用户名: 密码: 验证码:
去乙酰化酶SIRT1基因表达及其多态性与冠心病的关联研究和Chr6p21.32区域SNP rs9268402与冠心病发病机制的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:去乙酰化酶SIRTl基因表达及其多态性与冠心病的关联研究
     背景与目的:
     冠心病作为一种复杂性疾病,其发生发展与遗传因素密切相关。在细胞和实验动物水平的研究已经发现,编码去乙酰化酶的沉默交配型信息调节因子2同源体1(silent mating type information regulation2, S.cerevisiae, homolog1,SIRT1)基因具有心血管保护作用。SIRT1基因的相关遗传变异的研究主要集中在衰老、肥胖,以及糖尿病、阿尔茨海默症等疾病。但是,SIRT1基因表达及其相关遗传变异与冠心病的关联研究尚未见报道。因此,本研究拟在基因表达及变异水平探索SIRT1与冠心病发生发展的关系,探索SIRT1在冠心病发病机制中的作用,以期发现冠心病的预防和治疗的新靶点。
     方法:
     1.应用人全基因组表达谱芯片(Illumina HT12v3)比较冠心病组(18例)和正常对照组(6例)外周血单个核细胞(peripheral blood mononuclear cells,PBMCs)样本中基因表达谱差异。应用real-time PCR方法在一个独立的冠心病[58例,包括28例急性心肌梗死(acute myocardial infarction, AMI)患者和30例不稳定心绞痛(unstable angina,UA)患者]/对照组(175例)PBMCs样本中,检测SIRT1mRNA表达水平,验证表达谱芯片结果。
     2.应用HapMap数据库和Haploview4.2软件对SIRT1基因上下游10kb范围内的单核苷酸多态性(single nucleotide polymorphism, SNPs)进行连锁不平衡分析;并应用3个生物信息网站对位于各个连锁不平衡区域中的非编码SNPs进行潜在功能分析,并从中筛选出4个候选功能SNPs。
     3.对本研究室已经完成的中国人群冠心病全基因组关联研究(genome-wide association study, GWAS)芯片数据中的上述4个候选SNPs与冠心病的关系进行关联研究;并应用Taqman技术在心绞痛病例对照样本(病例对照为1235例:905例)中验证GWAS芯片结果。
     4.在229例健康个体的PBMCs样本中,应用Taqman技术对4个候选SNPs进行基因分型,应用real-time PCR技术检测SIRT1基因表达水平,进而分析候选SNPs位点基因型与SIRT1基因表达水平的关系。
     结果:
     1.全基因组表达谱芯片结果表明,SIRT1基因是冠心病组和正常对照组之间表达差异最显著的基因之一,该基因在冠心病患者中表达水平显著低于对照组(P=3.55×10-5)。病例/对照独立样本中SIRTlmRNA表达结果表明,与对照组相比,冠心病组SIRT1表达水平下降为对照的42.22%(P=6.59×10-12),其中AMI组和UA组SIRT1表达分别下降为对照的37.78%(P=5.37×10-10)和47.78%(P=7.45×10-7)。SIRT1表达水平在病例组中的显著下降验证了表达谱芯片结果。
     2.筛选出4个可能调控SIRT1表达的非编码SNPs:rs12778366、rs3758391、rs2273773和rs4746720。
     3.冠心病GWAS芯片结果分析未发现rs3758391、rs2273773和rs4746720与冠心病有关联,而rs12778366的C等位基因与心绞痛(病例对照为449:3998)关联(OR=1.25,P=0.032),但是在另一独立样本分析中,rsl2778366的C等位基因与心绞痛(病例对照样本)不关联(OR=0.96,P=0.66),未能验证该结果。
     4.健康人群研究中,首次发现SNP rs3758391的C等位基因与SIRT1的低表达水平相关(P=0.006)。rs12778366的少见变异C等位基因与较高的身高体重指数(BMI)相关(P=0.04)。rs2273773的少见变异C等位基因与较低的BMI和空腹血糖,较高的舒张压相关(分别P=0.03,P=0.04,P=0.03)。
     结论:
     1.本研究首次采用表达谱芯片和Real-Time PCR两种不同的方法,在两个样本量不同的独立样本中探索了SIRTl基因表达与冠心病的关系,发现SIRT1mRNA在冠心病患者中表达下降,提示SIRT1基因在人群具有心血管保护作用。
     2.本研究应用生物信息学手段在SIRT1基因及其上下游的非编码或无义突变SNP中筛选了4个有潜在功能的SNPs。
     3.本研究未能证明SIRT1相关的4个SNPs位点与冠心病有关联,该结果有待扩大样本量验证。
     4.在健康人群中分析所选4个SNPs的基因型与SIRT1基因表达的关系时,首次发现SIRT1启动子上游的功能性多态位点rs3758391的少见C等位基因与SIRT1的低表达相关,且既往研究表明rs3758391位于SIRT1上游p53的结合位点上,提示该SNP能够通过改变转录因子结合位点影响p53与SIRTl之间的相互作用,调节SIRT1的基因表达,进而影响冠心病的发生发展。
     第二部分:Chr6p21.32区域SNP rs9268402与冠心病发病机制的探索
     背景与目的:
     冠心病全基因组关联研究(genome wide association study,GWAS)确定的致病位点已经超过50个,目前已经进入对这些位点致病机制的研究阶段。中国人群冠心病GWAS风险区域6p21.32的关联最强的位点是位于基因间的rs9268402。本研究旨在探索研究该疾病风险位点rs9268402在冠心病发生中的作用及调控机制,为冠心病的预防与治疗的研究工作提供新的线索。
     方法:
     1.根据功能性单核苷酸多态性(single nucleotide polymorphism, SNP)研究的经典方法,在健康人群的外周血单个核细胞(peripheral blood mononuclear cells, PBMCs)样本中(78例),应用Taqman方法对rs9268402进行基因分型,应用real-time PCR技术检测该位点附近的编码基因C6orf10、BTNL2以及非编码基因HCG23、长非编码RNA (long non-coding RNA, lncRNA) TCONS_00012469的表达水平,分析rs9268402的基因型分布与这4个基因表达水平之间的关系。
     2.应用“DNA元件百科全书”(Encyclopedia of DNA Elements, ENCODE)数据库、调节组生物信息网站RegulomeDB和HaploReg v2网站对rs9268402及其强连锁不平衡位点rs3817973(r2=0.74)和rs9268473(r2=0.74)进行潜在的功能性证据分析。3.rs3817973与rs9268402强连锁且被预测有潜在转录调控功能,克隆rs3817973所在转录增强子区域(chr6:32360556-32362973),构建pGL3promoter-A/G重组表达载体,转染HEK293T细胞,分析双荧光素酶报告基因活性。
     4.应用电泳迁移率变动分析实验(electrophoretic mobility shift assay, EMSA)分析结合rs3817973位点的人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC)中的核蛋白因子。应用多重竞争EMSA(multiplexed competitor EMSA, MC-EMSA)方法筛选rs3817973位点A等位基因特异性结合的核蛋白因子。
     结果:
     1.研究发现冠心病易感多态位点rs9268402的风险等位基因G显著增加PBMCs转录本TCONS00012469的表达水平,表明lncRNA TCONS_00012469可能是rs9268402的靶基因。
     2.生物信息预测发现在HUVEC细胞中,冠心病易感位点rs9268402强连锁不平衡SNP rs3817973所在基因组区域有转录增强子表观遗传标记H3K27Ac和H3K4Me1的富集,该位点也处于DNaseI超敏感位点富集区和转录因子结合富集区,这表明rs3817973是潜在的功能性位点。且该SNP位于lncRNA TCONS00012469的第一个外显子上。
     3.双荧光素酶报告基因实验表明rs3817973所在区域具有转录增强特性,但未发现两等位基因之间有差异调控活性。
     4.EMSA检测发现rs3817973位点不同等位基因对核蛋白因子的亲和力不同,A等位基因特异性结合核蛋白因子。MC-EMSA检测发现了A等位基因可能结合的5个核蛋白因子,分别为:雄激素受体、CREB结合蛋白、干扰素γ激活序列、干扰素刺激反应元件和干扰素调控因子1。
     结论:
     1.本研究首次发现6p21.32区域冠心病风险位点rs9268402的风险等位基因G与lncRNA TCONS_00012469的高表达相关,表明rs9268402可能通过lncRNATCONS_00012469参与冠心病的发生发展。
     2.生物信息方法预测表明rs9268402的强连锁不平衡位点rs3817973所在区域具有增强子调控功能。
     3.双荧光素酶报告基因实验表明rs3817973所在区域具有增强子特性。
     4.本研究首次报道了rs3817973等位基因A特异性结合核蛋白因子。并发现了5个可能与A等位基因结合的核蛋白因子。表明该位点可能通过特异结合转录因子调控靶lncRNA的表达,进而调控冠心病的发生发展。本研究为冠心病GWAS风险位点的功能的进一步研究提供了方向和基础。
Part1:Association of gene expression, genetic variants of SIRT1with coronary artery disease
     Background and Objectives:
     As a complex disease, the pathogenesis of coronary artery disease (CAD) was considered to be related with genetics factors.Recent studies demonstrated protective roles of silent mating type information regulation2, S. cerevisiae, homolog1(SIRT1) in vascular biology and atherosclerosis in cell and animal models.Polymorphisms related to theSIRT1gene have been reported to be associated with senescence, obesity, diabetes mellitus, Alzheimer's disease, etc. But the association of SIRT1gene expression, genetic variants with CAD has not been studied systematically. Here, the relationship between mRNA expression level of the SIRT1gene and single nucleotide polymorphisms (SNPs) was investigated in the context of CAD, and the study was aimed to provide a new insight into the genetic control of SIRT1gene to the pathogenesis of CAD.
