用户名: 密码: 验证码:
钢管约束混凝土轴压和偏压构件静力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管约束混凝土柱是在钢管混凝土柱、箍筋约束混凝土柱和型钢混凝土柱的基础上发展起来的一种新型组合结构构件,具有承载力高、延性好、抗火性能好、施工方便等优点。目前国内外对钢管约束混凝土柱的研究刚刚起步,以往的研究也主要集中在轴压短柱方面,而对工程中最为常见的偏压构件鲜有报道。本文对钢管约束混凝土偏压构件进行了试验研究及理论分析,主要内容包括:
     (1)进行了8个圆钢管约束钢筋混凝土轴压试件和16个圆钢管约束钢筋混凝土偏压试件试验研究,主要参数为长细比、偏心距及钢管约束模式。分析了不同钢管约束模式试件的破坏模式,测得了试件的荷载-位移曲线、荷载-钢管应力全过程曲线,建立了圆钢管约束钢筋混凝土偏压构件力学模型。建立了圆钢管约束钢筋混凝土偏压中长柱有限元模型,对圆钢管约束钢筋混凝土中长柱进行了全过程有限元分析。
     (2)进行了8个方钢管约束钢筋混凝土轴压试件和16个方钢管约束钢筋混凝土偏压试件试验研究,主要参数为长细比、偏心距及钢管约束模式。分析了不同钢管约束模式试件的破坏模式,测得了试件的荷载-位移曲线、荷载-钢管应力全过程曲线,建立了方钢管约束钢筋混凝土偏压构件力学模型。建立了方钢管约束钢筋混凝土偏压中长柱有限元模型,对方钢管约束钢筋混凝土中长柱进行了全过程有限元分析。
     (3)进行了12个圆钢管约束型钢混凝土轴压试件和12个圆钢管约束型钢混凝土偏压试件试验研究,主要参数为长细比、偏心距、钢管约束模式及不同的抗剪连接件设置方式。分析了不同钢管约束模式试件的破坏模式,测得了试件的荷载-位移曲线、荷载-钢管全过程应力曲线,分析了抗剪连接件的影响,建立了圆钢管约束钢筋混凝土偏压构件力学模型。建立了圆钢管约束钢筋混凝土偏压中长柱有限元模型,对圆钢管约束钢筋混凝土中长柱进行了全过程有限元分析。
     (4)进行了12个方钢管约束型钢混凝土轴压试件和12个方钢管约束型钢混凝土偏压试件试验研究,主要参数为长细比、偏心距、钢管约束模式及不同的抗剪连接件设置方式。分析了不同钢管约束模式试件的破坏模式,测得了试件的荷载-位移曲线、荷载-钢管应力全过程曲线,分析了抗剪连接件的影响,建立了方钢管约束钢筋混凝土偏压构件力学模型。建立了方钢管约束钢筋混凝土偏压中长柱有限元模型,对方钢管约束钢筋混凝土中长柱进行了全过程有限元分析。
     (5)采用基于Mander模型的约束混凝土本构关系,通过纤维模型法计算了试件的荷载-位移曲线;试验结果表明该模型适用于钢管约束混凝土构件,基于该模型计算了钢管约束混凝土的等效矩形应力。基于能量原理,计算了钢管约束混凝土极限压应变;基于钢管约束混凝土的等效矩形应力、钢管约束混凝土极限压应变,建立了钢管约束钢筋混凝土截面偏压承载力公式。采用切线模量法建议了钢管约束混凝土构件稳定系数,并基于约束混凝土本构关系建立了钢管约束混凝土构件偏心距增大系数计算方法。
     (6)基于截面全塑性假定,采用纤维模型法计算了钢管约束型钢混凝土偏压构件的N-M相关曲线,并采用曲线上的4个特征点,建立了钢管约束型钢混凝土截面偏压承载力简化计算公式;基于截面N-M相关曲线,通过折减弯矩的方法,提出了构件N-M稳定相关曲线,并提出了钢管约束型钢混凝土构件偏压承载力简化计算公式。
A steel-tube-confined concrete column (STC) is a new type of composite column based on the concepts of concrete-filled-steel-tube columns and steel-reinforced concrete column. STCs have the advantages of high bearing capacity, good ductility, good fire resistance, and convenient construction. Research on STCs began in recent years in China, with the initial focus being only on short columns under concentric loading. Research on slender STCs under eccentric loading has not previously been carried out, despite this being the more common engineering application. This paper describes an experimental study and theoretical analysis conducted on the behavior of slender STCs under eccentric loading.
