用户名: 密码: 验证码:
通心络对心脏微血管内皮缺血再灌注损伤的保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通心络通过激活MEK/ERK信号通路诱导细胞自噬而在缺氧/复氧损伤过程中保护心脏微血管内皮细胞
     背景与目的:关于缺血再灌注损伤的机制研究中,心肌细胞的自噬发生及调节研究较多,而心脏微血管内皮细胞中自噬的作用尚未被探索。通心络是一种具有血管保护功能的中药复方制剂,目前在中国此药已用于6百万心脑血管疾病患者。因此,本研究的目的即探索缺氧/复氧损伤时自噬在心脏微血管内皮细胞中的作用,以及通心络对其的调节机制。
     方法:给予不同药物处理心脏微血管内皮细胞30分钟后,缺氧2小时,复氧2小时。不同浓度的通心络溶液,人参皂甙Rgl,芍药苷以及3-甲基腺嘌呤(3-MA),雷帕霉素,PD98059等药物被用以研究自噬与凋亡的关系以及其在心脏微血管内皮细胞中的调节机制。
     结果:缺氧/复氧明显地升高了心脏微血管内皮细胞的自噬水平,表现为单丹磺酰尸胺(MDC)染色阳性的细胞数目增加,透射电镜下自噬体形成增多,微管蛋白轻链3(LC3)-Ⅱ/Ⅰ的比值升高;然而Beclin-1的水平并无变化。自噬抑制剂3-MA显著促进了细胞凋亡,而自噬促进剂雷帕霉素则抑制了细胞凋亡。通心络浓度依赖性地增加了细胞自噬水平和降低了细胞凋亡率,在800μg/mL时达到最佳效应,可将凋亡率从21.04±1.11%降至9.92±0.49%。3-MA明显抑制了通心络的促自噬及抗凋亡的作用,而雷帕霉素并没有进一步增加通心络的促自噬及抗凋亡的作用。通心络促进了MEK和ERK蛋白的磷酸化;加入MEK/ERK抑制剂PD98059后,与单用通心络相比,ERK的磷酸化水平降低,细胞自噬被削弱,并且细胞凋亡率增加。
     结论:上述结果表明,自噬诱导在缺血再灌注过程中对心脏微血管内皮细胞中是一种保护机制。通心络可以通过激活MEK/ERK信号通路诱导细胞自噬。
     中药通心络可调节缺血再灌注损伤时心脏微血管内皮细胞的分泌功能
     背景与目的:心脏微血管内皮细胞在缺血再灌注损伤时可通过近分泌及旁分泌功能调节心肌细胞及血液细胞的功能。通心络是一种由人参和其他11种天然药材构成的中药复方制剂,具有保护内皮和防治心肌缺血再灌注损伤的功能。因此,我们设·计此研究以发现在缺氧/复氧环境下心脏微血管内皮分泌功能的改变,以及通心络对其变化的调节作用。
     方法:以不同浓度的通心络处理心脏微血管内皮细胞30分钟后,缺氧12小时,复氧2小时。流式细胞术分析凋亡率以确定通心络作用的最佳浓度。蛋白芯片双抗体夹心法检测心脏微血管内皮细胞在缺氧/复氧后培养基上清中发生变化的细胞因子。基因本体论分析及文献综述发生变化的细胞因子的功能。
     结果:通心络在缺氧12小时/复氧2小时的环境下浓度依赖性地抑制了心脏微血管内皮细胞的凋亡,并且仍然在800μg/mL的浓度达到顶峰,可降低凋亡率从35.15±0.78%到14.64±2.23%。缺氧/复氧环境显著改变了细胞分泌的33种细胞因子的水平,其中19个因子下降,14个因子上调。通心络改变了121个细胞因子的变化情况,其中93个下降,28个上调。发生显著变化的细胞因子的功能集中于细胞分化,增殖,信号通路的调节,以及物质转运等方面。在发生显著变化的所有细胞因子中,被缺氧/复氧上调但被通心络下调的有10个,如单核细胞趋化因子-2;被缺氧/复氧下调但被通心络上调的有5个,如滤泡抑素;缺氧/复氧组下降,通心络组进一步下降的有8个,如碱性成纤维细胞生长因子;胰岛素样生长因子结合蛋白在缺氧/复氧组分泌增多且在通心络组进一步上调。
     结论:通心络抑制了在缺氧/复氧情况下诱导的心脏微血管内皮细胞凋亡,并且其保护心肌缺血再灌注损伤的作用与调节缺氧/复氧时心脏微血管内皮细胞的旁分泌功能有关。
Induction of autophagy by Tongxinluo via the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury
     Backgrounds and Objectives:In contrast to cardiomyocytes, autophagy in cardiac microvascular endothelial cells (CMECs) during ischemia/reperfusion (I/R) injury has not been fully investigated. Tongxinluo (TXL) is a Traditional Chinese Medicine formulation that is widely used by more than6million patients with cardio-cerebral vascular diseases in China for its vascular-protective effect. We aimed to elucidate the role of autophagy and its regulatory mechanisms by TXL in CMECs subjected to I/R injury.
     Methods:CMECs were exposed to different treatments for30min and subjected to hypoxia/reoxygenation (H/R) each for2h. The TXL solution at different concentrations, ginsenoside Rgl, paeoniflorin,3-methyladenine (3-MA), rapamycin and PD98059were used to further investigate the role and the modulatory mechanism of autophagy in CMECs.
     Results:The results indicated that H/R significantly induced autophagy, as identified by an increased number of monodansylcadaverine (MDC)-positive CMECs, increased autophagosome formation, and a higher type II/type I of light chain3ratio, but not Beclin-1expression. Autophagy inhibition using3-methyladenine (3-MA) was proapoptotic, but rapamycin-induced autophagy was antiapoptotic. TXL enhanced autophagy and decreased apoptosis rates in a dose-dependent manner, reaching its largest effect at800μg/mL, which decreased apoptosis from21.04±1.11%to9.92±0.49%.3-MA attenuated the TXL-promoted autophagy and antiapoptotic effects, whereas rapamycin had no additional effects compared to TXL alone. TXL upregulated MEK and ERK phosphorylation; however, PD98059abrogated ERK phosphorylation and decreased autophagy and increased apoptosis compared to TXL alone.
     Conclusions:These results suggest that autophagy is a protective mechanism in CMECs subjected to I/R injury and that TXL can promote autophagy via activation of the MEK/ERK pathway.
     Traditional Chinese Medicine Tongxinluo modulates the secretion of cytokines in vitro by cardiac microvascular endothelial cells in ischemia/reperfusion injury.
     Backgrounds and Objectives:Cardiac microvascular endothelial cells (CMECs) regulate the function of cardiomyocytes and blood cells in ischemia/reperfusion injury via autocrine and paracrine methods. Tongxinluo (TXL) is a Traditional Chinese Medicine compound which is constituted of Radix ginseng and other11kinds of natural products. It is proved to improve the function of endothelium and be protective from ischemia/reperfusion injury. Thus, we designed the study to find alterations in paracrine function of CMECs under the hypoxia/reoxygenation (H/R) situation and its modulation by TXL.
     Methods:CMECs were exposed to different concentrations of TXL for30min and then subjected to H/R for12h/2h. Apoptotic rates of the cells were measured to determine the optimal concentration. Protein antibody arrays were used to find the alterations of cytokines in conditioned medium (CM) secreted by CMECs. Gene Ontology (GO) project was adopted to describe the functions of changed cytokines.
     Results:TXL inhibited apoptosis of CMECs dose-dependently under H/R and reached its peak effect at the dose of800μg/mL, which reduce cell apoptosis from35.15±0.78%to14.64±2.23%. Thirty-three types of cytokines were significantly changed by H/R (19factors decreased and14increased), and TXL at800μg/ml changed121types of cytokines compared to the H/R group (93factors decreased and28increased). The cytokines with significant alterations were involved in cell differentiation and proliferation, regulation of signalling pathway, and transportation. Among these cytokines,10kinds of cytokines were increased by H/R but were decreased by TXL, such as MCP-2;5were decreased by H/R but increased by TXL, such as Follistatin;8were attenuated by H/R and further decreased by TXL, such as bFGF; IGFBP-1were upregulated by H/R and further increased by TXL.
     Conclusions:TXL inhibited apoptosis of CMECs and modulated the paracrine function of the cells in ischemia/reperfusion injury.
引文
1. Lassen JF, Botker HE, Terkelsen CJ. Timely and optimal treatment of patients with STEMI. Nat Rev Cardiol.2013 Jan;10(1):41-8.
    2. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol.1983;1(4):1047-1055.
    3. Yellon DM, Hausenloy DJ. Myocardial Reperfusion Injury. NEnglJMed. 2007;357(11):1121-1135.
    4. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury:a neglected therapeutic target. The Journal of clinical investigation.2013 January; 123(1):92-100.
    5. Braunwald E, Kloner RA. Myocardial reperfusion:a double-edged sword? J Clin Invest. 1985;76(5):1713.
    6. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction:a quantitative review of 23 randomised trials. The Lancet.2003;361(9351):13-20.
    7. Bernink FJ, Timmers L, Beek AM, Diamant M, Roos ST, Van Rossum AC, Appelman Y. Progression in attenuating myocardial reperfusion injury:an overview. Int J Cardiol.2014 Jan 1;170(3):261-9.
    8. Zhao N, Liu Y-Y, Wang F, Hu B-H, Sun K, Chang X, Pan C-S, Fan J-Y, Wei X-H, Li X, Wang C-S, Guo Z-X, Han J-Y. Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. American Journal of Physiology-Heart and Circulatory Physiology.2010 April 2010;298(4):H1166-H1176.