     Methods:
     1. The whole genome expression microarray (Illumina HT12v3) was conductedin peripheral blood mononuclear cells (PBMCs) in CAD group (18cases) and control group (6cases).To analyze the mRNA expression level of the SIRT1gene and replicate the microarray data, real-time PCR replication was performed in PBMCs sample in an independent cohort [CADgroup:58cases, including28acute myocardial infarction (AMI) patients and30unstable angina (UA);control group:175cases].
     2. SNPs were studied in10kb up-/downstream region of SIRT1gene. Then we analyzed the SNPs in linkage disequilibrium (LD) blocks via3bioinformatics' websites to predict potential regulatory SNPs, and four candidates were selected to be further studied.
     3. The selected four SNPs were analyzed in previous CAD GWAS microarray data of the Chinese Han population. The association result was verified by Taqman allelic discrimination assay system in an independent cohort (angina group:1,235cases; control group:905cases).
     4. Expression level of the SIRT1gene was analyzed by real-time PCR and the four SNPs were genotyped by Taqman probe in PBMCs from healthy subjects (n=229). The relationship between SIRT1mRNA expression and genotypes of four possible regulatory SNPs (rs12778366, rs3758391, rs2273773and rs4746720) was evaluated.
     Results:
     1. In the microarray study, mRNA expression of the SIRT1gene, as one of the most significantly differential expression genes, was significantly lower in patients with ACS and CAD groupscompared with the healthy subjects. Replication showed that the expression of SIRT1inACSgroup were42.22%of that in control group. Specifically, the SIRT1expression of AMI and UA group among ACS patients were respectively37.78%,47.78%. The microarray results were verified in an independent cohort.
     2. Via the analysis of related database and bioinformatics'websites, four SNPs, rs12778366, rs3758391, rs2273773and rs4746720, were selected to proceed to the further studies.
     3. The allele C of rs12778366was found to associate with occurrences of Angina in CAD GWAS microarray data (OR=1.25, P=0.032), but this result was not verified in an independent in angina case-control cohort (OR=0.96, P=0.66).
     4. In healthy subjects, SIRT1mRNA expression levelwasfirst found to be significantly lower in minor allele C of rs3758391. The minor allele C of rsl2778366was associated with higher BMI, and the minor allele C of rs2273773was related to lower BMI, fastingglucose and higher diastolic blood pressure.
     Conclusions:
     1. Our study explored the relationship between the expression of SIRT1mRNA and CAD, and confirmed that SIRT1mRNA expression was reduced in CAD patients intwo CAD case-control cohorts via two techniques, whole genome expression microarrayand real-time PCR, suggesting that the gene SIRT1might confer a positive role against CAD in cohort study.
     2. Four potentialregulatory SNPs were selected from the non-coding SNPs and synonymous variants related to the SIRT1genes.
     3. Our study did not found the association between SIRT1related SNPs and CAD. The result suggested that SIRT1related SNPs were not related with CAD, or need larger sample size to verify.
     4. The association between these variants and the SIRT1mRNA expression was conducted andour study first found that SIRT1expression was lower in the minor allele C of rs3758391, which had been reported to be in the binding sites of p53to the upstream of the SIRT1gene. The fact that the change of SIRT1mRNA is associated with SNPs nearby provides novel insights into CAD pathogenesis and new targets of prevent and treatment of CAD.
     Part2:Study on the relationship between susceptible SNP rs9268402at chromosome6p21.32and pathogenesis of coronary artery disease
     Background and Objectives:
     Genomewide association studies (GWAS) have led to the identification of more than fifty loci of atherosclerotic cardiovascular disease, and it has been into the era of discovering the patho-physiological mechanisms underlying these loci. Here, we tried to explore the regulatory mechanism of risk SNP rs9268402in6p21.32locus of coronary artery disease (CAD) in Chinese Han population, and then provide a new target of prevention and treatment of CAD.
     Methods:
     1. According to previous studies, the expression of transcripts adjacent to the6p21.32locus of coronary artery disease might be affected by the genotypes of rs9268402. Two adjacent protein coding genes C6orf10and BTNL2, one non-protein coding gene HCG23, and one long noncoding transcript of unknown function, designated TCONS_00012469, were selected as potential target genes for rs9268402. Expression level was analyzed by real-time PCR and rs9268402was genotyped by Taqman probe in peripheral bloodmononuclear cells (PBMCs) sample (n=78).
