枫叶黄酮对老年性痴呆动物模型的抗氧化作用及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用侧脑室注射β淀粉样蛋白1-42(Aβ1-42)联合腹腔注射D-半乳糖(D-gal)构建SD大鼠老年性痴呆动物模型,从行为学和分子水平探讨枫叶黄酮对衰老的防治作用及分子机制。
     材料和方法:36只成年雄性Sprague Dawley (SD)大鼠随机分为3组,假手术组(sham group)、模型组(model group)和治疗组(treatment group),每组12只。采用侧脑室注射p淀粉样蛋白1-42(Aβ1-42)联合腹腔注射D-半乳糖(D-gal)构建SD大鼠衰老模型,并同时给予枫叶黄酮预防性治疗。采用Morris水迷宫实验(MWM)进行空间学习记忆能力检测,用化学比色法检测大脑皮质组织中丙二醛(MDA)、还原型谷胱甘肽(GSH)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)的含量。用免疫印迹法(Western blotting)检测大脑皮质组织中丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)家族相关蛋白:细胞外信号调节蛋白激酶(extracellular signal-regulated protein kinase, ERK)、P38、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)的磷酸化水平。
     结果:模型组与假手术组进行比较发现:模型组逃避潜伏期明显延长(P<0.05),在第Ⅲ象限逗留的时间明显减少(P<0.05),跨越平台次数明显减少(P<0.05),大脑皮质组织中MDA的含量明显增加(P<0.05),GR和GSH-PX的含量明显降低(P<0.05),JNK、P38的磷酸化明显增强,ERK的磷酸化明显受抑制(P<0.05)。治疗组与模型组进行比较发现:治疗组逃避潜伏期明显缩短(P<0.05),在第Ⅲ象限逗留的时间明显增加(P<0.05),跨越平台次数明显增加(P<0.05),大脑皮质组织中MDA的含量明显降低(P<0.05),GR、GSH-PX的含量明显升高(P<0.05), JNK、p38的磷酸化明显受抑制,ERK的磷酸化明显增强(P<0.05)。SOD、GSH在三组间没有统计学差异(P>0.05)。
     结论:(1)侧脑室注射β淀粉样蛋白1-42(Aβ1-42)联合腹腔注射D-半乳糖(D-gal)能诱发脑内氧化应激,同时活性氧(reactive oxygen species, ROS)作为第二信使影响MAPK信号通路激活(P38、JNK激活明显增强,ERK激活明显受抑制),导致大鼠空间探索学习记忆能力减退,出现老年性痴呆的表现。
     (2)枫叶黄酮能通过上调衰老模型大鼠大脑皮质组织中抗氧化物(酶)GR、GSH-PX的含量,抗氧化应激损伤,抑制P38、JNK的激活,增强ERK激活,改善空间探索学习记忆能力,抑制或延缓老年性痴呆的发生。
Objective:To explore the anti-oxidation molecule mechanism of Acer truncatum Bunge Flavonoid from the behavioral and molecular level and provide the experimental foundations for clinical treatment of AD, the Aβ1-42 and D-galactose AD rat model was established.
     Methods:Thirty-six rats were divided into three groups at random:sham group, model group and treatment group. Aging rats model were established by lateral ventricle injection of Aβ1-42 and abdominal cavity injection of D-Galactose to the rats. Meantime, rats were treated by intragastric administration Acer truncatum Bunge Flavonoid. Then experimental rats were examined spatial memory with the Morris water maze (MWM). Malondialdehyde (MDA),and antioxidants including glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activities were examined by colorimetric method in cerebral cortex. The concentration of the extracellular signal-regulated kinase(ERK), p38 and c-Jun N-terminal kinases(JNK), P-ERK, P-P38, P-JNK were examined by western blotting methods.