    9. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, Sardella G, Mancone M, Catalano C, Fedele F, Passariello R, Bogaert J, Agati L. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction:insight from cardiovascular magnetic resonance. J Am Coll Cardiol.2009 Dec 1;54(23):2145-53.
    10. Jaffe R, Dick A, Strauss BH. Prevention and Treatment of Microvascular Obstruction-Related Myocardial Injury and Coronary No-Reflow Following Percutaneous Coronary Intervention:A Systematic Approach. JACC:Cardiovascular Interventions. 2010;3(7):695-704.
    11. Brutsaert DL. Cardiac Endothelial-Myocardial Signaling:Its Role in Cardiac Growth, Contractile Performance, and Rhythmicity. Physiol Rev.2003 January 1,2003;83(1):59-115.
    12. Anversa P, Olivetti G, Melissari M, Loud AV. Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. JMol Cell Cardiol.1980 Aug;12(8):781-95.
    13. Brutsaert DL, Fransen P, Andries LJ, De Keulenaer GW, Sys SU. Cardiac endothelium and myocardial function. Cardiovasc Res.1998 May 1,1998;38(2):281-290.
    14. Liu Q, Li J, Wang J, Li J, Janicki JS, Fan D. Effects and Mechanisms of Chinese Herbal Medicine in Ameliorating Myocardial Ischemia-Reperfusion Injury. Evid Based Complement Alternat Med.2013;2013.
    15. Wei XH, Liu YY, Li Q, Yan L, Hu BH, Pan CS, Li ZX, Chang X, Fan JY, Zhao N, Sun K, Huang P, Wang CS, Fan TP, Han JY. Treatment with cardiotonic pills((R)) after ischemia-reperfusion ameliorates myocardial fibrosis in rats. Microcirculation.2013 Jan;20(1):17-29.
    16. Zhang HT, Jia ZH, Zhang J, Ye ZK, Yang WX, Tian YQ, JIA X, LI W, WU YL, YANG YJ. No-reflow protection and long-term efficacy for acute myocardial infarction with Tongxinluo: a randomized double-blind placebo-controlled multicenter clincal trial (ENLEAT Trial). Chin Med J.2010 August,123:2858-2864.
    17. Li X-D, Yang Y-J, Geng Y-J, Jin C, Hu F-H, Zhao J-L, Zhang H-T, Cheng Y-T, Qian H-Y, Wang L-L, Zhang B-J, Wu Y-L. Tongxinluo reduces myocardial no-reflow and ischemia-reperfusion injury by stimulating the phosphorylation of eNOS via the PKA pathway. American Journal of Physiology-Heart and Circulatory Physiology.2010 October 1,2010;299(4):H1255-H1261.
    18. 吴以岭.“脉络—血管系统”相关性探讨.中医杂志.2007;48(1):5-8.
    19. 吴以岭,张运,杨跃进,葛均波,王拥军,张伯礼,田书彦,吴伟康,郭双庚,吴宗贵,曾定尹,罗祖明,贾振华,智马,翁超明,李叶双,王振亮.络病学.1 ed.北京:中国科学技术出版社,2004.
    20. Karalliedde LD, Kappagoda CT. The challenge of traditional Chinese medicines for allopathic practitioners. Am JPhysiol Heart Cire Physiol.2009 Dec;297(6):H1967-9.
    21. Zhang L, Liu Y, Lu XT, Wu YL, Zhang C, Ji XP, Wang R, Liu CX, Feng JB, Jiang H, Xu XS, Zhao YX, Zhang Y. Traditional Chinese medication Tongxinluo dose-dependently enhances stability of vulnerable plaques:a comparison with a high-dose simvastatin therapy. American Journal of Physiology-Heart and Circulatory Physiology.2009 December 1, 2009;297(6):H2004-H2014.
    22. Chen WQ, Zhong L, Zhang L, Ji XP, Zhao YX, Zhang C, Jiang H, Wu YL, Zhang Y. Chinese medicine tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model. J Ethnopharmacol.2009 Jul 6;124(1):103-10.
    23. Wu T, Harrison RA, Chen X, Ni J, Zhou L, Qiao J, Wang Q, Wei J, Xin D, Zheng J. Tongxinluo (Tong xin luo or Tong-xin-luo) capsule for unstable angina pectoris. Cochrane Database Syst Rev.2006 (4):CD004474.
    24. You SJ, Yang YJ, Chen KJ, Gao RL, Wu YJ, Zhang J, Jing ZC, Bai DF, Wang YW, Chen JL. [The protective effects of Tong-xin-luo on myocardium and microvasculature after reperfusion in acute myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi.2005 May;33(5):433-7.
    25. Cheng YT, Yang YJ, Zhang HT, Qian HY, Zhao JL, Meng XM, Luo FL, Wu YL. Pretreatment with Tongxinluo protects porcine myocardium from ischaemia/reperfusion injury through a nitric oxide related mechanism. Chin Med J.2009 January;122(13):1529-1538.
    26. Su W, Sun A, Xu D, Zhang H, Yang L, Yuan L, Jia J, Zou Y, Wu Y, Wang K, Ge J. Tongxinluo inhibits oxidized low-density lipoprotein-induced maturation of human dendritic cells via activating peroxisome proliferator-activated receptor gamma pathway. J Cardiovasc Pharmacol.2010 Aug;56(2):177-83.
    1. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury:a neglected therapeutic target. The Journal of clinical investigation.2013 January;123(1):92-100.
    2. Zhao N, Liu Y-Y, Wang F, Hu B-H, Sun K, Chang X, Pan C-S, Fan J-Y, Wei X-H, Li X, Wang C-S, Guo Z-X, Han J-Y. Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. American Journal of Physiology-Heart and Circulatory Physiology.2010 April 2010;298(4):H1166-H1176.
    3. Brutsaert DL. Cardiac Endothelial-Myocardial Signaling:Its Role in Cardiac Growth, Contractile Performance, and Rhythmicity. Physiol Rev.2003 January 1,2003;83(1):59-115.
    4. Leucker TM, Bienengraeber M, Muravyeva M, Baotic I, Weihrauch D, Brzezinska AK, Warltier DC, Kersten JR, Pratt Jr PF. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotection. JMol Cell Cardiol.2011;51(5):803-811.
    5. Hedhli N, Huang Q, Kalinowski A, Palmeri M, Hu X, Russell RR, Russell KS. Endothelium-Derived Neuregulin Protects the Heart Against Ischemic Injury/Clinical Perspective. Circulation.2011 May 24,2011;123(20):2254-2262.
    6. Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YTE. Role of endothelial cells in myocardial ischemia-reperfusion injury. Vascular Disease Prevention.2010;7:1-14.
    7. Tsao PS, Aoki N, Lefer DJ, Johnson G,3rd, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation.1990 Oct;82(4):1402-12.
    8. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000 Dec 1;290(5497):1717-21.
    9. Shimomura H, Terasaki F, Hayashi T, Kitaura Y, Isomura T, Suma H. Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J.2001 Nov;65(11):965-8.
    10. Hein S, Elsasser A, Kostin S, Zimmermann R, Schaper J. Functional disturbances due to structural remodeling in the failing human heart. Arch Mal Coeur Vaiss.2002 Sep;95(9):815-20.
    11. Ouimet M. Autophagy in obesity and atherosclerosis:Interrelationships between cholesterol homeostasis, lipoprotein metabolism and autophagy in macrophages and other systems. Biochim Biophys Acta.2013 Jun; 1831(6):1124-33.
    12. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB. Response to myocardial ischemia//reperfusion injury involves Bnip? and autophagy. Cell Death Differ.2006;14(1):146-157.
    13. Przyklenk K, Dong Y, Undyala W, Whittaker P. Autophagy as a therapeutic target for ischaemia/reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res.2012 May 1,2012;94(2):197-205.
    14. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J. Distinct Roles of Autophagy in the Heart During Ischemia and Reperfusion. Circ Res.2007 March 30,2007;100(6):914-922.
    15. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature.2001 Mar 1;410(6824):37-40.
    16. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. JBiol Chem. 1993 Jul 15;268(20):14553-6.
    17. Karalliedde LD, Kappagoda CT. The challenge of traditional Chinese medicines for allopathic practitioners. Am JPhysiol Heart Circ Physiol.2009 Dec;297(6):H1967-9.
    18. Zhang L, Liu Y, Lu XT, Wu YL, Zhang C, Ji XP, Wang R, Liu CX, Feng JB, Jiang H, Xu XS, Zhao YX, Zhang Y. Traditional Chinese medication Tongxinluo dose-dependently enhances stability of vulnerable plaques:a comparison with a high-dose simvastatin therapy. American Journal of Physiology-Heart and Circulatory Physiology.2009 December 1, 2009;297(6):H2004-H2014.
    19. Chen WQ, Zhong L, Zhang L, Ji XP, Zhao YX, Zhang C, Jiang H, Wu YL, Zhang Y. Chinese medicine tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model. JEthnopharmacol.2009 Jul 6;124(1):103-10.
    20. Wu T, Harrison RA, Chen X, Ni J, Zhou L, Qiao J, Wang Q, Wei J, Xin D, Zheng J. Tongxinluo (Tong xin luo or Tong-xin-luo) capsule for unstable angina pectoris. Cochrane Database Syst Rev.2006 (4):CD004474.
    21. You SJ, Yang YJ, Chen KJ, Gao RL, Wu YJ, Zhang J, Jing ZC, Bai DF, Wang YW, Chen JL. [The protective effects of Tong-xin-luo on myocardium and microvasculature after reperfusion in acute myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi.2005 May;33(5):433-7.