     2. The potentialregulatory functions of rs9268402and its proxy SNPs, rs3817973and rs9268473, which were in strong linkage disequilibrium (LD) with rs9268402(both of the two SNPS,r2=0.74), were predicted in the Encyclopedia of DNA Elements (ENCODE) database, RegulomeDB bioinformatics'website and HaploReg v2bioinformatics'websites,
     3. In that rs3817973was predicted to be a potential regulatory SNP and in strong LD with rs9268402, the genomic fragment of the predicted regulatoryregion (chr6:32360556-32362973) where rs3817973resided in wascloned into the pGL3promoter vector. The recombinant plasmids were transfected into HEK293T cells and then dual luciferase reporter activity assay was performed to detect allele specific transcriptional activation activity.
     4. Electrophoretic mobility shift assay (EMSA) was conducted using nucleus extract ofhuman umbilical vein endothelial cells (HUVEC). Then multiplexed competitor EMSA (MC-EMSA) was applied to search for the specific transcription factors that bind to allele A of rs3817973.
     Results:
     1. TranscriptTCONS_00012469were significantly increased in carriers of the risk allele G of rs9268402, suggesting lncRNATCONS_00012469might be a target gene of rs9268402.
     2. Rs3817973, in strong LD with rs9268402, was found in a rich region ofH3K27Ac and H3K4Mel histone marks, DNAasel hypersensitivity and binding sites of transcription factors in HUVEC. What is more, rs3817973locates in the first exon of lncRNA TCONS00012469.
     3. Theluciferase reporter activity assay showed that the transcriptional activity of the two alleles was stronger than empty vector, whileit did not be significant between the two alleles.
     4. EMSA demonstrated that allele A of rs3817973had greater binding affinity of nuclear protein than allele G. MC-EMSA showed that five transcription factors might be specific to bind allele A of rs3817973. They were androgen receptor, CREB binding protein, interferon-gamma activated sequence, interferon-stimulated response element and interferon regulatory factor1.
     Conclusions:
     1. Our studies found that the major allele G of rs9268402, in6p21.32risk regionof coronary artery disease, was associated with the high expression level of lncRNA TCONS_00012469, suggesting that it might be one of the target genes of rs9268402.2. Bioinformatics' predictions indicated that rs9268402might function through one of its proxy SNP rs3817973as an enhancer, which suggests that rs3817973, resided in the first exon oflncRNA TCONS_00012469, mightregulatethe transcription of the lncRNA or other target genes.
     3. The luciferase reporter activity assay confirmed that the predictedregion, encompassing rs3817973, could enhance gene transcription.
     4. EMSA found the minor allele A of rs3817973bind five transcription factors. Therefore, rs3817973might regulate the expression of its target genes by binding allelic different transcription factors and then participates inpathogenesis of CAD.
引文
[1]卫生部心血管病防治研究中心.中国心血管病报告2012[M].北京:中国大百科全书出版社,2013:1-6.
    [2]陆再英,钟南山.内科学(第7版)[M]:北京:人民卫生出版社,2004:274..
    [3]Barker D, Osmond C, Golding J, Kuh D, Wadsworth M. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease [J]. BMJ:British Medical Journal 1989;298(6673):564.
    [4]Epstein FH, Ross R. Atherosclerosis-an inflammatory disease [J]. New England journal of medicine 1999;340(2):115-126.
    [5]Steinberg D, Witztum JL. Oxidized low-density lipoprotein and atherosclerosis [J]. Arteriosclerosis, Thrombosis, and Vascular Biology 2010;30(12):2311-2316.
    [6]Libby P. Changing concepts of atherogenesis [J]. Journal of internal medicine 2000;247(3):349-358.
    [7]George SJ, Johnson J. Atherosclerosis:molecular and cellular mechanisms [M]:John Wiley & Sons,2010.
    [8]Hansson GK, Robertson A-KL, Soderberg-Naucler C. Inflammation and atherosclerosis [J]. Annu. Rev. Pathol. Mech. Dis.2006;1:297-329.
    [9]Lamon BD, Hajjar DP. Inflammation at the molecular interface of atherogenesis:an anthropological journey [J]. The American journal of pathology 2008; 173(5):1253-1264.
    [10]Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins [J]. Annu. Rev. Biochem.2006;75:435-465.
    [11]Haigis MC, Guarente LP. Mammalian sirtuins--merging roles in physiology, aging, and calorie restriction [J]. Genes & development 2006;20(21):2913-2921.
    [12]Michan S, Sinclair D. Sirtuins in mammals:insights into their biological function [J]. Biochem. J 2007;404:1-13.
    [13]Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirtl regulates aging and resistance to oxidative stress in the heart [J]. Circulation research 2007;100(10):1512-1521.
    [14]Kloting N, Bliiher M. Extended longevity and insulin signaling in adipose tissue [J]. Experimental gerontology 2005;40(11):878-883.
    [15]Pillarisetti S. A review of Sirtl and Sirtl modulators in cardiovascular and metabolic diseases [J]. Recent patents on cardiovascular drug discovery 2008;3(3):156-164.
    [16]Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P. p53 induces myocyte apoptosis via the activation of the renin-angiotensin system [J]. Experimental cell research 1997;234(1):57-65.
    [17]Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science 2004;306(5704):2105-2108.
    [18]Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival [J]. Cancer Research 2005;65(22):10457-10463.
    [19]Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? [J]. Nature Reviews Cancer 2009;9(2):123-128.
    [20]Chong ZZ, Wang S, Shang YC, Maiese K. Targeting cardiovascular disease with novel SIRT1 pathways [J]. Future cardiology 2012;8(1):89-100.
    [21]Flachsbart F, Croucher PJ, Nikolaus S, Hampe J, Cordes C, Schreiber S, Nebel A. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity [J]. Experimental gerontology 2006;41(1):98-102.
    [22]Zhang W-G, Bai X-J, Chen X-M. SIRT1 variants are associated with aging in a healthy Han Chinese population [J]. Clinica Chimica Acta 2010;411(21):1679-1683.
    [23]Kuningas M, Putters M, Westendorp RG, Slagboom PE, Van Heemst D. SIRT1 gene, age-related diseases, and mortality:the Leiden 85-plus study [J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2007;62(9):960-965.
    [24]Botden IP, Zillikens MC, De Rooij SR, Langendonk JG, Danser AJ, Sijbrands EJ, Roseboom TJ. Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine [J]. Diabetes Care 2012;35(2):424-426.
    [25]Rai E, Sharma S, Kaul S, Jain K, Matharoo K, Bhanwer AS, Bamezai RN. The interactive effect of SIRT1 promoter region polymorphism on type 2 diabetes susceptibility in the North Indian population [J]. PloS one 2012;7(11):e48621.
    [26]Figarska SM, Vonk JM, Boezen HM. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population [J]. PIoS one 2013;8(3):e58636.
    [27]Dong Y, Guo T, Traurig M, Mason CC, Kobes S, Perez J, Knowler WC, Bogardus C, Hanson RL, Baier LJ. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians [J]. Molecular genetics and metabolism 2011;104(4):661-665.