     Results:The AD model rats when compared with control group exhibited a significant increase in escape latencies (P<0.05), while a decrease in the time of staying at the first quadrants of platform and the degree of crossing over a platform. The cerebral cortex concentration of the MDA was increased, and the concentration of the GR, GSH-PX were decreased (P<0.05). The expression of P-p38, P-JNK were increased while P-ERK was decreased (P<0.05). After the treatment of the he Flavonoid from the Leaves of Acer truncatum Bunge, the AD model rats exhibited a significant decrease in escape latencies (P<0.05), an obvious increase in the time of staying the first quadrants of platform (P<0.05)and the increase of crossing over a platform(P<0.05) when compared with the AD group(P<0.05). The concentration of the MDA was decreased, the concentration of GR, GSH-PX were increased (P<0.05). The expression of the P-p38, P-JNK were less than the AD model while P-ERK was more than the AD model (P<0.05). But there were no significant differences between the three groups in the expression of theP38, JNK, ERK (P>0.05).
     Conclusions:(1) Aβ1-42 combinated with D-galactose could impair the oriented learning and memory capacity and induce the neurodegeneration of central nervous systems in model rats by oxidative stress wich results in P38, JNK phosphorylation increased and ERK phosphorylation inhibition. (2) Acer truncatum Bunge Flavonoid could improve the oriented learning and memory capacity and prevent the neurodegeneration of central nervous systems in aging model rats by antioxidants increased wich induce P38, JNK phosphorylation inhibition and ERK phosphorylation increased.
引文
[1]Wimo A, Winblad B, Jonsson L. The worldwide societal costs of dementia:Estimates for 2009 [J].Alzheimers Dement,2010,6 (2):98-103.
    [2]World Alzheimer Report 2009 [J]. Alzheimer's Disease International,2009:1-96.
    [3]2008 Alzheimer's disease facts and figures [J].Alzheimers Dement,2008,4 (2):110-133.
    [4]2009 Alzheimer's disease facts and figures [J]. Alzheimers Dement,2009,5(3):234-270.
    [5]2010 Alzheimer's disease facts and figures [J].Alzheimers Dement,2010,6(2):158-194.
    [6]Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease:A possibility for prevention [J].Neuropharmacology,2010,Sep-Oct,59(4-5):290-294.
    [7]Taupin P. A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer's disease [J]. Cent Nerv Syst Agents Med Chem,2010,10 (1):16-21.
    [8]Wang X. P, Ding H. L. Alzheimer's disease:epidemiology, genetics, and beyond [J]. Neurosci Bull,2008,24 (2):105-109.
    [9]Hureau C, Faller P. Abeta-mediated ROS production by Cu ions:structural insights, mechanisms and relevance to Alzheimer's disease [J]. Biochimie,2009,91 (10):1212-1217.
    [10]Glass C. K, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration [J]. Cell,20170,140 (6):918-934.
    [11]Awda BJ, Buhr MM. Extracellular Signal-Regulated Kinases (ERKs) Pathway and Reactive Oxygen Species Regulate Tyrosine Phosphorylation in Capacitating Boar Spermatozoa [J]. Biol Reprod,2010,Nov;83(5):750-758.
    [12]Wang Y. Gao Y, Yu JL, el al. Effect of interferon alpha on interstitial collagenase gene expression in rat liver fibrosis [J]. World Chinese Journal of Digestology,2001,9(1):20-23.
    [13]Zhu X, Lee H G. Raina A K, et al.The role of mitogen-activated protein kinase pathways in Alzheimer's disease [J].Neurosignals,2002, 11(5):270.
    [14]Cranwell-Bruce L. A. Drugs for Alzheimer's disease [J]. Medsurg Nurs,2010,19 (1):51-53.
    [15]Salloway S. Current and future treatments for Alzheimer's disease [J]. CNS Spectr,2009,14 (8 Suppl 7):4-7; discussion 16-18.
    [16]Kumar A, Dogra S, Prakash A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats[J]. Med Food,2010 Aug;13(4):976-84.
    [17]Li YZh, Zeng FJ. Isolation and structure identification of the Flavonoid from leaves of Acer truncatum Bunge[J]. Natural Product Research and Development.2006,3(18):426-427.
    [18]Mak YT, Chan WY, Lam WP, et al. Immunohistological evidences of Ginkgo biloba extract altering Bax to Bcl-2 expression ratio in the hippocampus and motor cortex of senescence accelerated mice[J]. Microsc Res Tech.2006,69:601-605.