    22. Zhang HT, Jia ZH, Zhang J, Ye ZK, Yang WX, Tian YQ, JIA X, LI W, WU YL, YANG YJ. No-reflow protection and long-term efficacy for acute myocardial infarction with Tongxinluo: a randomized double-blind placebo-controlled multicenter clincal trial (ENLEAT Trial). Chin Med J.2010 August;123:2858-2864.
    23. Li X-D, Yang Y-J, Geng Y-J, Jin C, Hu F-H, Zhao J-L, Zhang H-T, Cheng Y-T, Qian H-Y, Wang L-L, Zhang B-J, Wu Y-L. Tongxinluo reduces myocardial no-reflow and ischemia-reperfusion injury by stimulating the phosphorylation of eNOS via the PKA pathway. American Journal of Physiology-Heart and Circulatory Physiology.2010 October 1,2010;299(4):H1255-H1261.
    24. Cheng YT, Yang YJ, Zhang HT, Qian HY, Zhao JL, Meng XM, Luo FL, Wu YL. Pretreatment with Tongxinluo protects porcine myocardium from ischaemia/reperfusion injury through a nitric oxide related mechanism. Chin Med J.2009 January;122(13):1529-1538.
    25. Jee SH, Chu CY, Chiu HC, Huang YL, Tsai WL, Liao YH, Kuo ML. Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J Invest Dermatol.2004 Dec; 123(6):1169-75.
    26. Yan J, Liu Q, Dou Y, Hsieh Y, Liu Y, Tao R, Zhu D, Lou Y. Activating glucocorticoid receptor-ERK signaling pathway contributes to ginsenoside Rgl protection against beta-amyloid peptide-induced human endothelial cells apoptosis. J Ethnopharmacol.2013 May 20;147(2):456-66.
    27. Chen T, Guo ZP, Jiao XY, Jia RZ, Zhang YH, Li JY, Huang XL, Liu HJ. Peoniflorin suppresses tumor necrosis factor-alpha induced chemokine production in human dermal microvascular endothelial cells by blocking nuclear factor-kappaB and ERK pathway. Arch Dermatol Res.2011 Jul;303(5):351-60.
    28. Chen T, Guo ZP, Jiao XY, Zhang YH, Li JY, Liu HJ. Protective effects of peoniflorin against hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells. Can J Physiol Pharmacol.2011 Jun;89(6):445-53.
    29. Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H. Autophagy activation:A novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway.2012.
    30. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, Popescu LM, Das DK. Cardioprotection by resveratrol:a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res.2010 April 1,2010;86(1):103-112.
    31. Therade-Matharan S, Laemmel E, Carpentier S, Obata Y, Levade T, Duranteau J, Vicaut E. Reactive oxygen species production by mitochondria in endothelial cells exposed to reoxygenation after hypoxia and glucose depletion is mediated by ceramide. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.2005 December 2005;289(6):R1756-R1762.
    32. Therade-Matharan S, Laemmel E, Duranteau J, Vicaut E. Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.2004 November 1,2004;287(5):R1037-R1043.
    33. Guo H, Chen Y, Liao L, Wu W. Resveratrol Protects HUVECs from Oxidized-LDL Induced Oxidative Damage by Autophagy Upregulation via the AMPK/SIRT1 Pathway. Cardiovasc Drugs Ther.2013 2013/01/01:1-10.
    34. Chen G, Zhang W, Li Y-P,Ren J-G, Xu N, Liu H, Wang F-Q, Sun Z-J, Jia J, Zhao Y-F. Hypoxia-induced autophagy in endothelial cells:a double-edged sword in the progression of infantile haemangioma? Cardiovasc Res.2013 June 1,2013;98(3):437-448.
    35. Shahani T, Lavend'homme R, Luttun A, Saint-Remy J-M, Peerlinck K, Jacquemin M. Activation of human endothelial cells from specific vascular beds induces the release of a FVⅢ storage pool. Blood.2010 June 10,2010;115(23):4902-4909.
    36. Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A. Urocortin inhibits Beclinl-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. JMol Cell Cardiol.2006 May;40(6):846-852.
    37. Zhang Z-L, Fan Y, Liu M-L. Ginsenoside Rgl inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol Cell Biochem.2012 2012/06/01;365(1-2):243-250.
    38. Huang C, Yitzhaki S, Perry C, Liu W, Giricz Z, Mentzer R, Gottlieb R. Autophagy Induced by Ischemic Preconditioning is Essential for Cardioprotection. J Cardiovasc Transl Res.2010 May;3(4):365-373.
    39. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. JBiol Chem.2006 October 6, 2006;281(40):29776-29787.
    40. Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G, Takaku F. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ.2000 Dec;7(12):1263-9.
    41. Hausenloy D, Yellon D. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection. Heart Fail Rev.2007; 12(3):217-234.
    42. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury:targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Candiovasc Res.2004 February 15,2004;61(3):448-460.
    43. Zeng Y, Yang X, Wang J, Fan J, Kong Q, Yu X. Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PLoS ONE. 2012;7(1):e30312.
    44. Xie LN, Zeng DY, Zhang HS, Sun DM, Pang XF, Guan QG-Effect of tongxinluo on vasoconstriction induced by the chronic injury of the adventitia in the rat carotid artery. J Ethnopharmacol. 2010 Sep 15;131(2):300-5.
    45. Liang JQ, Wu K, Jia ZH, Liu C, Ding J, Huang SN, Yin PP, Wu XC, Wei C, Wu YL, Wang HY. Chinese medicine Tongxinluo modulates vascular endothelial function by inducing eNOS expression via the PI-3K/Akt/HIF-dependent signaling pathway. J Ethnopharmacol. 2011 Jan 27;133(2):517-23.
    46. Su W, Sun A, Xu D, Zhang H, Yang L, Yuan L, Jia J, Zou Y, Wu Y, Wang K, Ge J. Tongxinluo inhibits oxidized low-density lipoprotein-induced maturation of human dendritic cells via activating peroxisome proliferator-activated receptor gamma pathway. J Cardiovasc Pharmacol.2010 Aug;56(2):177-83.
    47. Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism. J Ethnopharmacol.2011 May 17;135(2):287-98.
    48. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, Zhou Z, Wang SQ. Ginsenoside Rgl protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem.2009 Sep 1;108(1):117-24.
    49. Li CP, Qin G, Shi RZ, Zhang MS, Lv JY. Ginsenoside Rg1 reduces toxicity of PM(2.5) on human umbilical vein endothelial cells by upregulating intracellular antioxidative state. Environmental toxicology and pharmacology.2013 Jan;35(1):21-9.
    50. Tang NY, Liu CH, Hsieh CT, Hsieh CL. The anti-inflammatory effect of paeoniflorin on cerebral infarction induced by ischemia-reperfusion injury in Sprague-Dawley rats. Am J Chin Med.2010;38(1):51-64.
    51. Nizamutdinova IT, Jin YC, Kim JS, Yean MH, Kang SS, Kim YS, Lee JH, Seo HG, Kim HJ, Chang KC. Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. Planta Med.2008 Jan;74(1):14-8.
    52. Liu R, Zhang L, Lan X, Li L, Zhang TT, Sun JH, Du GH. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion:involvement of anti-oxidation and anti-inflammation through nuclear transcription factor kappaappaB signaling pathway. Neuroscience.2011 Mar 10; 176:408-19.
    53. Li XD, Yang YJ, Cheng YT, Dou KF, Tian Y, Meng XM. Protein kinase A-mediated cardioprotection of Tongxinluo relates to the inhibition of myocardial inflammation, apoptosis, and edema in reperfused swine hearts. Chin Med J (Engl).2013;126(8):1469-79.
    1. Amedei A, Prisco D, MM DE. The use of cytokines and chemokines in the cancer immunotherapy. Recent Pat Anticancer Drug Discov.2013 May;8(2):126-42.
    2. Gilbert CA, Slingerland JM. Cytokines, obesity, and cancer:new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med.2013;64:45-57.
    3. Kim HJ, Kim HJ, Yun J, Kim KH, Kim SH, Lee SC, Bae SB; Kim CK, Lee NS, Lee KT, Park SK, Won JH, Park HS, Hong DS. Pathophysiological role of hormones and cytokines in cancer cachexia. J Korean Med Sci.2012 Feb;27(2):128-34.
    4. Stoner L, Lucero AA, Palmer BR, Jones LM, Young JM, Faulkner J. Inflammatory biomarkers for predicting cardiovascular disease. Clin Biochem.2013 Oct;46(15):1353-71.
    5. Camilleri G, Borg M, Brincat S, Schembri-Wismayer P, Brincat M, Calleja-Agius J. The role of cytokines in cardiovascular disease in menopause. Climacteric.2012 Dec;15(6):524-30.
    6. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, Zerbi P, Vago G, Busca G, Schwartz PJ. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 2011 Nov;58(5):500-7.
    7. Vignaud A, Hourde C, Medja F, Agbulut O, Butler-Browne G, Ferry A. Impaired skeletal muscle repair after ischemia-reperfusion injury in mice. Journal of biomedicine & biotechnology.2010;2010:724914.
    8. Grothusen C, Hagemann A, Attmann T, Braesen J, Broch O, Cremer J, Schoettler J. Impact of an interleukin-1 receptor antagonist and erythropoietin on experimental myocardial ischemia/reperfusion injury. ScientificWorldJournal.2012;2012:737585.
    9. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke.2007 Apr;38(4):1345-53.
    10. Sager R, Haskill S, Anisowicz A, Trask D, Pike MC. GRO:a novel chemotactic cytokine. Adv Exp Med Biol.1991;305:73-7.
    11. Brutsaert DL. Cardiac Endothelial-Myocardial Signaling:Its Role in Cardiac Growth, Contractile Performance, and Rhythmicity. Physiol Rev.2003 January 1,2003;83(1):59-115.