     An experimental study was conducted to investigate the behavior of circular tube-reinforced concrete columns (CTRC). Eight circular tube-reinforced concrete specimens were tested under concentric loading, and16circular tube-reinforced concrete specimens were tested under eccentric loading. The main experimental parameters examined were the slenderness ratios of the columns, the eccentricity of the loading, and the steel tube confinement mode. The failure modes of the columns were investigated. The load–displacement curves of the columns and the load–stress curves of the steel tubes were measured experimentally. A mechanical model for the behavior of a slender CTRC under eccentric loading was developed based on the test results. A three-dimensional (3D) finite element method (FEM) model was also developed using ABAQUS to analyze the behavior of a slender CTRC under eccentric loading.
     A second experimental study was conducted to investigate the behavior of square tube-reinforced concrete columns (STRC). Eight square tube-reinforced concrete specimens were tested under concentric loading, and16square tube-reinforced concrete specimens were tested under eccentric loading. The main experimental parameters examined were the slenderness ratios of the columns, the eccentricity of the loading, and the steel tube confinement mode. The failure modes of the columns were investigated. The load–displacement curves of the columns and the load–stress curves of the steel tubes were measured experimentally. A mechanical model for the behavior of a slender STRC under eccentric loading was developed based on the test results. A3D FEM model was also developed using ABAQUS to analyze the behavior of a slender STRC under eccentric loading.
     A third experimental study was conducted to investigate the behavior of circular tubed-steel concrete columns (CTSRC). Twelve short circular tubed-steel concrete column specimens and12slender circular tubed-steel concrete column specimens were tested. The main experimental parameters examined were the slenderness ratios of the columns, the eccentricity of the loading, the steel tube confinement mode, and whether or not a shear key was present. The failure modes of the columns were investigated. The load–displacement curves of the columns and the load–stress curves of the steel tubes were measured experimentally. A mechanical model for a slender CTSRC under eccentric loading was developed based on the test results. A3D FEM model was also developed using ABAQUS to analyze the behavior of a slender CTSRC under eccentric loading.
     A fourth experimental study was conducted to investigate the behavior of square tubed-steel concrete columns (STSRCs). Twelve short square tubed-steel concrete column specimens and12slender square tubed-steel concrete column specimens were tested. The main experimental parameters examined were the slenderness ratios of the columns, the eccentricity of the loading, the steel tube confinement mode, and whether or not a shear key was present. The failure modes of the columns were investigated. The load–displacement curves of the columns and the load–stress curves of the steel tubes were measured experimentally. A mechanical model for the behavior of a slender STSRC under eccentric loading was developed based on the test results. A3D FEM model was also developed using ABAQUS to analyze the behavior of a slender STSRC under eccentric loading.
     Based on Mander’s confined concrete model, the load–displacement curves were computed using the fiber method. The calculated results agreed well with the experimental data. The equivalent rectangular stress was obtained using this model. Based on the theory of energy, the confined concrete ultimate strain was obtained. A method for calculating the section bearing capacity of a tube-reinforced concrete column under eccentric loading can be established using the equivalent rectangular stress and the confined concrete ultimate strain. The buckling factor for a slender column was obtained using the tangent modulus method. The magnifying coefficient of eccentricity can be obtained based on reinforced concrete design principles. Using the buckling factor for a slender column and the magnifying coefficient of eccentricity, we can obtain the bearing capacity of the member.
     Based on the hypothesis about the plastic behavior of an entire section presented in the European standard Eurocode4, the load–moment (N–M) curve of a CTSRC (STSRC) can be determined using the fiber method. A simplified method for calculating the section bearing capacity was employed, based on the four key points of the N–M curve. The N–M curve of a CTSRC (STSRC) member can be determined using the reduction bending moment method. In the same way, a simplified method for calculating the member bearing capacity was employed, based on the four key points of the N–M curve of the member.
引文
[1]周绪红,刘界鹏.钢管约束混凝土柱的性能与设计[M].北京:科学出版社.2010.
    [2] Armand C. Experimental researches on reinforced concrete [M]. Biblio Life.2008.
    [3] Richart F.E., Brandtzaeg A., Brown R.L. A study of the failure of concreteunder combined compressive stresses [R]. Bulletin No.185, EngineeringExperimental Station, University of Illinois, Urbana,1928.
    [4] Richart F.E., Brandtzaeg A., Brown R.L. The failure of plain and spirallyreinforced concrete under combined compressive stresses [R]. Bulletin No.190,Engineering Experimental Station, University of Illinois, Urbana,1928.