    [19]Jin GH, Huang Z, Tan XF, et al. Effects of Ginkgolide on the development of NOS and AChE positive neurons in the embryonic basal forebrain[J]. Cell Biol Int.2006,30:500-4.
    [20]郭亚丽,李聪,欧灵澄,等.元宝枫黄酮提取物的抗氧化性能.化学研究.2004,6,15(2),42-44.
    [21]包新民,舒斯云.大鼠脑立体定位图谱[M].北京:人民卫生出版社,1991:1915.
    [22]Faes C, Aerts M, Geys H, et al. Modeling spatial learning in rats based on Morris water maze experiments [J]. Pharm Stat,2009,9 (1):10-20.
    [23]Manzano S, Gonzalez J, Marcos A, et al. Experimental models in Alzheimer's disease [J]. Neurologia,2009,24 (4):255-262.
    [24]Takeda T. Senescence-accelerated mouse(SAM)with special references to neurodegeneration models, SAMP8 and SAMP 10 mice [J]. Neurochem Res,2009,34 (4):639-659.
    [25]Elder G. A, Gama Sosa M. A, De Gasperi R. Transgenic mouse models of Alzheimer's disease [J]. Mt Sinai J Med,2010,77 (1):69-81.
    [26]Howlett D. R, Richardson J. C. The pathology of APP transgenic mice:a model of Alzheimer's disease or simply overexpression of APP? [J]. Histol Histopathol,2009,24 (1):83-100.
    [27]Clavaguera F, Goedert M, Tolnay M. Induction and spreading of tau pathology in a mouse model of Alzheimer's disease [J]. Med Sci (Paris),2010,26 (2):121-124.
    [28]Yang D. S, Kumar A, Stavrides P, et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease [J]. Am J Pathol,2008,173 (3):665-681.
    [29]Jeltsch H, Cassel J. C, Neufang B, et al. The effects of intrahippocampal raphe and/or septal grafts in rats with fimbria-fornix lesions depend on the origin of the grafted tissue and the behavioural task used [J].Neuroscience,1994,63 (1):19-39.
    [30]Ribes D, Colomina M. T, Vicens P, et al. Impaired Spatial Learning and Unaltered Neurogenesis in a Transgenic Model of Alzheimer's Disease after Oral Aluminum Exposure [J]. Curr Alzheimer Res.2010 Aug,7(5):401-408.
    [31]McLarnon J. G, Ryu J. K. Relevance of abetal-42 intrahippocampal injection as an animal model of inflamed Alzheimer's disease brain [J]. Curr Alzheimer Res,2008,5(5):475-480.
    [32]Philipson O, Lord A, Gumucio A, et al. Animal models of amyloid-beta-related pathologies in Alzheimer's disease [J]. FEBS J,2010,277 (6):1389-1409.
    [33]Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice [J]. Food Chem Toxicol, 2009,48 (2):626-632.
    [34]Zhang X. L, An L. J, Bao Y. M, et al. D-galactose administration induces memory loss and energy metabolism disturbance in mice:protective effects of catalpol [J]. Food Chem Toxicol, 2008,46 (8):2888-2894.
    [35]Ribes D, Colomina M. T, Vicens P, et al. Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer's disease [J]. Exp Neurol,2008,214 (2):293-300.
    [36]Ansari M. A, Scheff S. W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex [J]. J Neuropathol Exp Neurol,2010,69 (2):155-167.
    [37]Gella A. Durany N. Oxidative stress in Alzheimer disease [J]. Cell Adh Migr,2009,3 (1):88-93.
    [38]Aluise CD, Robinson RA, Beckett TL, et al. Preclinical Alzheimer disease:Brain oxidative stress, Abeta peptide and proteomics [J]. Neurobiol Dis.,2010 Aug39(2):221-228
    [39]Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment [J]. J Alzheimers Dis,2010,19 (1):363-72.
    [40]Tjernberg LO, Naslund J, Thyberg J, et al. Generation of Alzheimer amyloidβpeptide through nonspecific proteolysis [J]. J Biol Chem,1997,272 (3):1870-1875
    [41]Hagagemann C and Blank J L. The ups and downs of MEK kinase interactions. Cellular Signalling,2001,13(12):863-875.
