用户名: 密码: 验证码:
一种BTB/POZ结构域蛋白GRP参与人hsp90基因表达调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在染色质水平研究基因的表达调控是目前的热点之一,研究较多的两类染色质重塑复合物是ATP依赖的复合物和核小体共价修饰复合物,对通过形成非组蛋白染色质结构,改变核小体的正常排列类型的第三类蛋白质复合物却了解很少。果蝇GAF作为一种BTB/POZ结构域蛋白,它参与形成的GBP复合物是第三类染色质重塑复合物的典型代表。GBP复合物通过靶基因的GAGA元件介导形成非组蛋白染色质结构,导致染色质重塑,调控靶基因的表达。
     为观察人类细胞是否存在果蝇GBP类复合物,本实验室曾利用含有GAGA元件核心序列的报告基因质粒,通过酵母单杂交系统,鉴定了(?)种GAGA元件结合蛋白相关蛋白GRP。本文主要通过共转染及竞争性RT-PCR方法,检测果蝇ftz基因、人hsp90α和人hsp90β基因的启动子活性,主要在染色质水平研究了GRP对这些在启动子区含有GAGA元件的靶基因的表达活性的调控机制。另外,我们也通过流式细胞分析,初步观察了GRP对人Jurkat细胞周期分布和凋亡的影响。
     将启动子区含有GAGA元件的典型的GAF的靶基因ftz基因启动子(-617~+124)构建到能模拟染色质结构的pREP4mCAT episome载体质粒上,转染人Jurkat细胞,通过竞争性RT-PCR方法检测其启动子活性,发现含有4个野生型GAGA元件的ftz基因启动子驱动的CAT报告基因可在人Jurkat细胞中有较好的表达,其相对启动子活性单位约为1.5。而4个GAGA元件突变的ftz基因启动子驱动的CAT报告基因表达明显减弱,相对启动子活性单位仅为0.5左右。提示人Jurkat细胞内可能存在与果蝇GAF类似的因子。
     在同样的实验条件下,GRP能显著增强GAF对野生型果蝇ftz基因启动子驱动的CAT报告基因的表达的促进作用,GAGA元件突变后该作用消失。提示人Jurkat细胞中可能有类似于果蝇GBP一样的复合物存在,GRP也是一种BTB/POZ结构域蛋白,很可能参与人的果蝇GBP复合物类似物的功能。
     许多研究表明,HSP90是热激蛋白家族(HSP)的重要成员,它在细胞中呈高组成性表达,热休克和其它应激条件可以进一步诱导其表达。HSP90作为分子伴侣广泛参与细胞的信号转导、激素应答及细胞周期调控等多种过程,对细胞在生理、病理及应激条件下的生存发挥了重要作用。因此研究HSP90蛋白基因表达调控机制具有重要的生物学意义。
     利用计算机软件对人hsp90α启动子(-1756~+37)和人hsp90β启动子((?)943~+(?)531)进行转录因子结合位点搜索,发现它们分别含有数个GAGA元件,因此人hsp90α和人hsp90β是否是GRP和/或GAF的靶基因是我们感兴趣的问题。用Rc/CMV-GAF和pREP4m CAT-hsp90α(-1756~+37)或pREP4mCAT-hsp90β(-943~+1531)共转染人Jurkat细胞,测定CAT报告基因的活性。结果发现37℃时,转染2、10和50μgRc/CMV-GAF时,hsp90α相对启动子活性分别为0.8、1.1和1.6,表明GAF能增强hsp90α报告基因的表达。经42℃热休克1小时,增强作用更加明显,hsp90α相对启动子活性分别为1.8、2.4和4.6。在与上述相同条件处理下,hsp90β与hsp90α相对启动子活性的变化趋势类似。提示人hsp90α和hsp90β基因可能是GAF类因子的侯选靶基因,可能通过它们调控序列中的GAGA元件发挥调控作用。
     转染正义GRP表达质粒,明显促进人hsp90启动子的热诱导。当转染50μg正义GRP质粒为时,hsp90α启动子活性热诱导倍数是6.4,而hsp90α对照组的热诱导倍数仅为2.0;转染反义GRP表达质粒,则抑制hsp90报告基因的热诱导表达,当转染50μg反义GRP质粒时,42℃热休克1小时,与对照组相比,hsp90α相对启动子活性抑制46%。在与上述相同条件处理下,hsp90β与hsp90α相对启动子活性的变化趋势类似。共转染Rc/CMV-GAF和pCDNA6-GRP,在37℃和42℃条件下,hsp90β相对启动子活性分别为6.5和11.2。仅转染Rc/CMV-GAF时,在37℃和12℃条件下,hsp90β相对启动子活性分别为1.9和4.0。在与上述相同条件处理下,hsp90α与hsp90β相对启动子活性的变化趋势类似。这些结果与GAF和GRP对果蝇ftz基因启动子表达调控的结果类似,提示GAF和GRP可能使用类似的机制,调控人hsp90基因和对果蝇ftz基因在人Jurkat细胞中的表达。