    [5] Shamim A., Sheikh S.M., Uzumeri. Analytical model for concreteconfinement in tied columns [J]. Journal of the structural division, Proceedingof the American Society of Civil Engineers,1982,108(12):2703-2720.
    [6] Mander J.B., Priestley M.J.N., Park R. Observed stress-strain behavior ofconfined concrete [J]. Journal of the Structural Engineering,1988,114(8):1827-1849.
    [7] Mander J.B., Priestley M.J.N., Park R. Theoretical stress-strain model forconfined concrete [J]. Journal of the Structural Engineering.1988,114(8):1804-1823.
    [8] Li B., Park R., Tanaka H. Stress-strain behavior of high-strength concreteconfined by ultra-high and normal-strength transverse reinforcements [J]. ACIStruct,2001,98(3):395-406.
    [9] Daniel C., Patrick P. Stress-strain model for confined high-strength concrete[J]. Journal of Structural Engineering,1995,121(3):468-477.
    [10] Frederic L., Patrick P. Uniaxial confinement model of normal and highstrength concrete [J]. Journal of Structural Engineering,2003,129(2):241-252.
    [11] Madhu M.K., John B.M. Stress-block parameters for unconfined and confinedconcrete based on a unified stress-strain model [J]. Journal of StructuralEngineering,2011,2:270-273.
    [12]韩林海.钢管混凝土结构[M].科学出版社,2000.
    [13] Lally Column Companies. Lally handbook of lally colum construction (steelcolumns-concrete filled) tenth edition [M]. New York:1926.
    [14] Ge H., Usami T. Strength of concrete-filled thin walled steel box columnsexperiment [J]. Journal of Structural Engineering,1992,118(11):36-54.
    [15] Matsui, Mitani I., Kawano A., et al. AIJ design method for concrete filled steeltubular structures [C]. International Conference on Composite ConstructionConventional and Innovative. Innsbruck:1997.
    [16] Wakabayashim. Review of research on concrete filled steel tubular structure inJapan [C]. Proceedings of the International Specialty Conference on ConcreteFiled Steel Tubular Structure,1988:5-11.
    [17] Matsui C., Keira K., Kawano A., et al. Development of concrete filled steeltubular structure with inner ribs [C]. Proceedings of the InternationalSpecialty Conference on Steel-Concrete Composite Structure,1991:206-210.
    [18] Sakino K., Tomii M. Hysteretic behavior of concrete filled square steel tubularbeam columns failed in flexure [J]. Transaction of the Japan Concrete Institute,1981,3:439-446.
    [19] Morishita Y., Tomii M., Yoshimura K. Experimental studies on bond strengthbetween square steel tube and encased concrete core under cyclic shearingforce and constant axial force [J]. Transactions of Japan Concrete Institute,1982,4:363-370.
    [20] Xiao Y., Tomii M., Sakino K. Experimental study on design method to preventshear failure of reinforced concrete short circular columns by confining insteel tube [J]. Transactions of Japan Concrete Institute,1986,8:535-542.
    [21] Sakino K., Nakahara H., Morino S., Nishiyama I. Behavior of centrally loadedconcrete-filled steel-tube short columns [J]. Struct. Eng.,2004,130(2):180-188.
    [22] Nakanishi K., Kitada T., Nakai H. Experimental study on deterioration ofultimate strength and ductility of damage concrete filled steel box columns [C].Proceedings of the4th ASCCS International Conference on Steel-ConcreteComposite Structures,1994:127-130.
    [23] Sun Y.P., Sakiho K. Method of improving the ductility of RC columns highaxial load by using steel tube [C]. Proceedings of the4th ASCCS InternationalConference on Steel-Concrete Composite Structures,1994:139-142.
    [24] Konno K., Sato Y., Kakuta Y., Ohira M.C. The property of recycled concretecolumn encased by steel tube subjected to axial compression [J]. Transactionsof the Japan Concrete Institute,1997,19:351-358.
    [25] Park S.M., Choi B.C., Tae Y.K. An experimental study on behavior ofsteel-tubes column filled with reinforced concrete connected to H-beam [C].Proceeding of Fifth Pacific Structural Steel Conference,1998:937-942.
    [26] Schneider, Stephen P. Axially loaded concrete-filled steel tubes [J]. Journal ofStructural Engineering.1998,124(10):1124-1138.