    [42]Farooq A and Zhou M M. Structure and regulation of MAPK phosphatases. Cellular Signall ing,2004,16(7):769-779.
    [43]Xu W, Deng YL. Tang HD, et al. JNK-c-Jun signal transduction pathway involved in Aβ25-35-induced primary hippocampal neuronal toxicity[J]. Chin J Neurosci,2004,20(2): 135-139.
    [44]Morishima Y, Getoh Y, Zieg J, et al. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun 'N-terminal kinase pathway and the induction of Fas ligand[J]. J Neurosei,2001.21(19):7551-7560.
    [45]Wang SF, Yen JC, Yin PH, et al. Involvement of oxidarive stress activated JNK signaling in the methamphetanline-induced cell death of human SH-SY5Y cells [J]. Toxicology,2008, 16(5):795-806.
    [46]Shen C, Chen Y, Liu H, et al. Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase [J]. J. Biol. Chem,2008,283:17721-17730.
    [47]Sun KH, Lee HG, Smith MA, et al. Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade:relevance to neurotoxic insults in Alzheimer's disease [J]. Mol Biol Cell,2009,20(21):4611-9.
    [48]Zhu X,Rottkamp CA,Boux H, et al. Activation of P38 kinase kinks tau phosphorrylation, Oxidative stress and cell cycle. related events in Alzheimet disease. J Neuropathol Exp Neurol,2000; 59(10):880-888
    [49]HensleyK,FloydRA Zheng NY, et al. p38 Kinase is activated in the Alzheimer disease brain. J Neurochem,1999; 72(5):2053-8
    [50]McDonald DR, Bamberger ME, Combs CK,etal. Beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THPl MonoeytesJ. Neurosci, 1998,18(12):4451-4460
    [51]Huang J, Chen YJ, Bian WH, et al. Unilateral amyloid-beta25-35 injection into the rat amygdala increases the expressions of aberrant tau phosphorylation kinases [J]. Chin Med J (Engl),2010,123(10):1311-4.
    [52]Zhang GL, Du Y, Yao L, et al. Expression of p38MAPK in the olfactory bulb of rats with Alzheimer's disease [J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2009 Jan,40(1):40-3.
    [53]Fischer A,Sananbenesi F,Spiess J, Radulovic J. Cdk5:a novel role in learning and memory. Neumsignals,2003; 12(4-5):200-208
    [54]Bozon B, KellyA Josselyn SA,etal. MAPK,CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci.2003; 358(1432): 805-814
    [55]孙争宇,索爱琴,张杰文,等.Aβ1-42致老年性痴呆大鼠海马神经元细胞外信号调节激酶1,2的表达.中华实用诊断与治疗杂志,2009,23(2):151-153.
    [56]Choi JH, Choi AY, Yoon H, etal. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp Mol Med.2010 Dec 31;42(12):811-22.
    [57]Li YB, Lin ZQ, Zhang ZJ, etal. Protective Antioxidative and Antiapoptotic Effects of 2-Methoxy-6-Acetyl-7-Methyljuglone from Polygonum cuspidatum in PC 12 Cells. Planta Med.,2011 Mar;77(4):354-61.
    [58]Zhang H, Gao Y, Zhao F, Dai Z, Meng T, Tu S, Yan Y.Hydrogen sulfide reduces mRNA and protein levels of beta-site amyloid precursor protein cleaving enzyme 1 in PC 12 cells. Neurochem Int.2011 Feb;58(2):169-75.
    [I]Guerin O, Soto ME,Brocker P, et al. Nutritional status assessment during Alzheimer's disease. Journal of Nutrition. J Health & Aging,2005,9(2):81-84.
    [2]Shatenstein B, Kergoat MJ, Reid I, etal. Dietary intervention in older adults with early-stage Alzheimer dementia:early lessons learned. J Nutr Health Aging.2008 Aug-Sep,12(7):461-9.
    [3]Profenno LA, Porsteinsson AP, Faraone SV.Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders.Biol Psychiatry,2010,67(6):505-512.