     丁酸钠是常见的组蛋白去乙酰化酶抑制剂。为研究乙酰化是否与GRP增强人hsp90基因表达的作用有关,用GRP正义或反义真核表达质粒与hsp90报告基因质粒共转染Jurkat细胞,培养36小时后用终浓度为2mM丁酸钠处理细胞12小时。37℃时,转染正义GRP细胞中,hsp90α相对启动子活性为0.8;转染空载体的对照组,hsp90α相对启动子活性为0.7。丁酸钠处理细胞,hsp90α相对启动子活性为1.5,表明丁酸钠对hsp90α-CAT报告基因表达有促进作用。若转染正义GRP后,经丁酸钠处理,hsp90α相对启动子活性为2.3,显示正义GRP和丁酸钠可共同增强hsp90α-CAT的表达,此时将细胞在42℃热休克1小时,增强作用更加明显,hsp90α相对启动子活性为5.2。在与上述相同条件处理下,hsp90β-CAT报告基因表达产生类似的变化。结果表明,丁酸钠处理增强GRP对hsp90基因启动子的热诱导活性的促进作用,提示组蛋白乙酰化参与GRP对hsp90基因启动子的热诱导调控。,
     p300是一种重要的组蛋白乙酰基转移酶。为了进一步研究组蛋白乙酰化在GRP对hsp90基因表达调控中的作用,设计了多种p300与GRP转染实验组合。仅转染GRP,37℃和42°条件下,hsp90β相对启动子活性为0.8和2.8。共转染GRP和p300,37℃和42°条件下,hsp90β相对启动子活性为1.5和6.7。共转染GRP和缺失HAT活性结构域的p300△h时,37℃和42°条件下,hsp90β相对启动子活性为0.8和2.9;仅转染GRP,37℃和42°条件下,hsp90α相对启动子活性分别为0.8和2.6。共转染GRP和p300,37℃和42°条件下,hsp90α相对启动子活性分别为0.8和2.8。共转染GRP和p300△h时,hsp90α相对启动子活性分别为0.7和2.7。说明无论热休克与否,p300或p300△h不影响GRP对hsp90α基因启动子活性的增强作用。表明在37℃时,野生型Pp300与GRP在某种程度上,共同促进hsp90β启动子驱动的报告基因表达,在42℃时,这种协同作用更加明显。缺失HAT结构域的突变型p300△h则无此作用。提示p300可能通过HAT结构域参与GRP对hsp90β基因启动子活性的的调控。
     初步通过流式细胞分析观察GRP对Jurkat细胞周期分布的影响。发现转染GRP48h后,G1期细胞所占比例由对照组的52.5%上升为68.7%,S期细胞所占比例由44.4%下降为25.5%,提示GRP可能阻滞Jurkat细胞G1/S过渡。
     综上所述,我们初步认为:(1) Jurkat细胞内可能存在类似果蝇GAF或GBP复合物:(2) GRP和GAF可能在染色质调控水平上参与人hsp90基因和果蝇ftz基因的表达:(3)组蛋白的乙酰化可能参与GRP对hsp90基因启动子的热诱导调控;(4) p300可通过HAT结构域参与GRP对hsp90β基因启动子活性的调控:(5) GRP可以影响Jurkat细胞G1向S期的过渡。
The study of the expression and the control of gene on the chromatin level is one of hot spot at present. The two classes of complexes involved in chromatin remodelinghave been investigated more extensively. They are ATP-dependent complexes and chromatin-modifying complexes. Little is known about a third class of protein complexes that disrupt the normal nucleosome pattern by forming nonhistone chromatin structures. Drosophila GAF contains BTB/POZ domain. GBP, of that GAF is a component, is representative of this kind of nonhistone complexes. The complexes forming nonhistone chromatin structures regulate the expression of target gene containing GAGA element by chromatin remodeling.