    [28]Weyrich P, Machicao F, Reinhardt J, Machann J, Schick F, Tschritter O, Stefan N, Fritsche A, Haring H-U. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention-the TULIP Study [J]. BMC medical genetics 2008;9(1):100.
    [29]Biason-Lauber A, Boni-Schnetzler M, Hubbard BP, Bouzakri K, Brunner A, Cavelti-Weder C, Keller C, Meyer-Boni M, Meier DT, Brorsson C. Identification of a SIRT1 mutation in a family with type 1 diabetes [J]. Cell metabolism 2013;17(3):448-455.
    [30]Shimoyama Y, Mitsuda Y, Tsuruta Y, Suzuki K, Hamajima N, Niwa T. S1RTUIN 1 Gene Polymorphisms are Associated With Cholesterol Metabolism and Coronary Artery Calcification in Japanese Hemodialysis Patients [J]. Journal of Renal Nutrition 2012;22(1):114-119.
    [31]Shimoyama Y, Suzuki K, Hamajima N, Niwa T. Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese [J]. Translational Research 2011;157(6):339-347.
    [32]Zarrabeitia MT, Valero C, Martin-Escudero JC, Olmos JM, Bolado-Carrancio A, de Sande-Nacarino EL, Rodriguez-Rey JC, Sainz J, Riancho JA. Association study of sirtuin 1 polymorphisms with bone mineral density and body mass index [J]. Archives of Medical Research 2012;43(5):363-368.
    [33]Peeters AV, Beckers S, Verrijken A, Mertens I, Roevens P, Peeters PJ, Van Hul W, Van Gaal LF. Association of SIRT1 gene variation with visceral obesity [J]. Human genetics 2008;124(4):431-436.
    [34]Zillikens MC, van Meurs JB, Rivadeneira F, Amin N, Hofman A, Oostra BA, Sijbrands EJ, Witteman JC, Pols HA, van Duijn CM. SIRT1 genetic variation is related to BMI and risk of obesity [J]. Diabetes 2009;58(12):2828-2834.
    [35]Clark SJ, Falchi M, Olsson B, Jacobson P, Cauchi S, Balkau B, Marre M, Lantieri O, Andersson JC, Jernas M. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity [J]. Obesity 2012;20(1):178-185.
    [36]Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, Hasun M, Akhmedov A, von Eckardstein A, Maier W. Peripheral blood monocyte Sirtl expression is reduced in patients with coronary artery disease [J]. PloS one 2013;8(1):e53106.
    [37]Hou L, Chen S, Yu H, Lu X, Chen J, Wang L, Huang J, Fan Z, Gu D. Associations of PLA2G7 gene polymorphisms with plasma lipoprotein-associated phospholipase A2 activity and coronary heart disease in a Chinese Han population:the Beijing atherosclerosis study [J]. Human genetics 2009;125(1):11-20.
    [38]He J, Neal B, Gu D, Suriyawongpaisal P, Xin X, Reynolds R, MacMahon S, Whelton PK. International collaborative study of cardiovascular disease in Asia:design, rationale, and preliminary results [J]. ETHNICITY AND DISEASE 2004;14(2):260-268.
    [39]Consortium EP. The ENCODE (ENCyclopedia of DNA elements) project [J]. Science 2004;306(5696):636-640.
    [40]Yuan H-Y, Chiou J-J, Tseng W-H, Liu C-H, Liu C-K, Lin Y-J, Wang H-H, Yao A, Chen Y-T, Hsu C-N. FASTSNP:an always up-to-date and extendable service for SNP function analysis and prioritization [J]. Nucleic acids research 2006;34(suppl 2):W635-W641.
    [41]Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, Sun J, Guo AY. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis [J]. Human mutation 2012;33(1):254-263.
    [42]Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time
    Quantitative PCR and the 2-ΔΔCT Method [J]. methods 2001;25(4):402-408.
    [43]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Mailer J, Sklar P, De Bakker PI, Daly MJ. PLINK:a tool set for whole-genome association and population-based linkage analyses [J]. The American Journal of Human Genetics 2007;81(3):559-575.
    [44]Benjamini Y, Hochberg Y Controlling the false discovery rate:a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society. Series B (Methodological) 1995:289-300.
    [45]Lee H, Chu S, Park J, Park H, Im J, Lee J. Visceral adiposity is associated with SIRT1 expression in peripheral blood mononuclear cells:A pilot study [J]. Endocrine journal 2013.
    [46]Chen H-Z, Wan Y-Z, Liu D-P. Cross-talk between SIRT1 and p66Shc in vascular diseases [J]. Trends in cardiovascular medicine 2013;23(7):237-241.
    [47]Franzeck FC, Hof D, Spescha RD, Hasun M, Akhmedov A, Steffel J, Shi Y, Cosentino F, Tanner FC, von Eckardstein A. Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease [J]. Atherosclerosis 2012;20(1):282-286.
    [48]Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T. SIRT1 is regulated by a PPARy-SIRTl negative feedback loop associated with senescence [J]. Nucleic acids research 2010;38(21):7458-7471.
    [49]Xiong S, Salazar G, Patrushev N, Alexander RW. FoxO1 mediates an autofeedback loop regulating SIRT1 expression [J]. Journal of biological chemistry 2011;286(7):5289-5299.
    [50]Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders [J]. Cellular signalling 2013;25(10):1939-1948.
    [51]Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease [J]. Nature biotechnology 2012;30(11):1095-1106.
    [52]Wu C, Li D, Jia W, Hu Z, Zhou Y, Yu D, Tong T, Wang M, Lin D, Qiao Y. Genome-wide association study identifies common variants in SLC39A6 associated with length of survival in esophageal squamous-cell carcinoma [J]. Nature genetics 2013;45(6):632-638.
    [53]Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus [J]. Nature 2010;466(7307):714-719.
    [54]Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-la [J]. Cell 2006;127(6):1109-1122.
    [55]Naqvi A, Hoffman TA, DeRicco J, Kumar A, Kim C-S, Jung S-B, Yamamori T, Kim Y-R, Mehdi F, Kumar S. A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression [J]. Human molecular genetics 2010;19(21):4123-4133.
    [56]Mattagajasingh I, Kim C-S, Naqvi A, Yamamori T, Hoffman TA, Jung S-B, DeRicco J, Kasuno K, Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase [J]. Proceedings of the National Academy of Sciences 2007;104(37):14855-14860.
    [57]Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis [J]. The EMBO journal 2007;26(13):3169-3179.
    [58]Shang L, Zhou H, Xia Y, Wang H, Gao G, Chen B, Liu Q, Shao C, Gong Y. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner [J]. Journal of cellular and molecular medicine 2009;13(10):4176-4184.
    [59]Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, De Oliveira RM, Leid M, McBumey MW, Guarente L. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-γ[J]. Nature 2004;429(6993):771-776.
    [1]Moran AE, Forouzanfar MH, Flaxman AD, Roth G, Mensah G, Ezzati M, Naghavi M, Murray CJ. Temporal Trends in ischemic hearT disease morTaliTy in 21 world regions,1980-2010:The gloBal Burden of disease 2010 sTudy [J]. Journal of the American College of Cardiology 2013;61(10_S).