    [27] Rocder C.W., Cameron B., Brown C.B. Composite action in concrete filledtubes [J]. Journal of Structural Engineering,1999,125(5):477-484.
    [28] Zhao X.L., Grezebieta R.H. Strength and ductility of concrete filled doubleskin tubes [J]. Thin-Walled Structures,2002,40(2):199-213.
    [29] Inai E., Mukai A., Kai M., Tokinoya H., Fukumoto T., et al. Behavior ofconcrete-filled steel tube beam columns [J]. Journal of Structural Engineering,ASCE,2004,130(2):189-202.
    [30] Hajjar J.F., Fourley B.C., Olson M.C.A. Cyclic nonlinear model forconcrete-filled tubes cross-section strength [J]. Journal of StructuralEngineering, ASCE,1996,123(6):745-754.
    [31] Aval S.B.B., Saadeghvaziri M.A., Golafshani A A. Comprehensive compositefiber element for cyclic analysis of concrete-filled steel tube columns [J].Journal of Engineering Mechanics, ASCE,2002,128(4):428-437.
    [32] O’Shea M.D., Bridge R.Q. Design of circular thin-walled concrete filled steeltubes [J]. Journal of Structural Engineering,2000,126(11):1295-1303.
    [33] Bradford M.A., Lob H.Y., Uy B. Slenderness limits for filled circular steeltubes [J]. Journal of Constructional Steel Research,2002,58(2):243-252.
    [34] Naguib W., Mirmiran A. Creep modeling for concrete-filled steel tubes [J].Journal of Constructional Steel Research,2003,59(11):1327-1344.
    [35] Varma A.H. Seismic behavior and design of high-strength squareconcrete-filled steel tube beam columns [J]. Journal of Structural Engineering,2004,130(2):169-179.
    [36] Schneider S.P. Axially loaded concrete-filled steel tubes [J]. Journal ofStructural Engineering,1998,124(10):1125-1138.
    [37] AISC. Load and resistance factor design specification for structural steelbuildings [M]. Chicago: American Institute of Steel Construction,1999.
    [38] AIJ. Recommendations for design and construction of concrete filled steeltubular structures [M]. Tokyo: Architectural Institute of Japan,1997.
    [39] BS5400. Concrete and composite bridges [M]. London: British StandardsInstitutions,1979.
    [40] Eurocode4. Design of steel and concrete structures-part1-1: General rulesand rules for buildings [M]. Brussels (Belgium): European Committee forStandardization,1994.
    [41] Bradford M.A., Loh H.Y., Uy B. Slenderness limits for filled circular steeltubes [J]. Journal of Constructional Steel Research.2002,58(2):243-252.
    [42] Kato B. Column curves of steel-concrete composite members [J]. JournalConstruction of Steel Research,1996,39(2):121-135.
    [43] Wang Q.X., Zhao D.Z., Guan P. Experimental study on the strength andductility of steel tubular columns filled with steel-reinforced concrete [J].Engineering Structures,2004,26(7):907-915.
    [44]中华人民共和国建设部.型钢混凝土组合结构技术规程(JGJ138-2001)[S].中国建筑工业出版社,2001.
    [45]中华人名共和国行业标准.钢骨混凝土结构技术规程(YB9082-2006)[S].冶金工业出版社,2006.
    [46]孙慧中,沈文郁.劲性钢筋混凝土结构—一种很有发展前途的结构形式[J].建筑科学,1992,2:15-20.
    [47] Ricles J.M., Panoojian S.D. Seismic performance of steel-encased compositecolumns [J]. Journal of Structural Engineering,1994,120(8):2474-94.
    [48]日本建筑学会,钢骨钢筋混凝土结构计算标准及解说[M].北京:能源出版社,1998.
    [49] Aly T., Eichalakani M., Thayalan P., Patnaikuni L. Incremental collapsethreshold for pushout resistance of circular concrete filled steel tubularcolumns [J]. Journal of Constructional Steel Research.2010,66(1):11-18.
    [50]中国人民共和国行业标准.钢骨混凝土结构技术规程(YB9082-1997)[S].冶金工业出版社,1998.
    [51]中国人民共和国行业标准.钢骨混凝土结构技术规程(YB9082-2006)[S].冶金工业出版社,2007.
    [52]中国人民共和国行业标准.型钢混凝土结构技术规程(JGJ138-2001)[S].中国建筑工业出版社,2001.
    [53]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社,2007.
    [54] Gardner N.J., Jacobson E.R. Structural behavior of concrete filled steel tubes[J]. Journal of America Concrete Institute,1967,64:404-413.