    12. Singhal AK, Symons JD, Boudina S, Jaishy, Bharat, Shiu Y-TE. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. Vascular Disease Prevention.2010;7:1-14.
    13. Stankunas K, Ma GK, Kuhnert FJ, Kuo CJ, Chang CP. VEGF signaling has distinct spatiotemporal roles during heart valve development. Developmental biology.2010 Nov 15;347(2):325-36.
    14. Yang X, Cohen MV, Downey JM. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovascular drugs and therapy/sponsored by the International Society of Cardiovascular Pharmacotherapy.2010 Jun;24(3):225-34.
    15. Rodrigues SF, Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovasc Res.2010 Jul 15;87(2):291-9.
    16. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. The New England journal of medicine.2007 Sep 13;357(11):1121-35.
    17. Hedhli N, Huang Q, Kalinowski A, Palmeri M, Hu X, Russell RR, Russell KS. Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation.2011 May 24;123(20):2254-62.
    18. Seddon M, Shah AM, Casadei B. Cardiomyocytes as effectors of nitric oxide signalling. Cardiovascular research.2007 Jul 15;75(2):315-26.
    19. Karalliedde LD, Kappagoda CT. The challenge of traditional Chinese medicines for allopathic practitioners. Am JPhysiol Heart Circ Physiol.2009 Dec;297(6):H1967-9.
    20. Dai W, Wei C, Kong H, Jia Z, Han J, Zhang F, Wu Z, Gu Y, Chen S, Gu Q, Lu X, Wu Y, Xu G. Effect of the traditional Chinese medicine tongxinluo on endothelial dysfunction rats studied by using urinary metabonomics based on liquid chromatography-mass spectrometry. JPharm Biomed Anal.20118/25/;56(1):86-92.
    21. Chen WQ, Zhong L, Zhang L, Ji XP, Zhao YX, Zhang C, Jiang H, Wu YL, Zhang Y. Chinese medicine tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model. JEthnopharmacol.2009 Jul 6;124(1):103-10.
    22. Nizamutdinova IT, Jin YC, Kim JS, Yean MH, Kang SS, Kim YS, Lee JH, Seo HG, Kim HJ, Chang KC. Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. Planta Med.2008 Jan;74(1):14-8.
    23. Chen T, Guo ZP, Jiao XY, Zhang YH, Li JY, Liu HJ. Protective effects of peoniflorin against hydrogen peroxide-induced oxidative stress in human umbilical vein endothelial cells. Can J Physiol Pharmacol.2011 Jun;89(6):445-53.
    24. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, Zhou Z, Wang SQ. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem.2009 Sep 1;108(1):117-24.
    25. Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism. J Ethnopharmacol.2011 May 17;135(2):287-98.
    26. Liu R, Zhang L, Lan X, Li L, Zhang TT, Sun JH, Du GH. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion:involvement of anti-oxidation and anti-inflammation through nuclear transcription factor kappaappaB signaling pathway. Neuroscience.2011 Mar 10;176:408-19.
    27. Chen Z, Hu Z, Lu Z, Cai S, Gu X, Zhuang H, Ruan Z, Xia Z, Irwin MG, Feng D, Zhang L. Differential microRNA profiling in a cellular hypoxia reoxygenation model upon posthypoxic propofol treatment reveals alterations in autophagy signaling network. Oxid Med Cell Longev. 2013;2013:378484.
    28. Shimada T, Furuta H, Doi A, Ariyasu H, Kawashima H, Wakasaki H, Nishi M, Sasaki H, Akamizu T. Des-acyl ghrelin protects microvascular endothelial cells from oxidative stress-induced apoptosis through sirtuin 1 signaling pathway. Metabolism.2013 Dec 28.
    29. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature.1998 Dec 17;396(6712):699-703.
    30. Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem.1999 May 14;274(20):13733-6.
    31. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity.2002 Mar;16(3):479-92.
    32. Lin WW, Hsieh SL. Decoy receptor 3:a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol.2011 Apr 1;81(7):838-47.
    33. Chang YC, Hsu TL, Lin HH, Chio CC, Chiu AW, Chen NJ, Lin CH, Hsieh SL. Modulation of macrophage differentiation and activation by decoy receptor 3. JLeukoc Biol.2004 Mar;75(3):486-94.
    34. Tai SK, Chang HC, Lan KL, Lee CT, Yang CY, Chen NJ, Chou TY, Tarng DC, Hsieh SL. Decoy receptor 3 enhances tumor progression via induction of tumor-associated macrophages. J Immunol.2012 Mar 1;188(5):2464-71.
    35. Cheng CP, Sheu MJ, Sytwu HK, Chang DM. Decoy receptor 3 suppresses RANKL-induced osteoclastogenesis via down-regulating NFATcl and enhancing cell apoptosis. Rheumatology (Oxford).2013 Apr;52(4):609-22.
    36. Miyazono K, Maeda S, Imamura T. BMP receptor signaling:transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev.2005 Jun;16(3):251-63.
    37. Izumi M, Fujio Y, Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Oshima Y, Nakaoka Y, Kishimoto T, Yamauchi-Takihara K, Hirota H. Bone morphogenetic protein-2 inhibits serum deprivation-induced apoptosis of neonatal cardiac myocytes through activation of the Smadl pathway. JBiol Chem.2001 Aug 17;276(33):31133-41.
    38. Ghosh-Choudhury N, Abboud SL, Chandrasekar B, Ghosh Choudhury G. BMP-2 regulates cardiomyocyte contractility in a phosphatidylinositol 3 kinase-dependent manner. FEBS Lett. 2003 Jun 5;544(1-3):181-4.
    39. Ebelt H, Hillebrand I, Arlt S, Zhang Y, Kostin S, Neuhaus H, Muller-Werdan U, Schwarz E, Werdan K, Braun T. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock.2013 Apr;39(4):353-60.
    40. Borgono CA, Michael IP, Shaw JL, Luo LY, Ghosh MC, Soosaipillai A, Grass L, Katsaros D, Diamandis EP. Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. J Biol Chem.2007 Jan 26;282(4):2405-22.
    41. Lose F, Lawrence MG, Srinivasan S, O'Mara T, Marquart L, Chambers S, Gardiner RA, Aitken JF, Spurdle AB, Batra J, Clements JA. The kallikrein 14 gene is down-regulated by androgen receptor signalling and harbours genetic variation that is associated with prostate tumour aggressiveness. Biol Chem.2012 Apr 1;393(5):403-12.
    42. Borgono CA, Grass L, Soosaipillai A, Yousef GM, Petraki CD, Howarth DH, Fracchioli S, Katsaros D, Diamandis EP. Human kallikrein 14:a new potential biomarker for ovarian and breast cancer. Cancer Res.2003 Dec 15;63(24):9032-41.
    43. Yin H, Chao L, Chao J. Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. JBiol Chem.2005 Mar 4;280(9):8022-30.
    44. Yoshida H, Zhang JJ, Chao L, Chao J. Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension.2000 Jan;35(1Pt 1)55-31.
    45. Lu RY, Luo DF, Xiao SH, Yang LH, Zhao J, Ji EN, Tao EX, Xing YG, Zhu FY, Luan P, Liu J. Kallikrein gene transfer induces angiogenesis and further improves regional cerebral blood flow in the early period after cerebral ischemia/reperfusion in rats. CNS neuroscience & therapeutics.2012 May;18(5):395-9.
    46. Struyf S, Proost P, Vandercappellen J, Dempe S, Noyens B, Nelissen S, Gouwy M, Locati M, Opdenakker G, Dinsart C, Van Damme J. Synergistic up-regulation of MCP-2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti-tumoral effects. Eur J Immunol.2009 Mar;39(3):843-57.
    47. Yamamoto M, Ota A, Hori T, Imai S, Sohma H, Suzuki N, Hatakeyama N, Inazawa N, Ito YM, Kimura H, Tsutsumi H, Kokai Y. Early expression of plasma CCL8 closely correlates with survival rate of acute graft-vs.-host disease in mice. Exp Hematol.2011 Nov;39(11):1101-12.
    48. Schellekens DH, Grootjans J, Dello SA, van Bijnen AA, van Dam RM, Dejong CH, Derikx JP, Buurman WA. Plasma Intestinal Fatty Acid-Binding Protein Levels Correlate With Morphologic Epithelial Intestinal Damage in a Human Translational Ischemia-reperfusion Model. J Clin Gastroenterol.2014 Mar,48(3):253-60.
    49. Uitterdijk A, Sneep S, van Duin R, Krabbendam-Peters I, Gorsse-Bakker C, Duncker DJ, van der Giessen WJ, van Beusekom HM. Serial measurement of hFABP and high sensitivity Troponin I post PCI in STEMI. How fast and accurate can Myocardial Infarct Size and No-Reflow be predicted? Am J Physiol Heart Circ Physiol.2013 Jul 19.
    50. Cordwell SJ, Edwards AVG, Liddy KA, Moshkanbaryans L, Solis N, Parker BL, Yong ASC, Wong C, Kritharides L, Hambly BD, White MY. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury. JProteome Res.2012 2012/04/06;11(4):2114-2126.
    51. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol.2011 Feb;11(2):85-97.
    52. Stahl GL, Xu Y, Hao L, Miller M, Buras JA, Fung M, Zhao H. Role for the alternative complement pathway in ischemia/reperfusion injury. Am JPathol.2003 Feb;162(2):449-55.
    53. Laurikka A, Vuolteenaho K, Toikkanen V, Rinne T, Leppanen T, Tarkka M, Laurikka J, Moilanen E. Adipocytokine resistin correlates with oxidative stress and myocardial injury in patients undergoing cardiac surgery. Eur J Cardiothorac Surg.2014 Jan 30.