    [2]Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS medicine 2006;3(11):e442.
    [3]卫生部心血管病防治研究中心.中国心血管病报告2012[M].北京:中国大百科全书出版社,2013:1-6.
    [4]Holdt LM, Teupser D. From genotype to phenotype in human atherosclerosis-recent findings [J]. Current opinion in lipidology 2013;24(5):410.
    [5]Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J]. Nature 2007;447(7145):661-678.
    [6]McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR. A common allele on chromosome 9 associated with coronary heart disease [J]. Science 2007;316(5830):1488-1491.
    [7]Gizard F, Amant C, Barbier O, Bellosta S, Robillard R, Percevault F, Sevestre H, Krimpenfort P, Corsini A, Rochette J. PPARa inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a [J]. Journal of Clinical Investigation 2005;115(11):3228-3238.
    [81 Gonzalez-Navarro H, Nabah YNA, Vinue A, Andres-Manzano MJ, Collado M, Serrano M, Andres V. p19ARF deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis [J]. Journal of the American College of Cardiology 2010;55(20):2258-2268.
    [9]Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, Ibrahim JG, Thomas NE, Sharpless NE. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis [J]. PloS one 2009;4(4):e5027.
    [10]Cunnington MS, Koref MS, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression [J]. PLoS genetics 2010;6(4):e1000899.
    [11]Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, Buerki C, McLean BW, Cook RC, Parker JS. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus [J]. Arteriosclerosis, thrombosis, and vascular biology 2009;29(10):1671-1677.
    [12]Folkersen L, Kyriakou T, Goel A, Peden J, Malarstig A, Paulsson-Berne G, Hamsten A, Franco-Cereceda A, Gabrielsen A, Eriksson P. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants [J]. PLoS One 2009;4(11):e7677.
    [13]Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H, Schuler G, Thiery J, Teupser D. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21 [J]. Arteriosclerosis, thrombosis, and vascular biology 2010;30(3):620-627.
    [14]Holdt LM, Sass K, Gabel G, Bergert H, Thiery J, Teupser D. Expression of Chr9p21 genes CDKN2B (p15 (INK4b)), CDKN2A (p16 (INK4a), p14 (ARF)) and MTAP in human atherosclerotic plaque [J]. Atherosclerosis 2011;214(2):264-270.
    [15]Congrains A, Kamide K, Ohishi M, Rakugi H. ANRIL:molecular mechanisms and implications in human health [J]. International journal of molecular sciences 2013;14(1):1278-1292.
    [16]Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine J-C. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells [J]. Genes & development 2007;21(5):525-530.
    [17]Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M. Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a [J]. Molecular cell 2010;38(5):662-674.
    [18]Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans [J]. Nature genetics 2008;40(2):189-197.
    [19]Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM. Newly identified loci that influence lipid concentrations and risk of coronary artery disease [J]. Nature genetics 2008;40(2):161-169.
    [20]Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marcano ACB, Hajat C. Genome-wide association study identifies genes for biomarkers of cardiovascular disease:serum urate and dyslipidemia [J]. The American Journal of Human Genetics 2008;82(1):139-149.
    [21]Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T. Common variants at 30 loci contribute to polygenic dyslipidemia [J]. Nature genetics 2009;41(1):56-65.
    [22]Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, Penninx BW, Janssens ACJ, Wilson JF, Spector T. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts [J]. Nature genetics 2009;41(1):47-55.
    [23]Sabatti C, Service SK, Hartikainen A-L, Pouta A, Ripatti S, Brodsky J, Jones CG, Zaitlen NA, Varilo T, Kaakinen M. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population [J]. Nature genetics 2009;41(1):35-46.
    [24]Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ. Biological, clinical and population relevance of 95 loci for blood lipids [J]. Nature 2010;466(7307):707-713.
    [25]Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease [J]. Nature genetics 2011;43(4):333-338.
    [26]Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, Prokisch H, Heim K, Doering A, Peters A. Genetic variation at chromosome Ip13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease [J]. Atherosclerosis 2010;208(1):183-189.
    [27]Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C. Mapping the genetic architecture of gene expression in human liver [J]. PLoS biology 2008;6(5):e107.
    [28]Folkersen L, van't Hooft F, Chernogubova E, Agardh HE, Hansson GK, Hedin U, Liska J, Syvanen A-C, Paulsson-Berne G, Franco-Cereceda A. Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease [J]. Circulation:Cardiovascular Genetics 2010;3(4):365-373.
    [29]Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM. From noncoding variant to phenotype via SORT1 at the Ip13 cholesterol locus [J]. Nature 2010;466(7307):714-719.
    [30]Lu X, Wang L, Chen S, He L, Yang X, Shi Y, Cheng J, Zhang L, Gu CC, Huang J. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease [J]. Nature genetics 2012;44(8):890-894.
    [31]Robinson J, Marsh SG. The IMGT/HLA Database. Bioinformatics for Immunomics:Springer, 2010:33-45.
    [32]Trowsdale J, Knight JC. Major Histocompatibility Complex Genomics and Human Disease [J]. Annual review of genomics and human genetics 2013;14:301-323.
    [33]Li S, Qian J, Yang Y, Zhao W, Dai J, Bei J-X, Foo JN, McLaren PJ, Li Z, Yang J. GWAS identifies novel susceptibility loci on 6p21.32 and 21q21.3 for hepatocellular carcinoma in chronic hepatitis B virus carriers [J]. PLoS genetics 2012;8(7):e1002791.
    [34]Smedby KE, Foo JN, Skibola CF, Darabi H, Conde L, Hjalgrim H, Kumar V, Chang ET, Rothman N, Cerhan JR. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma [J]. PLoS genetics 2011;7(4):e1001378.
    [35]Ferlini A, Bovolenta M, Neri M, Gualandi F, Balboni A, Yuryev A, Salvi F, Gemmati D, Liboni A, Zamboni P. Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21. 32 (HLA locus) in patients with venous malformations associated with multiple sclerosis [J]. BMC medical genetics 2010;11(1):64.
    [36]Miller E, Jamieson S, Joberty C, Fakiola M, Hudson D, Peacock C, Cordell H, Shaw M, Lins-Lainson Z, Shaw J. Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians [J]. Genes and immunity 2004;5(1):63-67.
    [37]Davies RW, Wells GA, Stewart AF, Erdmann J, Shah SH, Ferguson JF, Hall AS, Anand SS, Burnett MS, Epstein SE. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex [J]. Circulation:Cardiovascular Genetics 2012;5(2):217-225.
    [38]Feng B-J, Sun L-D, Soltani-Arabshahi R, Bowcock AM, Nair RP, Stuart P, Elder JT, Schrodi SJ, Begovich AB, Abecasis GR. Multiple loci within the major histocompatibility complex confer risk of psoriasis [J]. PLoS genetics 2009;5(8):e1000606.
    [39]Banno T, Gazel A, Blumenberg M. Pathway-specific profiling identifies the NF-kappa B-dependent tumor necrosis factor alpha-regulated genes in epidermal keratinocytes [J]. J Biol Chem 2005;280(19):18973-18980.