     Fo observe if this kind of nonhistone complexes exists in human Jurkat cell, , we identified a GAGA element binding protein related protein, GRP using yeast one-hybrid system. By a competitive RT-PCR, this paper investigated mainly the effect of GRP on the promoter activity of its GAGA element-containing target gene ftz、hsp90αand hsp90βon the chromatin level.
     The promoter of Drosophila ftz gene is constructed into pREP4mCAf episomal vector capable of simulating chromatin structures. It is found that the CAT reporter gene driven by wild-type ftz promoter can express better than the CAT reporter gene driven by mutant-type ftz promoter in human Jurkat cell. The relative promoter activity of wild-type and mutant-type ftz gene is 1.5 (wild-type) and 0.5 (mutant-type) respectively ,suggesting that the factor similar to Drosophila GAF exists in human Jurkat cell.
     GRP enhances the promotion of GAF to the expression of CAT reporter gene driven by wild-type ftz gene promoter, but GRP does not about mutant-type ftz gene promoter. The results indicate that the complexes similar to GBP exist in human Jurkat cell.
     HsP90 is an important member of HSP protein family. HSP90 usually constitutively expressed in most mammalian cell types and can be further induced by heat shock and other stresses. HSP90 proteins are molecular chaperones that associated with cellar signal transduction, steroid hormone response, and cell cycle regulation, they are critical to the survival of cell in the normal and pathological conditions. So it is very meaningful for us to study the regulatory mechanisms of human hsp90 genes.
     We found a few of GAGA element in the hsp90αpromoter region ( -1756~+37 ) and hsp90βpromoter region ( -943~+1531 ) by searching them for the sites of transcriptional factor. Rc/CMV-GAF was transfected into human Jurkat cell with pREP4mCAT-hsp90α( -1756~+37 ) or pREP4mCAT- hsp90β( -943~+1531 ). When Rc/CMV-GAF is transfected at 37℃, GAF promotes the expression of CAT reporter gene driven by hsp90αpromoter in a dose-dependent manner. The effect is marked after heat shock for an hour at 42℃. Under the above experimental condition the change of CAT reporter gene driven by hsp90βpromoter is similar to that of hsp90α. Rc/CMV-GAF and pCDNA6-GRP was transfected into human Jurkat cell with pREP4mCAT-hsp90αor pREP4mCAT-hsp90β. GRP and GAF cooperatively promote the expression of CAT reporter gene driven by hsp90αor hsp90βpromoter. The mechanism regulating hsp90αor hsp90βpromoter by GRP and GAF may be similar to that regulating ftz gene promoter by GRP and GAF.
     Sodium butyrate is a common histone deacetylase inhibitor. The sense- or antisense- expressional plasmids of GRP were cotransfected into human Jurkat cell with pREP4mCAT-hsp90αor pREP4mCAT-hsp90β. 36 hours later the cells were treated with 2mM sodium butyrate for 12 hours. The results show that the 2mM sodium butyrate markedly enhances the promotion of GRP to the expression of CAT reporter gene driven by hsp90αor hsp90βpromoter. We assume that the promotion of GRP to hsp90αor hsp90βpromoter may involve histone deacetylation by Sodium butyrate. p300 is an irnportant histone acetyltransferase, p300 or p300△h and GRP were transfected into Jurkat cells, p300 and GRP synergistically promote the expression of CAT reporter gene driven by hsp90βpromoter, p300 and GRP do not about hsp90α, p300△h (histone acetyltransferase domain is deleted) can not affect the promotion of GRP to the expression of CAT reporter gene driven by hsp90αor hsp90βpromoter. These results suggest that p300 may take part in the regulation of GRP to hsp90αor hsp90βgene by histone acetyltransferase domain of it.
     GRP can regulate the distribtion of cell cycle. When the Jurkat cells were transfected with GRP, the percentage of G1-phase cells increases and the percentage of S-phase cells decreases, suggesting that GRP may blocks the G1-to-S transition. The overexpression of GRP can lead to cell apoptosis.