    54. Sarra M, Pallone F, Monteleone G. Interleukin-21 in chronic inflammatory diseases. Bio/actors.2013 Jul-Aug;39(4):368-73.
    55. Weir RA, Miller AM, Petrie CJ, Clements S, Steedman T, Dargie HJ, Squire IB, Ng LL, McInnes IB, McMurray JJ. Interleukin-21-a biomarker of importance in predicting myocardial function following acute infarction? Cytokine.2012 Oct;60(1):220-5.
    56. Feng M, Li G, Qian X, Fan Y, Huang X, Zhang F, Lu L. IL-17A-producing NK cells were implicated in liver injury induced by ischemia and reperfusion. Int Immunopharmacol.2012 Jun;13(2):135-40.
    57. Cicora F, Roberti J, Lausada N, Gonzalez P, Guerrieri D, Stringa P, Cicora P, Vasquez D, Gonzalez I, Palti G, Intile D, Raimondi C. Donor preconditioning with rabbit anti-rat thymocyte immunoglobulin ameliorates ischemia reperfusion injury in rat kidney transplantation. Transpl Immunol.2012 Aug;27(1):1-7.
    58. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci.2008;13:2400-7.
    59. Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol.2002 Jul;283(1):R7-28.
    60. Mersmann J, Berkels R, Zacharowski P, Tran N, Koch A, Iekushi K, Dimmeler S, Granja TF, Boehm O, Claycomb WC, Zacharowski K. Preconditioning by toll-like receptor 2 agonist Pam3CSK4 reduces CXCL1-dependent leukocyte recruitment in murine myocardial ischemia/reperfusion injury. Crit Care Med.2010 Mar;38(3):903-9.
    61. Al-Amran F, Shahkolahi M. Oxytocin ameliorates the immediate myocardial injury in rat heart transplant through downregulation of neutrophil-dependent myocardial apoptosis. Transplant Proc.2013 Jul-Aug;45(6):2506-12.
    62. Wang W, Knovich MA, Coffinan LG, Torti FM, Torti SV. Serum ferritin:Past, present and future. Biochim Biophys Acta.2010 Aug;1800(8):760-9.
    63. Beard JL, Murray-Kolb LE, Rosales FJ, Solomons NW, Angelilli ML. Interpretation of serum ferritin concentrations as indicators of total-body iron stores in survey populations:the role of biomarkers for the acute phase response. Am J Clin Nutr.2006 Dec;84(6):1498-505.
    64. Zieger MA, Gupta MP. Hypothermic preconditioning of endothelial cells attenuates cold-induced injury by a ferritin-dependent process. Free Radic Biol Med.2009 Mar 1;46(5):680-91.
    65. Loncar R, Flesche CW, Deussen A. Myocardial ferritin content is closely related to the degree of ischaemia. Acta Physiol Scand.2004 Jan;180(1):21-8.
    66. Kim HK, Kang SW, Jeong SH, Kim N, Ko JH, Bang H, Park WS, Choi TH, Ha YR, Lee YS, Youm JB, Ko KS, Rhee BD, Han J. Identification of potential target genes of cardioprotection against ischemia-reperfusion injury by express sequence tags analysis in rat hearts. J Cardiol. 2012 Aug;60(2):98-110.
    67. Chevion M, Leibowitz S, Aye NN, Novogrodsky O, Singer A, Avizemer O, Bulvik B, Konijn AM, Berenshtein E. Heart protection by ischemic preconditioning:a novel pathway initiated by iron and mediated by ferritin. JMol Cell Cardiol.2008 Dec;45(6):839-45.
    68. Garcia-Yebenes I, Sobrado M, Moraga A, Zarruk JG, Romera VG, Pradillo JM, Perez de la Ossa N, Moro MA, Davalos A, Lizasoain I. Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int. 2012 Dec;61(8):1364-9.
    69. Nakamura H, Fujii Y, Ohuchi E, Yamamoto E, Okada Y. Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur J Biochem.1998 Apr l;253(1):67-75.
    70. Knauper V, Murphy G, Tschesche H. Activation of human neutrophil procollagenase by stromelysin 2. EurJBiochem.1996 Jan 15;235(1-2):187-91.
    71. Orbe J, Rodriguez JA, Calvayrac O, Rodriguez-Calvo R, Rodriguez C, Roncal C, Martinez de Lizarrondo S, Barrenetxe J, Reverter JC, Martinez-Gonzalez J, Paramo JA. Matrix metalloproteinase-10 is upregulated by thrombin in endothelial cells and increased in patients with enhanced thrombin generation. Arterioscler Thromb Vasc Biol.2009 Dec;29(12):2109-16.
    72. Toni M, Hermida J, Goni MJ, Fernandez P, Parks WC, Toledo E, Montes R, Diez N. Matrix metalloproteinase-10 plays an active role in microvascular complications in type 1 diabetic patients. Diabetologia.2013 Dec;56(12):2743-52.
    73. Ueshima K, Shibata M, Suzuki T, Endo S, Hiramori K. Extracellular matrix disturbances in acute myocardial infarction:relation between disease severity and matrix metalloproteinase-1, and effects of magnesium pretreatment on reperfusion injury. Magnes Res.2003 Jun;16(2):120-6.
    74. Li D, Williams V, Liu L, Chen H, Sawamura T, Antakli T, Mehta JL. LOX-1 inhibition in myocardial ischemia-reperfusion injury:modulation of MMP-1 and inflammation. Am J Physiol Heart Circ Physiol.2002 Nov;283(5):H1795-801.
    75. Chen H, Li D, Saldeen T, Mehta JL. TGF-beta 1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. Am J Physiol Heart Circ Physiol.2003 May;284(5):H1612-7.
    76. Infanger M, Faramarzi S, Grosse J, Kurth E, Ulbrich C, Bauer J, Wehland M, Kreutz R, Kossmehl P, Paul M, Grimm D. Expression of vascular endothelial growth factor and receptor tyrosine kinases in cardiac ischemia/reperfusion injury. Cardiovascular pathology. the official journal of the Society for Cardiovascular Pathology.2007 Sep-Oct;16(5):291-9.
    77. Zhu H, Zou L, Tian J, Du G, Gao Y. SMND-309, a novel derivative of salvianolic acid B, protects rat brains ischemia and reperfusion injury by targeting the JAK2/STAT3 pathway. EurJ Pharmacol.2013 Aug 15;714(1-3):23-31.
    78. Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. International journal of biological sciences. 2013;9(5):435-43.
    79. Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit:from basic science to clinical implications. Physiol Rev.2012 Oct;92(4):1619-49.
    80. Xiang FL, Lu X, Liu Y, Feng Q. Cardiomyocyte-specific overexpression of human stem cell factor protects against myocardial ischemia and reperfusion injury. Int J Cardiol.2013 Oct 9;168(4):3486-94.
    81. Lu T, Luo Y, Sun H, Qin W, Li Y. Electroacupuncture improves behavioral recovery and increases SCF/c-kit expression in a rat model of focal cerebral ischemia/reperfusion. Neurol Sci.2013 Apr;34(4):487-95.
    82. Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev.2013 Jun;24(3):285-95.
    83. Kanamoto M, Shimada M, Morine Y, Yoshizumi T, Imura S, Ikegami T, Mori H, Arakawa Y. Beneficial effects of follistatin in hepatic ischemia-reperfusion injuries in rats. Dig Dis Sci. 2011 Apr;56(4):1075-81.
    84. Maeshima A, Zhang YQ, Nojima Y, Naruse T, Kojima I. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol.2001 Aug;12(8):1685-95.
    85. Borai A, Livingstone C, Ghayour-Mobarhan M, Abuosa A, Shafi S, Mehta S, Heidari A, Emadzadeh A, Wark G, Ferns G. Serum insulin-like growth factor binding protein-1 (1GFBP-1) phosphorylation status in subjects with and without ischaemic heart disease. Atherosclerosis.2010 Feb;208(2):593-8.
    86. Wallander M, Norhammar A, Malmberg K, Ohrvik J, Ryden L, Brismar K. IGF binding protein 1 predicts cardiovascular morbidity and mortality in patients with acute myocardial infarction and type 2 diabetes. Diabetes Care.2007 Sep;30(9):2343-8.
    87. Mellbin LG, Ryden L, Brismar K, Morgenthaler NG, Ohrvik J, Catrina SB. Copeptin, IGFBP-1, and cardiovascular prognosis in patients with type 2 diabetes and acute myocardial infarction:a report from the DIGAMI2 trial. Diabetes Care.2010 Jul;33(7):1604-6.
    88. Janszky I, Hallqvist J, Ljung R, Hammar N. Insulin-like growth factor binding protein-1 is a long-term predictor of heart failure in survivors of a first acute myocardial infarction and population controls. Int J Cardiol.2010 Jan 7;138(1):50-5.
    89. Perbal B. CCN proteins:A centralized communication network. J Cell Commun Signal.2013 Aug;7(3):169-77.
    90. Lin Z, Natesan V, Shi H, Hamik A, Kawanami D, Hao C, Mahabaleshwar GH, Wang W, Jin ZG, Atkins GB, Firth SM, Rittie L, Perbal B, Jain MK. A novel role of CCN3 in regulating endothelial inflammation. J Cell Commun Signal.2010 Oct;4(3):141-53.
    91. van Roeyen CR, Boor P, Borkham-Kamphorst E, Rong S, Kunter U, Martin IV, Kaitovic A, Fleckenstein S, Perbal B, Trautwein C, Weiskirchen R, Ostendorf T, Floege J. A novel, dual role of CCN3 in experimental glomerulonephritis:pro-angiogenic and antimesangioproliferative effects. Am JPathol.2012 May; 180(5):1979-90.