    [40]Yamazaki T, Goya I, Graf D, Craig S, Martin-Orozco N, Dong C. A butyrophilin family member critically inhibits T cell activation [J]. The Journal of Immunology 2010;185(10):5907-5914.
    [41]Hsueh K-C, Lin Y-J, Chang J-S, Wan L, Tsai F-J. BTNL2 gene polymorphisms may be associated with susceptibility to Kawasaki disease and formation of coronary artery lesions in Taiwanese children [J]. European journal of pediatrics 2010;169(6):713-719.
    [42]Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, Kazue T, Eto G, Yamakawa R. Long-term consequences of Kawasaki disease A 10-to 21-year follow-up study of 594 patients [J]. Circulation 1996;94(6):1379-1385.
    [43]Price P, Santoso L, Mastaglia F, Garlepp M, Kok C, Allcock R, Laing N. Two major histocompatibility complex haplotypes influence susceptibility to sporadic inclusion body myositis:critical evaluation of an association with HLA-DR3 [J]. Tissue Antigens 2004;64(5):575-580.
    [44]Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A, Nagy M, Gaede KI, Franke A, Haesler R. Sarcoidosis is associated with a truncating splice site mutation in BTNL2 [J]. Nature genetics 2005;37(4):357-364.
    [45]Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease [J]. Nature biotechnology 2012;30(11):1095-1106.
    [46]Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y. NONCODEv4: exploring the world of long non-coding RNA genes [J]. Nucleic acids research 2014;42(D1):D98-D103.
    [47]Smith AJ, Humphries SE. Characterization of DNA-binding proteins using multiplexed competitor EMSA [J]. Journal of molecular biology 2009;385(3):714-717.
    [48]Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B[J]. Atherosclerosis 2012;220(2):449-455.
    [49]Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu X-D, Topol EJ, Rosenfeld MG.9p21 DNA variants associated with coronary artery disease impair interferon-[ggr] signalling response [J]. Nature 2011;470(7333):264-268.
    [50]Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH. Endothelium in vitro:a review of human vascular endothelial cell lines for blood vessel-related research [J]. Angiogenesis 2001;4(2):91-102.
    [51]Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature 2009;458(7235):223-227.
    [52]Amaral PP, Mattick JS. Noncoding RNA in development [J]. Mammalian genome 2008;19(7-8):454-492.
    [53]Martianov I, Ramadass A, Barros AS, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript [J]. Nature 2007;445(7128):666-670.
    [54]Cao J, Zou H, Zhu B-p, Wang H, Li J, Ding Y, Li X-y. Sex hormones and androgen receptor:risk factors of coronary heart disease in elderly men [J]. Chinese Medical Sciences Journal 2010;25(1):44-49.
    [55]Saltiki K, Cimponeriu A, Garofalaki M, Sarika L, Papathoma A, Stamatelopoulos K, Alevizaki M. Severity of coronary artery disease in postmenopausal women:association with the androgen receptor gene (CAG) n repeat polymorphism [J]. Menopause 2011;18(11):1225-1231.
    [56]Angelucci C, Iacopino F, Ferracuti S, Urbano R, Sica G. Recombinant human IFN-beta affects androgen receptor level, neuroendocrine differentiation, cell adhesion, and motility in prostate cancer cells [J]. J. Interferon Cytokine Res.2007;27(8):643-652.
    [57]Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56 [J]. Nature 2009;459(7243):113-117.
    [58]Janknecht R, Hunter T. Transcription-A growing coactivator network [J]. Nature 1996;383(6595):22-23.
    [59]Takahashi T, Nakano T. CREB-binding proteins (CBP) as a transcriptional coactivator of GATA-2 [J]. Science in China (Series C:Life Sciences) 2008;3:001.
    [60]Lee SH, Kim JW, Lee HW, Cho YS, Oh SH, Kim YJ, Jung CH, Zhang W, Lee JH. Interferon regulatory factor-1 (IRF-1) is a mediator for interferon-gamma induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression [J]. Oncogene 2003;22(3):381-391.
    [61]Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh S, Kimura T, Green S. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages [J]. Science 1994;263(5153):1612-1615.
    [62]Kano S, Sato K, Morishita Y, Vollstedt S, Kim S, Bishop K, Honda K, Kubo M, Taniguchi T. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+T cells [J]. Nat Immunol 2008;9(1):34-41.
    [63]Sahu S, Chavez R, Ganguly R, Raman P. Transcriptional mechanisms that mediate upregulation of thrombospondin-1 expression by leptin in vascular smooth muscle cells [J]. The FASEB Journal 2013;27:1138.1139.
    [1]Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. The sequence of the human genome [J]. science 2001;291 (5507):1304-1351.
    [2]Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch'ang L-Y, Huang W, Liu B, Shen Y. The international HapMap project [J]. Nature 2003;426(6968):789-796.
    [3]Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome [J]. Nature genetics 2001;29(2):229-232.
    [4]Pearson TA, Manolio TA. How to interpret a genome-wide association study [J]. Jama 2008;299(11):1335-1344.
    [5]Faustino NA, Cooper TA. Pre-mRNA splicing and human disease [J]. Genes & development 2003;17(4):419-437.
    [6]Caceres JF, Kornblihtt AR. Alternative splicing:multiple control mechanisms and involvement in human disease [J]. TRENDS in Genetics 2002;18(4):186-193.
    [7]Cogan E, Schandene L, Crusiaux A, Cochaux P, Velu T, Goldman M. Clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome [J]. New England Journal of Medicine 1994;330(8):535-538.
    [8]Lecomte CM, Renard A, Martial JA. A new natural hGH variant-17.5 kd-produced by alternative splicing. An additional consensus sequence which might play a role in branchpoint selection [J]. Nucleic acids research 1987;15(16):6331-6348.
    [9]Moseley CT, Mullis PE, Prince MA, Phillips Ⅲ JA. An exon splice enhancer mutation causes autosomal dominant GH deficiency [J]. Journal of Clinical Endocrinology & Metabolism 2002;87(2):847-852.
    [10]'Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R. Are splicing mutations the most frequent cause of hereditary disease?[J]. FEBS letters 2005;579(9):1900-1903.
    [11]Barbaux S, Niaudet P, Gubler M-C, Grunfeld J-P, Jaubert F, Kuttenn F, Fekete CN, Souleyreau-Therville N, Thibaud E, Fellous M. Donor splice-site mutations in WT1 are responsible for Frasier syndrome [J].Nature genetics 1997;17(4):467-470.
    [12]Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus [J]. Cell 1990;60(3):509-520.
    [13]Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping [J].Nature 1990;343(6260):774-778.
    [14]Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo [J]. Mechanisms of development 1993;40(1):85-97.
    [15]Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development [J]. Cell 1993;74(4):679-691.
    [16]Miles C, Elgar G, Coles E, Kleinjan D-J, Van Heyningen V, Hastie N. Complete sequencing of the Fugu WAGR region from WT1 to PAX6:dramatic compaction and conservation of synteny with human chromosome Ilp13 [J].Proceedings of the National Academy of Sciences 1998;95(22):13068-13072.