    [55]陈肇元,罗家谦,潘雪雯.钢管混凝土短柱作为防护结构构件的性能[M].北京:清华大学出版社,1986,45-52.
    [56] Tommi M., Sakino K., Xian Y., Watanabe K. Lateral load capacity ofreinforced concrete short columns confined by steel tubes [C]. Proceeding ofthe International Speciality Conference on Concrete-filled Steel TubularStructures, Harbin, China,1985:19-26.
    [57] Sakino K., Tomii M., Watanabe K. Sustaining load capacity of plain concretestub columns confined by circular steel tube [C]. Proceeding of theInternational Speciality Conference on Concrete-filled Steel TubularStructures, Harbin, China,1985:112-118.
    [58] Tommi M., Sakino K., Xian Y., Watanabe K. Earthquake resistance hystereticbehavior of reinforced concrete short columns confined by steel tubes [C].Proceeding of the International Speciality Conference on Concrete-filled SteelTubular Structures, Harbin, China,1985:119-125.
    [59] Sakino K., Sun Y.P. Stress-strain curve of concrete confined by rectilinearhoop [J]. Journal Structural and Constructional Engineering.1994,461:95-104.
    [60] Sakino K., Sun Y.P. Earthquake-resisting performance of R/C columnsconfined by square steel tubes-part1: columns under high axial load [J].Journal Structural and Constructional Engineering,1997,501:93-101.
    [61] Sakino K., Sun Y.P. Earthquake-resisting performance of R/C columnsconfined by square steel tubes-part2: effects of wall thickness of steel tube[J]. Journal Structural and Constructional Engineering,2000,531:133-140.
    [62] Sakino K., Sun Y.P. Earthquake-resisting performance of R/C columnsconfined by square steel tubes-Part3effects of shear span ratio of column [J].Journal Structural and Constructional Engineering,1994,461:95-104.
    [63] Sakino K., Sun Y.P. Steel jacketing for improvement of column strength andductility [J].12th World Conference on Earthquake Engineering, Auckland,New Zealand,2000:2525-2540.
    [64] Sun Y.P., Fukuhara T. Development of high seismic performance concreteframes [C]. Seventh International Symposium on the Utilization ofHigh-Strength Concrete, Washington DC, United States,2005,228:615-632.
    [65] Fukuhara T., Sun Y.P. Earthquake-resisting properties of confinedhigh-strength concrete frames [C].14th World Conference on EarthquakeEngineering, Beijing, China,2008.
    [66] Orito Y., Sato T., Tanaka N., Watanabe Y. Study on the unbonded steel tubecomposite system [J]. Proceedings Composite Construction in Steel andConcrete, ASCE Engineering Foundation,1987,786-804.
    [67] Prion H.G.L., Boehme J. Beam column behavior of steel tubes filled withhigh-strength concrete [J]. Canadian Journal of Civil Engineering,1994,21(1):207-218.
    [68] Priestley M.J.N., Park R.J.T. Concrete filled steel tubular piles under seismicloading [C]. Proceeding of the International Speciality Conference onConcrete-filled Steel Tubular Structures, Harbin, China,1985(8):96-103.
    [69] Priestley M.J.N., Fridier S., Xiao Y., Ravindra V. Steel jacket retrofitting ofreinforced concrete bridge columns for enhanced shear strength-part1:theoretical considerations and test design [J]. ACI Structural Journal.1994,91(4):394-405.
    [70] Priestley M.J.N., Fridier S., Xiao Y., Ravindra V. Steel jacket retrofitting ofreinforced concrete bridge columns for enhanced shear strength-part2: testresults and comparison with theory [J]. ACI Structural Journal.1994,91(5):537-551.
    [71] Priestley M.J.N., Seible F., Calvi M. Seismic design and retrofit of bridges
    [M]. John Wiley&Sons,1996.
    [72] Lahlou K., Aitcin P.C. Colonnes en béton à hautes performances confiné dansdes envelopes mincen end acier [J]. Bulletin des laboratories des ponts etchausses,1994,209(6):49-67.
    [73] Aboutaha R.S., Machado R.I. Seismic resistance of steel-tubed high-strengthreinforced-concrete columns [J]. Journal of Structural Engineering,1999,125(5):485-494.
    [74] Takamasa Y., Kawaguchi J., Shosuke M. Experimental study of scale effectson the compressive behavior of short concrete-filled steel tube columns [C].Composite Construction in Steel and Concrete IV Proceedings of the FourthInternational Conference on Composite Construction in Steel and Concrete,ASCE,2000,879-890.