     Taken together, we get the following conclusion: The factor similar to Drosophila GAF or complexes similar to GBP may exist in human Jurkat cell. The mechanism regulating hsp90αor hsp90βpromoter by GRP and GAF may be similar to that regulating ftz gene promoter by GRP and GAF. The promotion of GRP to hsp90αor hsp90βpromoter may involve histone deacetylation by Sodium butyrate. P300 may take part in the regulation of GRP to hsp90αor hsp90βgene by histone acetyltransferase domain of it. GRP can regulate the distribtion of cell cycle. The overexpression of GRP can lead to cell apoptosis.
引文
1. Anthony J., el al 2001 GAGA factor isoform have but distinct overlapping functions in vivo Mol. Cell. Biol. 21, 8565-8574
    2. Bardwell.V.J., and Treisman, R. The POZ doman : a conserved protein-protein interaction motif. Genes Dev., 8: 1664-1667, 1994.
    3. David, G. Alland, L., Hong, S. H. Wong, C. W., DePinho, R. A. Dejean, A. 1998. Hi stone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukaemia- associated PLZF protein. Oncogene, 16, 2549-2556.
    4. Farkas G, Gausz J, Galloni. M et al, 1994, The Trithorax-like gene encodes the Drosphila GAGA factor Nature, 371:806
    5. Geeta J. el al. 2002 Cooperation between complexes that regulate chromatin structure and transcription
    6. John L.Yates, Nordeen W and Bill S 1985 Stable replication of plasmids derived from Epstein-Barr virus in various mammlian cells.,313:812
    7. Granok. H. et al. 1995. Ga-ga over GAGA factor. Curr. Biol. 5,238-241
    8. Grignani, F. DeMatteis, S., Nervi, C, Tomassoni, L., Gelmetti,V., Cioce, M, Fanelli, M., Ruthardt. M.. Ferrara, F. F., Zamir, I., Seiser, C, S., Pelicci, P. G. 1998 Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in acule promyelocytic leukaemia. Nature 391,815-818.
    9. Hickey E. et al., 1989, sequence and regulation of a gene encoding a human 89kDa heat shock protein. Mol.Cell.Biol. 9:2615-2626
    10. Horard B. Tatout C, Poux S and Pirrotta V. 2000, Structure of a Polycomb Response Element and In Vitro Binding of Polycomb Group Complexes Containing GAGA Factor 20:3187-3197,
    11. Hong. S. H. David. G. Hong, S. H. Wong, C. W., Dejean, A. Privalsky, M. L. 1997. SMRT corepressor interacts with PLZF and with the PML- retinoic acid receptor-alpha(RAR alpha) and PLZF- RAR alpha oncoproteins associated with acute promyelocytic leukaemia. Proc. Natl. Acad. Sci. USA, 94: 9028-9033
    12. Imbalzano. A. N. , H. Kwon, M. R. Green, et al. 1994, Facilitated binding protein to nucleosomal DNA. Nature 370: 481-485.
    13. James R. et al. 2003 Inhibition of histone deacetylase activity by butyrate Nutritional Proteomics in Cancer Prevention 2484-2493.
    14. Johannes Buchner 1999 Hsp90 & Co.-a hiding for folding TIBS 136-141.
    15. L. Aravind et al 1999 Fold prediction and evolutionary analysis of the POZ doman : structural and evolutionary relationship with the potassium channel tetramerization doman J. Mol. Biol. 285, 1353-1361
    16. Li, .1. et al. 1998, Nucleic acids Res. 26, 3018-3025
    17. Lin, R. J. , Nagy. L. , Inoue, S. Shao, W., Miller, W. H. Jr., and Evans, R. J., 1998, Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391.811-814.
    18. Li. X.. Lopez-Guisa, J. M, Ninan, N., Weinet. E, J., Rauscher , F. J. 3rd , and Marmorslein. R. 1997, Overexpression, purification, characterization, and crystallization of the BTB/POZ domain from the PLZF oncoprotein. J. Biol. Chem. 272, 27324-27329.