    [17]Kohsaka T, Tagawa M, Takekoshi Y, Yanagisawa H, Tadokoro K, Yamada M. Exon 9 mutations in the WT1 gene, without influencing KTS splice isoforms, are also responsible for Frasier syndrome [J]. Human mutation 1999;14(6):466-470.
    [18]Melo KF, Martin RM, Costa EM, Carvalho FM, Jorge AA, Arnhold IJ, Mendonca BB. An unusual phenotype of Frasier syndrome due to IVS9+4C> T mutation in the WT1 gene:predominantly male ambiguous genitalia and absence of gonadal dysgenesis [J]. Journal of Clinical Endocrinology & Metabolism 2002;87(6):2500-2505.
    [19]Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy [J]. Proceedings of the National Academy of Sciences 1999;96(11):6307-6311.
    [20]Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA) [J]. Human mutation 2000;15(3):228-237.
    [211 Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1 [J].Nature genetics 2002;30(4):377-384.
    [22]Cifuentes-Diaz C, Frugier T, Tiziano FD, Lacene E, Roblot N, Joshi V, Moreau MH, Melki J. Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy [J]. The Journal of cell biology 2001;152(5):1107-1114.
    [23]Gray NK, Wickens M. Control of translation initiation in animals [J]. Annual review of cell and developmental biology 1998;14(1):399-458.
    [24]Kozak M. Initiation of translation in prokaryotes and eukaryotes [J]. Gene 1999;234(2):187-208.
    [25]Cazzola M, Skoda RC. Translational pathophysiology:a novel molecular mechanism of human disease [J]. Blood 2000;95(11):3280-3288.
    [26]Cazzola M, Bergamaschi G, Tonon L, Arbustini E, Grasso M, Vercesi E, Barosi G, Bianchi PE, Cairo G, Arosio P. Hereditary hyperferritinemia-cataract syndrome:relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA [J]. Blood 1997;90(2):814-821.
    [27]Ghilardi N, Wiestner A, Skoda RC. Thrombopoietin production is inhibited by a translational mechanism [J]. Blood 1998;92(11):4023-4030.
    [28]Bisio A, Nasti S, Jordan JJ, Gargiulo S, Pastorino L, Provenzani A, Quattrone A, Queirolo P, Bianchi-Scarra G, Ghiorzo P. Functional analysis of CDKN2A/p16INK4a 5'-UTR variants predisposing to melanoma [J]. Human molecular genetics 2010;19(8):1479-1491.
    [29]Tuccoli A, Poliseno L, Rainaldi G. miRNAs regulate miRNAs:coordinated transcriptional and post-transcriptional regulation [J]. Cell Cycle 2006;5(21):2473-2476.
    [30]Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A, Guiducci C, Kathiresan S, Benjamin EJ, Struck J. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure [J]. Nature genetics 2009;41(3):348-353.
    [31]Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, Spagnolli E, Martinez A, Ryan A, Tainsh LT. Atrial natriuretic peptide is negatively regulated by microRNA-425 [J]. The Journal of clinical investigation 2013;123(8):3378.
    [32]Ma L, Xu M, Li D, Han Y, Wang Z, Yuan H, Ma J, Zhang W, Jiang H, Pan Y. A miRNA-binding-site SNP of MSX1 is Associated with NSOC Susceptibility [J]. Journal of dental research 2014:0022034514527617.
    [33]Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus [J]. PLoS genetics 2013;9(2):e1003336.
    [34]Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals [J]. Nature 2009;458(7235):223-227.
    [35]Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs [J]. Cell 2009;136(4):629-641.
    [36]Bonafe L, Dermitzakis ET, Unger S, Greenberg CR, Campos-Xavier BA, Zankl A, Ucla C, Antonarakis SE, Superti-Furga A, Reymond A. Evolutionary comparison provides evidence for pathogenicity of RMRP mutations [J]. PLoS genetics 2005;1(4):e47.
    [37]Cooper TA, Wan L, Dreyfuss G. RNA and disease [J]. Cell 2009;136(4):777-793.
    [38]Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Morales DR, Thomas K, Presser A, Bernstein BE, van Oudenaarden A. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression [J]. Proceedings of the National Academy of Sciences 2009;106(28):11667-11672.
    [39]Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs [J]. Cell 2007;129(7):1311-1323.
    [40]Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin [J]. Science 2008;322(5908):1717-1720.
    [41]Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L. lincRNAs act in the circuitry controlling pluripotency and differentiation [J]. Nature 2011;477(7364):295-300.
    [42]Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome[J]. Nature 1991;349(6304):38-44.
    [43]Lee J, Davidow LS, Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre [J]. Nature genetics 1999;21(4):400-404.
    [44]Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA [J]. Molecular and cellular biology 1990;10(1):28-36.
    [45]Sotomaru Y, Katsuzawa Y, Hatada I, Obata Y, Sasaki H, Kono T. Unregulated Expression of the Imprinted Genes H19 andIgf2r in Mouse Uniparental Fetuses [J]. Journal of Biological Chemistry 2002;277(14):12474-12478.
    [46]Willingham A, Orth A, Batalov S, Peters E, Wen B, Aza-Blanc P, Hogenesch J, Schultz P. A strategy for probing the function of noncoding RNAs finds a repressor of NEAT [J]. Science 2005;309(5740):1570-1573.
    [47]Pasmant E, Sabbagh A, Vidaud M, Bieche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS [J]. The FASEB Journal 2011;25(2):444-448.
    [48]Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk [J]. PLoS genetics 2010;6(12):e1001233.
    [49]Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E. MALAT-1, a novel noncoding RNA, and thymosin (34 predict metastasis and survival in early-stage non-small cell lung cancer [J]. Oncogene 2003;22(39):8031-8041.
    [50]Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8 [J]. Nature genetics 2006;38(7):758-769.
    [51]Arakawa S, Takahashi A, Ashikawa K, Hosono N, Aoi T, Yasuda M, Oshima Y, Yoshida S, Enaida H, Tsuchihashi T. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population [J]. Nature genetics 2011;43(10):1001-1004.
    [52]Kumar V, Westra H-J, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B, Almeida R, Zhernakova A, Reinmaa E, Vosa U. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression [J]. PLoS genetics 2013;9(1):e1003201.
    [53]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC [J]. Genome research 2002;12(6):996-1006.
    [54]Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer [J]. Nature genetics 2009;41(8):882-884.
    [55]Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, Bjorklund M, Wei G, Yan J, Niittymaki I. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling [J]. Nature genetics 2009;41(8):885-890.
    [56]Wasserman NF, Aneas I, Nobrega MA. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer [J]. Genome research 2010;20(9):1191-1197.
    [57]Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, Nishida N, Gafa R, Song J, Guo Z. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer [J]. Genome research 2013;23(9):1446-1461.
    [58]Knight JC. Regulatory polymorphisms underlying complex disease traits [J]. Journal of Molecular Medicine 2005;83(2):97-109.
    [59]Cooke GS, Hill AV. Genetics of susceptibitlity to human infectious disease [J]. Nature Reviews Genetics 2001;2(12):967-977.