    [75] Martin D., O’Shea M.D., Russsell Q., Bridge R.D. Design of circularthin-walled concrete filled steel tubes [J]. Journal of Structural Engineering,2000,126(11):1295-1303.
    [76] O’shea M.D., Bridge R.D. Tests on circular thin-walled steel tubes fill withmedium and high strength concrete [C]. Department of Civil EngineeringResearch Report No.R755, the University of Sydney, Sydney, Australia,1997a.
    [77] O’shea M.D., Bridge R.D. Tests on circular thin-walled steel tubes fill withvery high-strength concrete [C]. Department of Civil Engineering ResearchReport No.R754, the University of Sydney, Sydney, Australia,1997b.
    [78] Mei H., Kiiousis P.D., Ehsani M.R., Saadatmanesh H. Confinement effects onhigh-strength concrete [J]. ACI Structural Journal,2001,98(4):548-553.
    [79] Johansson, Kent G. Mechanical behavior of circular steel-concrete compositestub columns [J]. Journal of Structural Engineering,2002,128(8):1073-1081.
    [80] Peter M., John F.B., Mohamed L. Composite response of high-strengthconcrete confined by circular steel tube [J]. ACI Structural Journal.2004,101(4):466-474.
    [81] Amir F., Frank S.Q., Sami R. Concrete-filled steel tubes subjected to axialcompression and lateral cyclic loads [J]. Journal of Structural Engineering,2004,125(5):631-640.
    [82]晏兴威,苏静丽,高兑现.外包钢板箍钢筋混凝土短柱抗震性能[J].西安公路交通大学学报,2001,21(4):73-74.
    [83]肖岩,郭玉荣,何文辉,吴徽.局部加劲钢套管加固钢筋混凝土柱的研究[J].建筑结构学报,2003,24(6):79-86.
    [84]肖岩.套管钢筋混凝土结构的发展与展望[J].土木工程学报,2004,37(4):8-12.
    [85] Han L.H., Yao G.H., Chen Z.B., Yu Q. Experimental behavior of steel tubeconfined concrete (STCC) columns [J]. Steel and Composite Structures,2005,5(6):459-484.
    [86] Han L.H., Qu H.H., Tao Z., Wang Z.F. Experimental behavior of thin-walledsteel tube confined concrete column to R/C beam joints under cyclic loading[J]. Thin-Walled Structures,2009,47(8):847-857.
    [87]于清.钢管约束混凝土柱力学性能的一些问题探讨[J].哈尔滨工业大学学报,2005,37(1):153-156.
    [88] Yu Q., Tao Z., Liu W., Chen Z.B. Analysis and calculations of steel tubeconfined concrete (STCC) stub columns [J]. Journal of Constructional SteelResearch,2010,66(1):53-64.
    [89] Wang W.D., Guo Z.F., Shi Y.L. Finite element analysis on behavior of the jointwith steel tube confined concrete (STCC) column to reinforced concrete beam[J]. Advanced Materials Research,2011,243:527-530.
    [90]陈庆军,蔡健,林遥明.柱钢管不直通的新型钢管混凝土柱梁节点(I)-轴压下采用钢筋网加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版),2002,30(9):91-95.
    [91]陈庆军,蔡健,林遥明.柱钢管不直通的新型钢管混凝土柱梁节点(Ⅱ)-轴压下采用钢筋网加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版),2002,30(12):58-61.
    [92]陈庆军,蔡健,徐刚,吴轶.节点区柱钢管不全贯通式钢管混凝土柱-梁节点区的受压试验研究[J].华南理工大学学报(自然科学版),2008,36(6):10-16.
    [93]陈庆军,蔡健,徐刚,吴轶.节点区柱钢管不全贯通式钢管混凝土柱-梁节点轴压承载力[J].工程力学,2008,25(9):170-175.
    [94]陈庆军,蔡健,杨平,吴轶.节点区柱钢管不全贯通式钢管混凝土柱-梁节点抗震性能[J].工程力学,2009,42(12):33-42.
    [95]陈庆军,蔡健,钟国坤等.非贯通式钢管混凝土柱-梁节点偏压性能[J].广西大学学报(自然科学版),2010,35(1):50-55.
    [96]肖建庄,杨洁,黄一杰,王正平.钢管约束再生混凝土轴压试验研究[J].建筑结构学报,2011,32(6):92-98.