    19. Maeda. I. et al 2001 in vitro ubiquitination of cyclin D1 by ROC1-CUL1 and ROC1-CUL3. FEBS Lett. 494, 181-185
    20. Maria Barna , et al 2002 Plzf mediates transcriptional repression of HoxD gene extression through chromatin remodeling Developmental Cell 3, 499-510
    21. Masahiro Okada et al 1998 Chromatin remoldling mediated by Drosophila GAGA factor and ISWI activates fushi tartarazu gene transcription in vitro Mol. Cell. Biology 2455-2461
    22. Michael Lehmann 2004, Anything else but GAGA : a nonhistone protein complex reshapes chromatin structure TRENDS in Genetics 20 (1): 15-22
    23. Maureen E. Hoatlin , et al 1999 A novel BTB/POZ transcriptional repressor pretein interacts with the Fanconi Anemia group C pretein and PLZF Blood 3737-3747
    24. Olivier Albagli, Philippe Dhordain ,et al . The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins Cell Growth & Differentiation 1995 ,6(3) :1193-1198
    25. Platero. J.S., Csink, A.K., Quintanilla, A. and Henikoff, S. (1998) Changes in chromosomal localization of heterochromatin binding proteins during the cell cycle in Drosophila.J. Cell Bioi, 140. 1297-1306
    26. Poux, S. el al. 2002 The Drosophila Trithorax protein is a coactivator required to prevent re-establishment of Polycomb silencing. Development 129, 2483-2493
    27. R.Chris Wilkins el al 1997 Dynamics of potentiation and activation:GAGA factor and its role in heat shock gene regulation Nucleic acids Res. 25, 3963-3968
    28. Rebbe NF, et al. 1989 Nucleotide sequence and regulation of a human 90-kDa heat shock protein gene. J Biol Chem. Sep 5;264(25):15006-ll
    29. RitossaF.M., 1962 Experientia, 18, 571.
    30. Rory Geyer, Susan Wee. Scott Anderson, John Yates, and Dieter A. Wolf 2003 BTB/POZ doman proteins are putiative substrate adaptors for cullin 3 ubiquitin ligase. Mol. Cell 12:783-790
    31. Rui Liu , Hong Liu . et al . 2001 Regulation of CSF1 promoter by the SWI/SNF-like BAF Complex Cell. 106 , 309-318
    32. Shen YF. et al. 1997, Essential roles of the first intron in transcription regulation of hsp90 α gene. FEBS lett. 413:92-98
    33. Sheryl T. el al 2004 Moduation of heat shock gene expression by the TAC1 chromatin-modifying complex Nature cell biology 162-167.
    34. Simona Volpi et al 2002, Transcriptional regulation of the pituitary vasopression Vlb receptor involves a GAGA-binding protein THE JOURNAL OF BIOLOGICAL CHEMISTRY 277 (31) 27829-27838
    35. Simar-Blan(?)het, A. E. et al, 1998, Mol. Endocrinol. 12, 391-404
    36. Singer.J.D. el al 1999 Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13, 2375-2387
    37. Stella Reuter, el al APM-1, a novel human gene, identified by aberrant co-transcription with papillomavirus oncogenes in a cervical carcinoma cell line, encodes a BTB/POZ-zinc finger protein with growth inhibitory activity The EMBO Journal 17 (1), 215-222
    38. Susana de la Luna, et al 1999 Integration of a growth-suppressing BTB/POZ doman protein with the DP component of the E2F transcription factor The EMBO Journal 18(1) 212-228
    39. Tissieres A, et al. J Mol. Biol. 84: 389-398 1974
    40. Unoki M, Nakamura Y 2001, Growth-suppresive effects of BPOZ and EGR2, two genes involved in PTEN signaling pathway. Oncogene 20: 4457
    41. Wales, M. M. , Biel, M. A.. el Deiry, W., Nelkin, B. D., Iss, J. P., Cavenee, W. K. Kuerbitz, S. J. Baylin, S. B. 1995 p53 activites expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Med. 1, 570-577.