    92. Oshima S, Nakamura T, Namiki S, Okada E, Tsuchiya K, Okamoto R, Yamazaki M, Yokota T, Aida M, Yamaguchi Y, Kanai T, Handa H, Watanabe M. Interferon regulatory factor 1 (IRF-1) and IRF-2 distinctively up-regulate gene expression and production of interleukin-7 in human intestinal epithelial cells. Mol Cell Biol.2004 Jul;24(14):6298-310.
    93. Bhatia SK, Tygrett LT, Grabstein KH, Waldschmidt TJ. The effect of in vivo IL-7 deprivation on T cell maturation. J Exp Med.1995 Apr 1;181(4):1399-409.
    94. Zlotnik A, Moore TA. Cytokine production and requirements during T-cell development. Curr Opin Immunol.1995 Apr;7(2):206-13.
    95. Cai YJ, Wang WS, Liang HY, Sun LH, Teitelbaum DH, Yang H. Keratinocyte growth factor up-regulates Interleukin-7 expression following intestinal ischemia/reperfusion in vitro and in vivo. Int J Clin Exp Pathol.2012;5(6):569-80.
    96. Sadaria MR, Smith PD, Fullerton DA, Justison GA, Lee JH, Puskas F, Grover FL, Cleveland JC, Jr., Reece TB, Weyant MJ. Cytokine expression profile in human lungs undergoing normothermic ex-vivo lung perfusion. Ann Thorac Surg.2011 Aug;92(2):478-84.
    97. Kamat P, Juon B, Jossen B, Gajanayake T, Rieben R, Vogelin E. Assessment of endothelium and inflammatory response at the onset of reperfusion injury in hand surgery. Journal of inflammation (London, England).2012;9(1):18.
    98. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell. 1986 Jul 18;46(2):155-69.
    99. Siegbahn A, Hammacher A, Westermark B, Heldin CH. Differential effects of the various isoforms of platelet-derived growth factor on chemotaxis of fibroblasts, monocytes, and granulocytes. J Clin Invest.1990 Mar;85(3):916-20.
    100. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, Deuel TF. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol.1989 Jul; 109(1):429-40.
    101. Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S, Bramwell O, Wong SC, Hong MK. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model:feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation. 2002 Feb 5;105(5):608-13.
    102. Duehrkop C, Rieben R. Refinement of tourniquet-induced peripheral ischemia/reperfusion injury in rats:comparison of 2 h vs 24 h reperfusion. Lab Anim.2014 Apr,48(2):143-54.
    103. Dembinski A, Warzecha Z, Ceranowicz P, Dembinski M, Cieszkowski J, Pawlik WW, Tomaszewska R, Konturek SJ,Konturek PC. Effect of ischemic preconditioning on pancreatic regeneration and pancreatic expression of vascular endothelial growth factor and platelet-derived growth factor-A in ischemia/reperfusion-induced pancreatitis. J Physiol Pharmacol.2006 Mar;57(1):39-58.
    104. Gonzalez A, Valeiras M, Sidransky E, Tayebi N. Lysosomal integral membrane protein-2:A new player in lysosome-related pathology. Mol Genet Metab.2014 Feb;111(2):84-91.
    105. Schroen B, Leenders JJ, van Erk A, Bertrand AT, van Loon M, van Leeuwen RE, Kubben N, Duisters RF, Schellings MW, Janssen BJ, Debets JJ, Schwake M, Hoydal MA, Heymans S, Saftig P, Pinto YM. Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. J Exp Med. 2007 May 14;204(5):1227-35.
    106. Lee DH, Gan PY, Katerelos M, Fraser SA, Gleich K, Holdsworth SR, Power DA. Absence of the lysosomal protein Limp-2 attenuates renal injury in crescentic glomerulonephritis. Immunol Cell Biol.2014 Jan 7.
    107. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science.1999 Dec 24;286(5449):2511-4.
    108. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell.1996 Dec 27;87(7):1171-80.
    109. Lee SW, Kim WJ, Jun HO, Choi YK, Kim KW. Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med.2009 Feb;23(2):279-84.
    110. Lee SW, Won JY, Lee HY, Lee HJ, Youn SW, Lee JY, Cho CH, Cho HJ, Oh S, Chae IH, Kim HS. Angiopoietin-1 protects heart against ischemia/reperfusion injury through VE-cadherin dephosphorylation andmyocardiac integrin-betal/ERK/caspase-9 phosphorylation cascade. MolMed.2011 Sep-Oct;17(9-10):1095-106.
    111. Wang L, Luo D, Liao X, He J, Liu C, Yang C, Ma H. Ang-(1-7) offers cytoprotection against ischemia-reperfusion injury by restoring intracellular calcium homeostasis. J Cardiovasc Pharmacol.2014 Mar;63(3):259-64.
    112. Yu H, Wang P, An P, Xue Y. Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCalpha signaling after focal cerebral ischemia/reperfusion in rats. J Mol Neurosci.2012 Jan;46(l):236-47.
    113. Li XK, Lin ZF, Li Y, Hu S, Tan Y, Huang Z, Meng J, Liang LM, Xiao J, Qu J, Cai L. Cardiovascular protection of nonmitogenic human acidic fibroblast growth factor from oxidative damage in vitro and in vivo. Cardiovascular pathology:the official journal of the Society for Cardiovascular Pathology.2007 Mar-Apr;16(2):85-91.
    114. Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Yan Y, Fu X, Hu H, Li X, Xiao J. bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett.2012 Jul 20;212(2):137-46.
    115. Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem.2009 Dec 4;284(49):34054-64.
    116. Cuevas P, Carceller F, Lozano RM, Crespo A, Zazo M, Gimenez-Gallego G. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors.1997;15(1):29-40.
    117. Cuevas P, Reimers D, Carceller F, Martinez-Coso V, Redondo-Horcajo M, Saenz de Tejada I, Gimenez-Gallego G. Fibroblast growth factor-1 prevents myocardial apoptosis triggered by ischemia reperfusion injury. EurJMed Res.1997 Nov 28;2(11):465-8.
    118. Xiao J, Lv Y, Lin S, Jin L, Zhang Y, Wang X, Ma J, Hu K, Feng W, Cai L, Li X, Tan Y. Cardiac protection by basic fibroblast growth factor from ischemia/reperfusion-induced injury in diabetic rats. Biol Pharm Bull.2010;33(3):444-9.
    119. Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J. The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res.2007 Feb 2;100(2):220-8.
    120. Jiao K, Kulessa H, Tompkins K, Zhou Y, Batts L, Baldwin HS, Hogan BL. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev.2003 Oct 1;17(19):2362-7.
    121. Liu W, Selever J, Wang D, Lu MF, Moses KA, Schwartz RJ, Martin JF. Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci USA.2004 Mar 30;101(13):4489-94.
    122. Takei S, Ichikawa H, Johkura K, Mogi A, No H, Yoshie S, Tomotsune D, Sasaki K. Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am JPhysiol Heart Cire Physiol.2009 Jun;296(6):H1793-803.
    123. Zhu WZ, Van Biber B, Laflamme MA. Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods Mol Biol.2011;767:419-31.
    124. Keyes WM, Logan C, Parker E, Sanders EJ. Expression and function of bone morphogenetic proteins in the development of the embryonic endocardial cushions. Anal Embryol (Berl). 2003 Sep;207(2):135-47.
    125. Zhao Z, Rivkees SA. Programmed cell death in the developing heart:regulation by BMP4 and FGF2. Dev Dyn.2000 Apr,217(4):388-400.
    126. Pachori AS, Custer L, Hansen D, Clapp S, Kemppa E, Klingensmith J. Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. J Mol Cell Cardiol.2010 Jun;48(6):1255-65.
    127. Bouleti C, Mathivet T, Coqueran B, Serfaty JM, Lesage M, Berland E, Ardidie-Robouant C, Kauffenstein G, Henrion D, Lapergue B, Mazighi M, Duyckaerts C, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Monnot C, Margaill I, Germain S. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J.2013 May 14.
    128. Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, Teillon J, Le Jan S, Bouleti C, Briois G, Philippe J, Pons S, Martin V, Assaly R, Bonnin P, Ratajczak P, Janin A, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Tissier R, Berdeaux A, Ghaleh B, Germain S. Protection Against Myocardial Infarction and No-Reflow Through Preservation of Vascular Integrity by Angiopoietin-Like 4. Circulation.2012 January 3, 2012;125(1):140-149.
    129. Poynter JA, Manukyan MC, Wang Y, Brewster BD, Herrmann JL, Weil BR, Abarbanell AM, Meldrum DR. Systemic pretreatment with dimethyloxalylglycine increases myocardial HIF-1 alpha and VEGF production and improves functional recovery after acute ischemia/reperfusion. Surgery.2011 Aug;150(2):278-83.
    130. Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, Mazo M, Tamayo E, Jauquicoa C, Ortiz-de-Solorzano C, Prosper F, Blanco-Prieto MJ. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J Control Release.2010 Oct 1;147(1):30-7.
    131. Guzman MJ, Crisostomo PR, Wang M, Markel TA, Wang Y, Meldrum DR. Vascular endothelial growth factor improves myocardial functional recovery following ischemia/reperfusion injury. J Surg Res.2008 Dec;150(2):286-92.
    132. Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF. Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg.1997 Oct;64(4):993-8.
    133. Kang S, Yang Y, Li C-J, Gao R. Effectiveness and tolerability of administration of granulocyte colony-stimulating factor on left ventricular function in patients with myocardial infarction:A meta-analysis of randomized controlled trials. Clin Ther. 2007;29(11):2406-2418.