    [60]Exner M, Minar E, Wagner O, Schillinger M. The role of heme oxygenase-1 promoter polymorphisms in human disease [J]. Free Radical Biology and Medicine 2004;37(8):1097-1104.
    [61]Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, Sasaki H. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema [J]. The American Journal of Human Genetics 2000;66(1):187-195.
    [62]Ono K, Mannami T, Iwai N. Association of a promoter variant of the haeme oxygenase-1 gene with hypertension in women [J]. Journal of hypertension 2003;21(8):1497-1503.
    [63]Ono K, Goto Y, Takagi S, Baba S, Tago N, Nonogi H, Iwai N. A promoter variant of the heme oxygenase-1 gene may reduce the incidence of ischemic heart disease in Japanese [J]. Atherosclerosis 2004;173(2):313-317.
    [64]Baan C, Peeters A, Lemos F, Uitterlinden A, Doxiadis I, Claas F, Ijzermans J, Roodnat J, Weimar W. Fundamental role for HO-1 in the self-protection of renal allografts [J]. American journal of transplantation 2004;4(5):811-818.
    [65]Denschlag D, Marculescu R, Unfried G, Hefler L, Exner M, Hashemi A, Riener EK, Keck C, Tempfer C, Wagner O. The size of a microsatellite polymorphism of the haem oxygenase 1 gene is associated with idiopathic recurrent miscarriage [J]. Molecular human reproduction 2004;10(3):211-214.
    [66]Kimpara T, Takeda A, Watanabe K, Itoyama Y, Ikawa S, Watanabe M, Arai H, Sasaki H, Higuchi S, Okita N. Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease [J]. Human genetics 1997;100(1):145-147.
    [67]Kanai M, Akaba K, Sasaki A, Sato M, Harano T, Shibahara S, Kurachi H, Yoshida T, Hayasaka K. Neonatal hyperbilirubinemia in Japanese neonates:analysis of the heme oxygenase-1 gene and fetal hemoglobin composition in cord blood [J]. Pediatric research 2003;54(2):165-171.
    [68]Martin MP, Dean M, Smith MW, Winkler C, Gerrard B, Michael NL, Lee B, Doms RW, Margolick J, Buchbinder S. Genetic acceleration of AIDS progression by a promoter variant of CCR5 [J]. Science 1998;282(5395):1907-1911.
    [69]Bream JH, Young HA, Rice N, Martin MP, Smith MW, Carrington M, O'Brien SJ. CCR5 promoter alleles and specific DNA binding factors [J]. Science 1999;284(5412):223-223.
    [70]Bray NJ, Jehu L, Moskvina V, Buxbaum JD, Dracheva S, Haroutunian V, Williams J, Buckland PR, Owen MJ, O'Donovan MC. Allelic expression of APOE in human brain:effects of epsilon status and promoter haplotypes [J]. Human molecular genetics 2004;13(22):2885-2892.
    [71]St George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer's disease [J]. Comptes rendus biologies 2005;328(2):119-130.
    [72]Lim Y-Y, Chin Y-M, Tai M-C, Fani S, Chang K-M, Ong T-C, Bee P-C, Gan G-G, Ng C-C. Analysis of Interleukin-10 promoter single nucleotide polymorphisms and risk of Non-Hodgkin's lymphoma in a Malaysian population [J]. Leukemia & Lymphoma 2014(0):1-19.
    [73]Wu H, Zhang K, Gong P, Qiao F, Wang L, Cui H, Sui X, Gao J, Fan H. A Novel Functional TagSNP Rs7560488 in the DNMT3A1 Promoter Is Associated with Susceptibility to Gastric Cancer by Modulating Promoter Activity [J]. PloS one 2014;9(3):e92911.
    [74]Pousada G, Baloira A, Vilarino C, Valverde D. Analysis in the Promoter Region of TRPC6 Gene in Patients With Pulmonary Arterial Hypertension [J]. Chest 2014;145(3 Suppl):518A-518A.
    [75]Kleinjan DA, van Heyningen V. Long-range control of gene expression:emerging mechanisms and disruption in disease [J]. The American Journal of Human Genetics 2005;76(1):8-32.
    [76]Noonan JP, McCallion AS. Genomics of long-range regulatory elements [J]. Annual review of genomics and human genetics 2010;11:1-23.
    [77]Visel A, Rubin EM, Pennacchio LA. Genomic views of distant-acting enhancers [J]. Nature 2009;461(7261):199-205.
    [78]Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly [J]. Human molecular genetics 2003;12(14):1725-1735.
    [79]Sakabe NJ, Savic D, Nobrega MA. Transcriptional enhancers in development and disease [J]. A A 2012;4(K4):K4.
    [80]Miller CL, Anderson DR, Kundu RK, Raiesdana A, Nurnberg ST, Diaz R, Cheng K, Leeper NJ, Chen C-H, Chang I-S. Disease-Related Growth Factor and Embryonic Signaling Pathways Modulate an Enhancer of TCF21 Expression at the 6q23.2 Coronary Heart Disease Locus [J]. PLoS genetics 2013;9(7):e1003652.
    [81]Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, Schnabel RB, Lubos E, Keller T, Eleftheriadis MS. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease [J]. Circulation:Cardiovascular Genetics 2011;4(4):403-412.
    [82]Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C. Mapping the genetic architecture of gene expression in human liver [J]. PLoS biology 2008;6(5):e107.
    [83]Folkersen L, van't Hooft F, Chernogubova E, Agardh HE, Hansson GK, Hedin U, Liska J, Syvanen A-C, Paulsson-Berne G, Franco-Cereceda A. Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease [J]. Circulation:Cardiovascular Genetics 2010;3(4):365-373.
    [84]Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM. From noncoding variant to phenotype via SORT1 at the Ip13 cholesterol locus [J]. Nature 2010;466(7307):714-719.
    [85]Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu X-D, Topol EJ, Rosenfeld MG.9p21 DNA variants associated with coronary artery disease impair interferon-[ggr] signalling response [J]. Nature 2011;470(7333):264-268.
    [86]Kim CH, Oh Y, Lee TH. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells [J]. Gene 1997;199(1):293-301.
    [87]Andre S, Seed B, Eberle J, Schraut W, Bultmann A, Haas J. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage [J]. Journal of virology 1998;72(2):1497-1503.
    [88]Iida K, Akashi H. A test of translational selection at 'silent'sites in the human genome:base composition comparisons in alternatively spliced genes [J]. Gene 2000;261(1):93-105.
    [89]Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor [J]. Human molecular genetics 2003;12(3):205-216.
    [90]Lander ES. The new genomics:global views of biology [J]. Science 1996;274(5287):536-539.
    [91]Risch N, Merikangas K. The future of genetic studies of complex human diseases [J]. Science 1996;273(5281):1516-1517.
    [92]Chakravarti A. Population genetics-making sense out of sequence [J]. Nature genetics 1999;21:56-60.
    [93]Reich DE, Lander ES. On the allelic spectrum of human disease [J]. TRENDS in Genetics 2001;17(9):502-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700