    [4]Umegaki H.Pathophysiology of cognitive dysfunction in older people with type 2 diabetes: vascular changes or neurodegeneration?Age Ageing,2010,39 (2):278-279.
    [5]Kroger E, Verreault R, Carmichael PH, et al. Omega-3 fatty acids and risk of dementia:the Canadian Study of Health and Aging. Am J Clin Nutr 2009:90,184-192.
    [6]Lim SY, Suzuki H. Effect of dietary docosahexaenoic acid and phosphatidylcholine on maze behavior and fatty acid composition of plasma and brain lipids in mice. Int J Vitam Nutr Res 2000,70:251-259.
    [7]Zinser E.G, Hartmann T, Grimm M.O. Amyloid beta-protein and lipid metabolism. Biochim. Biophys.Acta,2007,1768:1991-2001.
    [8]Ullrich Celine, Pirchl Michael, Humpel Christian. Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Molecular & Cellular Neuroscience. Dec2010, Vol.45 Issue 4,408-417.
    [9]Haag MD, Hofman A, Koudstaal PJ,et al. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry,2009,80:13-17.
    [10]Abad-Rodriguez J, Ledesma M.D, Craessaerts K,et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol,2004,167:953-960.
    [11]Pavlik VN,Doody RS,Rountree SD,et al.Vitamin E use is associated with improved survival in an Alzheimer's disease cohort.Dement Geriatr Cogn Disord,2009,28(6):536-40.
    [12]Tohru Hasegawa, Nobuyuki Mikoda, Masashi Kitazawa,et al.Treatment of Alzheimer's Disease with Anti-Homocysteic Acid Antibody in 3xTg-AD Male Mice.Plos one,2010,5(1):1-6.
    [13]de Lau L.M, Refsum H, Smith A.D,et al.Plasma folate concentration and cognitive performance:Rotterdam Scan Study. Am. J. Clin. Nutr,2007,86:728-734.
    [14]Vural H, Demirin H, Kara Y, etal. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer's disease. J Trace Elem Med Biol,2010, Jul,24(3):169-73.
    [15]Marino T, Russo N, Toscano M, etal.On the metal ion (Zn(2+), Cu(2+)) coordination with beta-amyloid peptide:DFT computational study. Interdiscip Sci.2010, Mar,2(1):57-69.
    [16]Liu G, Men P, Perry G, etal. Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol,2010,610:123-44.
    [17]Pfrieger F.W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci,2003,60:1158-1171.
    [18]Wurtman RJ, Cansev M, Sakamoto T, et al. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimer(?) s Dement,2008,4:S153-S168.
    [19]Richardson U.I, Wurtman, R.J. Polyunsaturated fatty acids stimulate phosphatidylcholine synthesis in PC12 cells.Biochim.Biophys.Acta,2007,1771:558-563.
    [20]Wang L, Albrecht M.A, Wurtman R.J. Dietary supplementation with uridine-5'-monophosphate (UMP), amembrane phosphatide precursor, increases acetylcholine level and release in striatum of aged rat. Brain Res,2007,1133:42-48.
    [21]Hooijmans C.R, Rutters F, Dederen P.J, et al. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched TypicalWestern Diet (TWD). Neurobiol. Dis,2007,18:18-31.
    [22]Boudrault C, Bazinet RP, Ma DW. Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer's disease. J Nutr Biochem, 2009,20(1):1-10.
    [23]Scarmeas N, Stern Y, Mayeux R, et al. Mediterranean diet and mild cognitive impairment. Arch Neurol,2009,66:216-225.
    [24]Kontush A, Mann U, Arlt S,et al. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer's disease. Free Radic Biol.Med,2001,31, 345-354.
    [25]Stanley JC, et al.UK Food Standards Agency Workshop Report:the effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. Br J Nutr,2007,98:1305-1310.
    [26]Kalmijn S, et al.Dietary fat intake and the risk of incident dementia in the Study. Ann Neurol,1997,42:776-782.
    [27]Farkas E, de Wilde M.C, Kiliaan A.J,et al. Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion.Brain Res,2002,954:32-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700