    1. Lassen JF, Botker HE, Terkelsen CJ. Timely and optimal treatment of patients with STEMI. Nat Rev Cardiol.2013 Jan;10(1):41-8.
    2. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. JAm Coll Cardiol 1983;1(4):1047-1055.
    3. Braunwald E, Kloner RA. Myocardial reperfusion:a double-edged sword? J Clin Invest. 1985;76(5):1713.
    4. Yellon DM, Hausenloy DJ. Myocardial Reperfusion Injury. NEngl JMed.2007;357 (11):1121-1135.
    5. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction:a quantitative review of 23 randomised trials. The Lancet.2003;361(9351):13-20.
    6. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury:a neglected therapeutic target. The Journal of clinical investigation.2013 January; 123 (1):92-100.
    7. Brutsaert DL. Cardiac Endothelial-Myocardial Signaling:Its Role in Cardiac Growth, Contractile Performance, and Rhythmicity. Physiol Rev.2003 January 1,2003;83(1):59-115.
    8. Anversa P, Olivetti G, Melissari M, Loud AV. Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J Mol Cell Cardiol.1980 Aug;12(8):781-95.
    9. Brutsaert DL, Fransen P, Andries LJ, De Keulenaer GW, Sys SU. Cardiac endothelium and myocardial function. Cardiovasc Res.1998 May 1,1998;38(2):281-290.
    10. Zhang D, Wan A, Chiu AP, Wang Y, Wang F, Neumaier K, Lal N, Bround MJ, Johnson JD, Vlodavsky I, Rodrigues B. Hyperglycemia-Induced Secretion of Endothelial Heparanase Stimulates a Vascular Endothelial Growth Factor Autocrine Network in Cardiomyocytes That Promotes Recruitment of Lipoprotein Lipase. Arterioscler Thromb Vasc Biol.2013 Oct 10.
    11. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. JAm Coll Cardiol.2013 Jul 23;62(4):263-71.
    12. Marijianowski MM, van Laar M, Bras J, Becker AE. Chronic congestive heart failure is associated with a phenotypic shift of intramyocardial endothelial cells. Circulation.1995 Sep 15;92(6):1494-8.
    13. Hassanabad ZF, Furman BL, Parratt JR, Aughey E. Coronary endothelial dysfunction increases the severity of ischaemia-induced ventricular arrhythmias in rat isolated perfused hearts. Basic Res Cardiol.1998 Aug;93(4):241-9.
    14. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial Cells Promote Cardiac Myocyte Survival and Spatial Reorganization. Circulation.2004 August 24, 2004;110(8):962-968.
    15. Nishida M, Carley W, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology.1993 February 1,1993;264 (2):H639-H652.
    16. Shahani T, Lavend'homme R, Luttun A, Saint-Remy J-M, Peerlinck K, Jacquemin M. Activation of human endothelial cells from specific vascular beds induces the release of a FVⅢ storage pool. Blood.2010 June 10,2010;115(23):4902-4909.
    17. Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, Decleves X, Scherrmann JM, Couraud PO, Kubo Y, Tachikawa M, Terasaki T. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line心脏微血管内皮细胞/D3as a human blood-brain barrier model.Mol Pharm.2013 Jan 7;10(1):289-96.
    18. Peyrefitte CN, Pastorino B, Grau GE, Lou J, Tolou H, Couissinier-Paris P. Dengue virus infection of human microvascular endothelial cells from different vascular beds promotes both common and specific functional changes. JMed Virol.2006 Feb;78(2):229-42.
    19. Cui L, Qiao L, Wang J, Wang X, Yang Z, Ma B, Shi Y, Zhou X, Wu K, Han Y. New Monoclonal Antibody B7 Selectively Recognizes Rat Myocardium Microvascular Endothelial Cells. Hybridoma.2010;29(5):413-418.
    20. Leucker TM, Bienengraeber M, Muravyeva M, Baotic I, Weihrauch D, Brzezinska AK, Warltier DC, Kersten JR, Pratt Jr PF. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotection.J Mol Cell Cardiol.2011;51(5):803-811.
    21. Hedhli N, Huang Q, Kalinowski A, Palmeri M, Hu X, Russell RR, Russell KS. Endothelium-Derived Neuregulin Protects the Heart Against Ischemic Injury/Clinical Perspective. Circulation.2011 May 24,2011;123(20):2254-2262.
    22. Lee SW, Won JY, Kim WJ, Lee J, Kim KH, Youn SW, Kim JY, Lee EJ, Kim YJ, Kim KW, Kim HS. Snail as a potential target molecule in cardiac fibrosis:paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Mol Ther.2013 Sep;21 (9):1767-77.
    23. Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YTE. Role of endothelial cells in myocardial ischemia-reperfusion injury. Vascular Disease Prevention.2010;7:1-14.
    24. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death.1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation.1977 Nov;56(5):786-94.
    25. Viehman GE, Ma XL, Lefer DJ, Lefer AM. Time course of endothelial dysfunction and myocardial injury during coronary arterial occlusion. Am J Physiol.1991 Sep;261 (3 Pt 2):H874-81.
    26. Tsao PS, Aoki N, Lefer DJ, Johnson G,3rd, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation.1990 Oct;82 (4):1402-12.
    27. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, Sardella G, Mancone M, Catalano C, Fedele F, Passariello R, Bogaert J, Agati L. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction:insight from cardiovascular magnetic resonance. J Am Coll Cardiol.2009 Dec 1;54 (23):2145-53.
    28. Jaffe R, Dick A, Strauss BH. Prevention and Treatment of Microvascular Obstruction-Related Myocardial Injury and Coronary No-Reflow Following Percutaneous Coronary Intervention: A Systematic Approach. JACC:Cardiovascular Interventions.2010;3(7):695-704.
    29. Kleinbongard P, Bose D, Baars T, Mohlenkamp S, Konorza T, Schoner S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res.2011 Feb 4;108 (3):344-52.
    30. Heusch G, Kleinbongard P, Bose D, Levkau B, Haude M, Schulz R, Erbel R. Coronary microembolization:from bedside to bench and back to bedside. Circulation.2009 Nov 3;120 (18).1822-36.
    31. Luo AK, Wu KC. Imaging microvascular obstruction and its clinical significance following acute myocardial infarction. Heart Fail Rev.2006 Dec;11(4):305-12.
    32. Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med.2006 Sep;3(9):499-506.
    33. Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB. Cardiac Endothelial Cells Regulate Reactive Oxygen Species-induced Cardiomyocyte Apoptosis through Neuregulin-1β/erbB4 Signaling. JBiol Chem.2004 December 3,2004;279 (49):51141-51147.
    34. Leucker TM, Ge ZD, Procknow J, Liu Y, Shi Y, Bienengraeber M, Warltier DC, Kersten JR. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury. PLoS ONE.2013;8(7):e70088.
    35. Ni NC, Ballantyne LL, Mewburn JD, Funk CD. Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol.2014 Feb;34(2):321-30.
    36. Howard CM, Baudino TA. Dynamic cell-cell and cell-ECM interactions in the heart. JMol Cell Cardiol.2013 Oct 17.
    37. Singhal AK, Symons JD, Boudina S, Jaishy, Bharat, Shiu Y-TE. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. Vascular Disease Prevention.2010;7:1-14.
    38. Seddon M, Shah AM, Casadei B. Cardiomyocytes as effectors of nitric oxide signalling. Cardiovascular research.2007 Jul 15;75(2):315-26.
    39. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH. A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. JMol Cell Cardiol 2011;51(1):24-32.
    40. Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism. JEthnopharmacol.2011 May 17;135 (2):287-98.
    41. Li X-D, Cheng Y-T, Yang Y-J, Meng X-M, Zhao J-L, Zhang H-T, Wu Y-J, You S-J, Wu Y-L. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res.2012 7//;84(1):44-54.
    42. Talukder MAH, Yang F, Shimokawa H, Zweier JL. eNOS is required for acute in vivo ischemic preconditioning of the heart:effects of ischemic duration and sex.. American Journal of Physiology-Heart and Circulatory Physiology.2010 August 1,2010;299(2):H437-H445.
    43. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol.2007;42(2):271-279.
    44. Hausenloy D, Yellon D. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection. Heart Fail Rev.2007;12(3):217-234.
    45. Fuller SJ, Sivarajah K, Sugden PH. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. JMol Cell Cardiol.2008 May;44 (5):831-54.
    46. Falls DL. Neuregulins:functions, forms, and signaling strategies. Exp Cell Res.2003 Mar 10;284(1):14-30.
    47. Odiete O, Hill MF, Sawyer DB. Neuregulin in Cardiovascular Development and Disease. Circ Res.2012 October 26,2012;111(10):1376-1385.
    48. Fukazawa R, Miller TA, Kuramochi Y, Frantz S, Kim YD, Marchionni MA, Kelly RA, Sawyer DB. Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol.2003 Dec;35 (12):1473-9.
    49. Kim HS, Cho JW, Hidaka K, Morisaki T. Activation of MEK-ERK by heregulin-betal promotes the development of cardiomyocytes derived from ES cells. Biochem Biophys Res Commun.2007 Sep 28;361 (3):732-8.
    50. Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem.1998 Apr 24;273 (17).10261-9.
    51. Grazette LP, Boecker W, Matsui T, Semigran M, Force TL, Hajjar RJ, Rosenzweig A. Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes:implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol.2004 Dec 7;44 (11):2231-8.
    52. Bersell K, Arab S, Haring B, Kuhn B. Neuregulinl/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009 Jul 23;138(2):257-70.
    53. Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA. NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70 (S6K), and MEK-MAPK-RSK. Am J Physiol.1999 Nov;277(5 Pt 2):H2026-37.