    42. Wilhelm Krek, BTB proteins as henchman of Cul3-based ubiquitin ligases, 2003 Nature Cell Biology, 5(11): 950-951
    43. Wyse, B. D. et al, 2000, J. Mol. Endocrinol. 25, 97-108
    44. Xiao L and Lang WH. 2000, A dominant role for the c-Jun NH2-terminal kinase in oncogenic Ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res, 60: 400-408
    45. Zhang SL. et al. 1999. Regulayion of human hsp90 α gene expression. FEBS lett, 444: 130-135
    46. Zhen, L. and Swank, R. T. (1993) A simple and high yield method for recovering DNA from agarose gels. Biotechniques. 14, 894-8.
    47. Zollman, S., Godt, D., Prive, G. G., Couderc, J. L., and Laski, F. A. The BTB doman, found primarily in Zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl. Acad. Sci. USA. 91: 10717-10721, 1994.
    48.沈珝琲,方福德。1994。真核基因表达调控 p270-290
    49.流式细胞仪技术 宋平根
    1. Ahmad. K. F. et al. (1998) Crystal structure of the BTB domain from PLZF. Proc. Natl. Acad. Sci. U. S. A. 95, 12123-12128
    2. Badenhorst, P. et al. (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16, 3186-3198
    3. Bailey, A. D. et al. (1998) The microsatellite sequence (CT)n. (GA)npromotes stable chromosomal integration of large tandem arrays of functional human U2 small nuclear RNA genes. Mol. Cell. Biol. 18, 2262-2271
    4. Barna. M. et al. (2002) Plzf mediates transcriptional repression ofHoxD gene expression through chromatin remodeling. Dev. Cell 3, 499-510
    5. Bardwell. V.J. and Treisman, R. (1994) The POZ domain: a conservedprotein-protein interaction motif. Genes Dev. 8, 1664-1677
    6. Belozerov. V.E. et al. (2003) A novel boundary element may facilitateindependent gene regulation in the Antennapedia complex of Drosophila. EMBO J. 22, 3113-3121
    7. Benyajati, C. et al. (1997) Multiple isoforms of GAGA factor, a criticalcomponent of chromatin structure. Nucleic Acids Res. 25, 3345-3353
    8. Bhat, K.M. et al. (1996) The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also fornuclear division. Development 122, 1113-1124
    9. Biggin, M.D. and Tjian, R. (1988) Transcription factors that activatethe Ultrabithorax promoter in developmentally staged extracts. Cell , 53, 699-711
    10. Brown, J.L. et al. (2003) The Drosophila pho-like gene encodes aYYl-related DNA binding protein that is redundant with pleiohomeoticin homeotic gene silencing. Development 130, 285-294
    11. Busturia, A. et al. (2001) The MCP silencer of the Drosophila Abd-Bgene requires both Pleiohomeotic and GAGA factor for the maintenanceof repression. Development 128,2163-2173
    12. Czermin, B. et al. (2001) Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2, 915-919
    13. Deuring, R. et al. (2000) The ISWI chromatin-remodeling protein isrequired for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5.355-365
    14. Farkas, G. et al. (1994) The Trithorax-like gene encodes the DrosophilaGAGA factor. Nature 371, 806-808
    15. Fritsch, C. et al. (1999) The DNA-binding Polycomb group proteinPleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126, 3905-3913
    16. ranok, H. et al. (1995) Chromatin. Ga-ga over GAGA factor. Curr.Biol. 5, 238-241
    17. Greenberg. A..I. and Schedl, P. (2001) GAGA factor isoforms havedistinct but overlapping functions in vivo. Mol. Cell. Biol. 21, 8565-8574
    18. Croston, G.E. et al. (1991) Sequence-specific antirepression of histone Hl-mediated inhibition of basal RNA polymerase II transcription. Science 251, 643-649
    19. Espinas, M.L. et al. (2000) The GAGA factor of Drosophila interactswith SAP18. a Sin3-associated polypeptide. EMBO Rep. I, 253-259
    20. Espinas, M.L. et al. (1999) The N-terminal POZ domain of GAGAmediates the formation of oligomers that bind DNA with high affinityand specificity. J. Biol. (Them. 274.16461 16469
    21. Faucheux, M. et al. (2003) batman interacts with Polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol. Cell. Biol. 23, 1181-1195
    22. Hagstrom. K. et al. (1997) A Polycomb and GAGA dependent silenceradjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics 146. 1365-1380