    [97]王玉银.圆钢管高强混凝土轴压短柱基本性能研究[D].哈尔滨工业大学博士学位论文,2003.
    [98]王玉银,张素梅,郭兰慧.受荷方式对钢管混凝土轴压短柱力学性能影响[J].哈尔滨工业大学学报,2005,37(1):40-44.
    [99]郭兰慧,张素梅,刘界鹏.不同加载模式下方钢管约束混凝土力学性能试验研究[J].哈尔滨工业大学学报,2003,37(增刊):145-148.
    [100]郭兰慧,张素梅,刘界鹏.不同加载模式下方钢管混凝土力学性能试验研究与理论分析[J].工程力学,2008,25(9):143-148.
    [101]张素梅,刘界鹏,马乐,邢涛.圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J].土木工程学报,2007,40(3):24-31.
    [102] Zhang S.M., Liu J.P. Seismic behavior and strength of square tube confinedreinforced-concrete (STRC) columns [J]. Journal of Constructional SteelResearch,2007,63(9):1194-1207.
    [103] Liu J.P., Zhang S.M., Zhang X.D., Guo L.H. Behavior and strength of circulartube confined reinforced-concrete (CTRC) columns [J]. Journal ofConstructional Steel Research,2009,65(7):1447-1458.
    [104] Jasim A.A., Zhang S.M., Liu J.P. Shear strength and behavior of tubedreinforced and steel reinforced concrete (TRC and TSRC) short columns [J].Thin-Walled Structures,2010,48(3):191-199.
    [105] Liu J.P., Jasim A.A., Zhang S.M. Shear hysteretic behavior and design ofsquare tubed reinforced and steel reinforced concrete (STRC and/or STSRC)short columns [J]. Thin-Walled Structures,2011,49(7):874-888.
    [106]周绪红,刘界鹏,张素梅.圆钢管约束钢筋混凝土短柱的轴压力学性能研究[J].土木工程学报,2009,26(11):53-59.
    [107] Zhou X.H., Liu J.P. Seismic behavior and shear strength of tubed R/C shortcolumns [J]. Journal of Constructional Steel Research,2010,66(3):385-397.
    [108] Zhou X.H., Liu J.P. Seismic behavior and strength of tubed steel reinforcedconcrete (SRC) short columns [J]. Journal of Constructional Steel Research,2010,66(7):885-896.
    [109]周绪红,甘丹,刘界鹏,张素梅.方钢管约束钢筋混凝土轴压短柱试验研究与分析[J].建筑结构学报,2011,32(2):68-74.
    [110] Qi H.T., Guo L.H., Liu J.P., Gan D., Zhang S.M. Axial load behavior andstrength of tubed steel reinforced-concrete (SRC) stub columns [J].Thin-Walled Structures,2011,49(9):1141-1150.
    [111] Gan D., Guo L.H., Liu J.P., Zhou X.H. Seismic behavior and moment strengthof tubed steel reinforced-concrete (SRC) beam-columns [J]. Journal ofConstructional Steel Research,2011,67(10):1516-1524.
    [112]吴博.高纵筋率钢管约束钢筋混凝土短柱抗震性能试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [113]中华人民共和国国家标准.混凝土结构设计规范GB50010-2002[S].北京:中国建筑工业出版社,2002.
    [114]中华人民共和国国家标准.混凝土结构试验方法标准GB50152-92[S].北京:中国建筑工业出版社,1992.
    [115]中华人民共和国国家标准.金属材料室温拉伸实验方法GB/T228-2002
    [S].北京:中国建筑工业出版社,2002.
    [116] Jurgen B., Anil K.P., Sami H.R., et al. Analytical models for concrete confinedwith FRP tubes [J]. Journal of Composites for Construction,2003,2:31-38.
    [117] Mau S.T., Fellow, Alaa E.E., et al. Analytical study of spacing of lateral steeland column confinement [J]. Journal of Structural Engineering,1998,3:262-269.
    [118] Edward H.W. Behavior of confined concrete under cyclic loading [M].Washington: UMI Company,1998.
    [119] Esneyder M. Behaviour and analysis of confined concrete [D]. Toronto:University of Toronto.2003.
    [120] Li J., Hadi M.N.S. Behaviour of externally confined high-strength concretecolumns under eccentric loading [J]. Composite Structures,2003,62:145-153.
    [121] Murat S., Darek B. Circular high-strength concrete columns under simulatedseismic loading [J]. Journal of Structural Engineering,1999,3:272-280.