    54. Cote GM, Miller TA, Lebrasseur NK, Kuramochi Y, Sawyer DB. Neuregulin-1 alpha and beta isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro.Exp Cell Res.2005 Nov 15;311(1):135-46.
    55. Brero A, Ramella R, Fitou A, Dati C, Alloatti G, Gallo MP, Levi R. Neuregulin-1betal rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomyocytes. Cardiovasc Res.2010 Dec 1;88(3):443-52.
    56. Kuramochi Y, Guo X, Sawyer DB. Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol.2006 Aug;41(2):228-35.
    57. Ebner B, Lange SA, Eckert T, Wischniowski C, Ebner A, Braun-Dullaeus RC, Weinbrenner C, Wunderlich C, Simonis G, Strasser RH. Uncoupled eNOS annihilates neuregulin-lbeta-induced cardioprotection:a novel mechanism in pharmacological postconditioning in myocardial infarction. Mol Cell Biochem.2013 Jan;373(1-2):115-23.
    58. Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, Teillon J, Le Jan S, Bouleti C, Briois G, Philippe J, Pons S, Martin V, Assaly R, Bonnin P, Ratajczak P, Janin A, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Tissier R, Berdeaux A, Ghaleh B, Germain S. Protection Against Myocardial Infarction and No-Reflow Through Preservation of Vascular Integrity by Angiopoietin-Like 4. Circulation.2012 January 3,2012; 125 (1):140-149.
    59. Lee SW, Won JY, Lee HY, Lee HJ, Youn SW, Lee JY, Cho CH, Cho HJ, Oh S, Chae IH, Kim HS. Angiopoietin-1 protects heart against ischemia/reperfusion injury through VE-cadherin dephosphorylation and myocardiac integrin-betal/ERK/caspase-9 phosphorylation cascade. Mol Med.2011 Sep-Oct;179-10):1095-106.
    60. Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S, Bramwell O, Wong SC, Hong MK. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model:feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation. 2002 Feb 5;105(5):608-13.
    61. Nykanen AI, Tuuminen R, Lemstrom KB. Donor simvastatin treatment and cardiac allograft ischemia/reperfusion injury. Trends Cardiovasc Med.2013 Apr;23 (3):85-90.
    62. Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev.2013 Sep;33 (5):911-33.
    63. Rodrigues SF, Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovasc Res.2010 Jul 15;87 (2):291-9.
    64. Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res.2010 Jul 15;87(2):243-53.
    65. Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability:implications in inflammation. Expert reviews in molecular medicine.2009;11:e19.
    66. Lampugnani MG. Endothelial cell-to-cell junctions:adhesion and signaling in physiology and pathology. Cold Spring Harbor perspectives in medicine.2012 Oct;2 (10)
    67. Coisne C, Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation.Antioxid Redox Signal.2011 Sep 1;15(5):1285-303.
    68. Dejana E, Giampietro C. Vascular endothelial-cadherin and vascular stability. Curr Opin Hematol 2012 May;19(3):218-23.
    69. Wojciak-Stothard B, Tsang LY, Haworth SG. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol.2005 Apr;288(4).L749-60.
    70. Weis SM. Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol. 2008 May;15(3):243-9.
    71. Nagy JA, Dvorak AM, Dvorak HE Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor perspectives in medicine.2012 Feb;2 (2):a006544.
    72. Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med. 2011;17(11):1391-401.
    73. Martinelli R, Newton G, Carman CV, Greenwood J, Luscinskas FW. Novel role of CD47 in rat microvascular endothelium:signaling and regulation of T-cell transendothelial migration. Arterioscler Thromb Vasc Biol.2013 Nov;33(11):2566-76.
    74. Stagg HW, Bowen KA, Sawant DA, Rodriguez M, Tharakan B, Childs EW. Tumor necrosis factor-related apoptosis-inducing ligand promotes microvascular endothelial cell hyperpermeability through phosphatidylinositol 3-kinase pathway. Am JSurg.2013 Apr;205 (4):419-25.
    75. Funk JL, Frye JB, Davis-Gorman G, Spera AL, Bernas MJ, Witte MH, Weinand ME, Timmermann BN, McDonagh PF, Ritter L. Curcuminoids limit neutrophil-mediated reperfusion injury in experimental stroke by targeting the endothelium. Microcirculation. 2013 Aug;20(6):544-54.
    76. Wang L, Luo D, Liao X, He J, Liu C, Yang C, Ma H. Ang-(1-7) offers cytoprotection against ischemia-reperfusion injury by restoring intracellular calcium homeostasis. J Cardiovasc Pharmacol.2014 Mar;63 (3):259-64.
    77. Yu H, Wang P, An P, Xue Y. Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCalpha signaling after focal cerebral ischemia/reperfusion in rats. JMol Neurosci.2012 Jan;46(1):236-47.
    78. Lee SW, Kim WJ, Jun HO, Choi YK, Kim KW. Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int JMol Med.2009 Feb;23(2):279-84.
    79. Camici PG, Crea F. Coronary microvascular dysfunction. NEngl JMed.2007 Feb 22;356 (8):830-40.
    80. Liu Y, Gutterman DD. Vascular control in humans:focus on the coronary microcirculation. Basic Res Cardiol.2009 May;104(3):211-27.
    81. Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular Obstruction and the No-Reflow Phenomenon After Percutaneous Coronary Intervention. Circulation.2008 June 17,2008;117(24):3152-3156.
    82. Kang S, Yang Y. Coronary microvascular reperfusion injury and no-reflow in acute myocardial infarction. Clin Invest Med.2007;30 (3):E 133-E145.
    83. Tuuminen R, Syrjala S, Krebs R, Keranen MAI, Koli K, Abo-Ramadan U, Neuvonen PJ, Tikkanen JM, Nykanen AI, Lemstrom KB. Donor Simvastatin Treatment Abolishes Rat Cardiac Allograft Ischemia/Reperfusion Injury and Chronic Rejection Through Microvascular Protection/Clinical Perspective. Circulation.2011 September 6,2011;124 (10):1138-1150.
    84. Li X-d, Yang Y-j, Geng Y-j, Zhao J-l, Zhang H-t, Cheng Y-t, Wu Y-l. Phosphorylation of endothelial NOS contributes to simvastatin protection against myocardial no-reflow and infarction in reperfused swine hearts:partially via the PKA signaling pathway. Acta Pharmacol Sin.2012 07//print;33(7):879-887.
    85. Zhao J, Yang Y, you S, Cui C, Gao R. Carvedilol preserves endothelial junctions and reduces myocardial no-reflow after acute myocardial infarction and reperfusion. Int J Cardiol. 2007;115 (3):334-341.
    86. Zhao J-l, Yang Y-j, Chen J-l, Kang L-m, Wu Y, Gao R-l. Nicorandil reduces myocardial no-reflow by protection of endothelial function via the activation of KATP channel. Clin Chim Acta.2006;374 (1-2):100-105.
    87. Li X-D, Yang Y-J, Geng Y-J, Jin C, Hu F-H, Zhao J-L, Zhang H-T, Cheng Y-T, Qian H-Y, Wang L-L, Zhang B-J, Wu Y-L. Tongxinluo reduces myocardial no-reflow and ischemia-reperfusion injury by stimulating the phosphorylation of eNOS via the PKA pathway. American Journal of Physiology-Heart and Circulatory Physiology.2010 October 1,2010;299(4):H1255-H1261.
    88. Qi XF, Li YJ, Chen ZY, Kim SK, Lee KJ, Cai DQ. Involvement of the FoxO3a pathway in the ischemia/reperfusion injury of cardiac microvascular endothelial cells. Exp Mol Pathol. 2013 Oct;95(2):242-7.
    89. Liu Y, Ma Y, Wang R, Xia C, Zhang R, Lian K, Luan R, Sun L, Yang L, Lau WB, Wang H, Tao L. Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells. Antioxid Redox Signal.2011 Oct 1;15(7):1769-78.
    90. Teng R, Calvert J, Sibmooh N, Piknova B, Suzuki N, Sun J, Martinez K, Yamamoto M, Schechter A, Lefer D, Noguchi C. Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Res Cardiol.2011;106(3):343-354.
    91. Kannan L, Kis-Toth K, Yoshiya K, Thai TH, Sehrawat S, Mayadas TN, Dalle Lucca JJ, Tsokos GC. R-spondin3 prevents mesenteric ischemia/reperfusion-induced tissue damage by tightening endothelium and preventing vascular leakage. Proc Natl Acad Sci USA.2013 Aug 27;110(35):14348-53.
    92. Shimada T, Furuta H, Doi A, Ariyasu H, Kawashima H, Wakasaki H, Nishi M, Sasaki H, Akamizu T. Des-acyl ghrelin protects microvascular endothelial cells from oxidative stress-induced apoptosis through sirtuin 1 signaling pathway. Metabolism.2013 Dec 28.
    93. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci.2003 May,4 (5):399-415.
    94. Chintalgattu V, Rees ML, Culver JC, Goel A, Jiffar T, Zhang J, Dunner K, Jr., Pati S, Bankson JA, Pasqualini R, Arap W, Bryan NS, Taegtmeyer H, Langley RR, Yao H, Kupferman ME, Entman ML, Dickinson ME, Khakoo AY. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med.2013 May 29;5 (187):187ra69.
    95. Guzman MJ, Crisostomo PR, Wang M, Markel TA, Wang Y, Meldrum DR. Vascular endothelial growth factor improves myocardial functional recovery following ischemia/reperfusion injury. J Surg Res.2008 Dec; 150(2):286-92.
    96. Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF. Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. Ann Thorac Surg.1997 Oct;64 (4):993-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700