of seasonal changes in prolactin and growth hormone cells in the hypophyses of white-tailed deer (Odocoileus borealis) by ultrastructural and immunocytochemical techniques [J]. Am J Anat,1981,160(3):277-284
    [65]Yip D Y, Lofts B. Adenohypophysial cell-types in the pituitary gland of the soft-shelled turtle, Trionyx sinensis.1. Seasonal cycles [J]. Cell Tissue Res,1976,170(4):523-537
    [66]郑文彪,陈旻.冬季革胡子鳃中腺垂体细胞超微结构的研究[J].动物学研究,1994,15(4):31-35
    [67]Filippa V, Mohamed F. Morphological and morphometric changes of pituitary lactotrophs of viscacha (Lagostomus maximus maximus) in relation to reproductive cycle, age, and sex [J]. Anat Rec (Hoboken),2010,293(1):150-161
    [68]Hodson D J, Townsend J, Gregory S J, et al. Role of Prolactin in the Gonadotroph responsiveness to gonadotrophin-releasing hormone during the equine annual reproductive cycle [J]. J Neuroendocrinol,2010 Mar 2, [Epub ahead of print]
    [69]Fitzgerald B P, Affleck K J, Barrows S P, et al. Changes in LH pulse frequency and amplitude in intact mares during the transition into the breeding season [J]. J Reprod Fertil,1987, 79(2):485-493
    [70]Worthy K, Colquhoun K, Escreet R, et al. Plasma prolactin concentrations in non-pregnant mares at different times of the year and in relation to events in the cycle [J]. J Reprod Fertil Suppl, 1987,35:269-276
    [71]Sharp D C. Transition into the breeding season: clues to the mechanisms of seasonality [J]. Equine Vet J.1988,20(3):159-161
    [72]San Martin R, Hurtado W, Quezada C, et al. Gene structure and seasonal expression of carp fish prolactin short receptor isoforms [J]. J Cell Biochem,2007,100(4):970-980
    [73]San Martin R, Caceres P, Azocar R, et al. Seasonal environmental changes modulate the prolactin receptor expression in an eurythermal fish [J]. J Cell Biochem,2004,92(1):42-52
    [74]庄乾兴.繁殖期与非繁殖期鸟鳢、鲫鱼腺垂体内分泌细胞的研究[D].南昌大学,2007
    [75]McCormick S D. Endocrine control of osmoregulation in teleost fish [J]. Am zool,2001,41: 781-794
    [76]Wada T, Aritaki M, Tanaka M. Effects of low-salinity on the growth and development of spotted halibut Verasper variegatus in the larva-juvenile transformation period with reference to pituitary prolactin and gill chloride cells responses [J]. J Exp Mar Biol Ecol,2004,308(1): 113-126
    [77]Bole-Feysot C, Goffin V, Edery M, et al. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice [J]. Endocr Rev, 1998,19(3):225-268
    [78]Forsyth I A, Wallis M. Growth hormone and prolactin--molecular and functional evolution [J]. J Mammary Gland Biol Neoplasia,2002,7(3):291-312
    [79]谢碧文,岳兴建,张耀光,等.瓦氏黄颡鱼脑垂体组织学和组织化学研究[J].西南师范大学学报(自然科学版),2004,29(1):114-118
    [80]Filippa V, Mohamed F. ACTH cells of pituitary pars distalis of viscacha (Lagostomus maximus maximus):immunohistochemical study in relation to season, sex, and growth [J]. Gen Comp Endocrinol,2006,146(3):217-225
    [81]Pramoda S, Saidapur S K. Seasonal changes in the cytomorphology of hypophyseal ACTH cells in relation to the reproduction cycle of the female of the frog Rana tigerina (Daud.)[J]. Funct Dev Morphol,1991,1(1):47-50
    [82]Mousa S A, Mousa M A. Involvement of corticotropin-releasing factor and adrenocorticotropic hormone in the ovarian maturation, seawater acclimation, and induced spawning of Liza ramada [J]. Gen Comp Endocrinol,2006,146(2):167-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700