    [122] Murat S., Amir H.S., Salim R.R. Confined columns under eccentric loading [J].Journal of Structural Engineering,1995,11:1547-1556.
    [123] Amir F., Frank S.Q., Sami R. Concrete-filled steel tubes subjected to axialcompression and lateral cyclic loads [J]. Journal of Structural Engineering,2004,4:631-640.
    [124] Thomas G.H., Seetharaman R., Edward H.W. Confined concrete subjected touniaxial monotonic loading [J]. Journal of Engineering Mechanics,1998,12:1303-1309.
    [125] Lahlou K., Lachemi M., Aitcin P.C. Confined high-strength concrete underdynamic compressive loading [J]. Journal of Structural Engineering,1999,10:1100-1108.
    [126] Salim R., Murat S. Confinement model for high-strength concrete [J]. Journalof Structural Engineering,1999,3:281-289.
    [127] Oguzhan B., Shamim A.S. Confinement reinforcement design considerationsfor ductile HSC columns [J]. Journal of Structural Engineering,1998,9:999-1010.
    [128] Ramesh K., Seshu D.R., Prabhakar M. Constitutive behaviour of confinedfibre reinforced concrete under axial compression [J]. Cement&ConcreteComposites,2003,25:343-350.
    [129] Martin D., Russell Q.B. Design of circular thin-walled concrete filled steeltubes [J]. Journal of Structural Engineering,2000,11:1295-1303.
    [130] Kent A.H., Gayatri K. Experimental investigation of the behavior of variablyconfined concrete [J]. Cement and Concrete Research,2003,33:873-880.
    [131] Hong D.K., Kaspar W., Benson S., Enrico S. Failure analysis of R/C columnsusing a triaxial concrete model [J]. Computers and Structures,2000,77:423-440.
    [132] Marijn R.S., Giorgio M. FRP-confined concrete model [J]. Journal ofComposites for Construction,1999,8:143-150.
    [133] Murat S., Salim R.R. High-strength concrete columns with square sectionsunder concentric compression [J]. Journal of Structural Engineering,1998,12:1438-1447.
    [134] Reza E.M., Vijaya R.B. Influence of transverse reinforcement on bondstrength of tensile splices [J]. Cement&Concrete Composites,2000,22:159-163.
    [135] Beni A., Minehiro N., Fumio W. New approach for modeling confinedconcrete-I: circular columns [J]. Journal of Structural Engineering,2001,7:743-750.
    [136] Beni A., Minehiro N., Fumio W. New approach for modeling confinedconcrete-II: rectangular columns [J]. Journal of Structural Engineering,2001,7:751-757.
    [137] Xiao Y., Wu H. Retrofit of reinforced concrete columns using partiallystiffened steel jackets [J]. Journal of Structural Engineering,2003,6:725-732.
    [138] Aboutaha R.S., Machado R. Seismic resistance of steel-tubed high-strengthreinforced-concrete columns [J]. Journal of Structural Engineering,1999,5:485-494.
    [139] Daniel C., Francois L., Claude B., Patrick P. Strain localization in confinedhigh-strength concrete columns [J]. Journal of Structural Engineering,1996,9:1055-1061.
    [140] Candappa D.P., Setunge S., Sanjayan J.G. Stress versus strain relationship ofhigh strength concrete under high lateral confinement [J]. Cement andConcrete Research,1999,29:1977-1982.
    [141] Heon S.C., Keun H.Y., Young H.L., Hee C.E. Stress-strain curve of laterallyconfined concrete [J]. Engineering Structures,2002,24:1153-1163.
    [142] Daniel C., Patrick P. Stress-strain model for confined high-strength concrete[J]. Journal of Structural Engineering,1995,121(3):468-477.
    [143] Domingo A.M., Chris P.P. Stress-strain model for fiber-reinforcedpolymer-confined concrete [J]. Journal of Composites for Construction,2002,11:233-240.
    [144] Domingo S., Ignacio C., Ravindra G., Guillermo E. Study of the behavior ofconcrete under triaxial Compression [J]. Journal of Engineering Mechanics,2002,2:156-163.
    [145] Kappos A.J., Chryssanthopoulos M.K., Dymiotis C. Uncertainty analysis ofstrength and ductility of confined reinforced concrete members [J].Engineering Structures,1999,21:195-208.
    [146] Susantha K.A.S., Hanbin G, Tsutomu U. Uniaxial stress–strain relationship ofconcrete confined by various shaped steel tubes [J]. Engineering Structures,2001,23:1331-1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700