    23. Horard, B. et al. (2000) Structure of a Polycomb response element andin vitro binding of Polycomb group complexes containing GAGA factor. Mol. Cell. Biol. 20, 3187-3197
    24. Hodgson. J.W. et al. (2001) Site-specific recognition of a 70-base-pairelement containing d(GA)(n) repeats mediates bithoraxoid Polycombgroup response element-dependent silencing. Mol. Cell. Biol. 21,4528-4543
    25. Horowitz, H. and Berg, C.A. (1996) The Drosophila pipsqueak gene encodes a nuclear BTB-domain-containing protein required early inoogenesis. Development 122, 1859-1871
    26. Huang, D.H. et al. (2002) Pipsqueak encodes a factor essential forsequence-specific targeting of a Polycomb group protein complex. Mol.Cell. Biol. 22, 6261-6271
    27. Huynh. K.D. and Bardwell. V.J. (1998) The BCL-6 POZ domain andother POZ domains interact with the co-repressors N-CoR and SMRT.Oncogene 17, 2473-2484
    28. Karen, F. et al. (1994) Mcp and Fab-7: molecular analysis of putativeboundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res. 22, 3138-3146
    29. Katsani, K.R. et al. (1999) Co-operative DNA binding by GAGAtranscription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. EMBO J. 18,698-708
    30. Kim. M.H. et al. (2002) Retinoic acid response element in HOXA-7 regulatory region affects the rate, not the formation of anterior boundary expression. Int. J. Dev. Biol. 46. 325-328
    31. Lander. E.S. et al. (2001) Initial sequencing and analysis of the humangenome. Nature 409,860-921
    32. Lehmann. M. et al. (1998) The Pipsqueak protein of Drosophilamelanogaster binds to GAGA sequences through a novel DNA-binding domain. J. Biol. Chem. 273, 28504-28509
    33. Lintermann, K.G. et al. (1998) Comparison of the GAGA factor genes of Drosophila melanogaster and Drosophila virilis reveals high conservationof GAGA factor structure beyond the BTB/POZ and DNAbindingdomains. Dev. Genes Evol. 208, 447-456
    34. Lis, J. (1998) Promoter-associated pausing in promoter architectureand postinitiation transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 63, 347-356
    35. Mahmoudi. T. et al. (2003) GAGA facilitates binding of Pleiohomeoticto a chromatinized Polycomb response element. Nucleic Acids Res. 31,4147-4156
    36. Mahmoudi, T. et al. (2002) GAGA can mediate enhancer function intrans by linking two separate DNA molecules. EMBO J. 21, 1775-1781
    37. Melfi, R. et al. (2000) Functional characterization of the enhancer blocking element of the sea urchin early histone gene cluster reveals insulator properties and three essential cis-acting sequences. J. Mol. Biol. 304, 753-763
    38. Mihaly, J. et al. (1998) Chromatin domain boundaries in the Bithoraxcomplex. Cell. Mol. Life Sci. 54, 60-70
    39. Melnick, A. et al. (2002) Critical residues within the BTB domain ofPLZF and Bcl-6 modulate interaction with corepressors. Mol.Cell. Biol. 22, 1804-1818
    40. Mishra. K. et al. (2003) Trl-GAGA directly interacts with lola like andboth are part of the repressive complex of Polycomb group of genes.Mech. Dev. 120, 681-689
    41. Mishra. R.K. et al. (2001) The iab-7 Polycomb response element mapsto a nucleosome-free region of chromatin and requires both GAGA andPleiohomeotic for silencing activity. Mol. Cell. Biol. 21, 1311-1318
    42. O'Donnell. K.H. et al. (1994) Insulating DNA directs ubiquitoustranscription of the Drosophila melanogaster alpha 1-tubulin gene. Mol. Cell. Biol. 14, 6398-6408
    43. Ohtsuki. S. and Levine, M. (1998) GAGA mediates the enhancerblocking activity of the eve promoter in the Drosophila embryo. GenesDev. 12, 3325-3330
    44. Omichinski. J.G. et al. (1997) The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat. Struct.Biol. 4, 122-132
    45. 59 Orlando, V. (2003 ) Polycomb, epigenomes, and control of cell identity.Cell 112, 599-606
    46. Orphanides. G. et al. (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105-116
    47. Pagans. S. et al. (2002) The Drosophila transcription factor tramtrack(TTK) interacts with Tri thorax-like (GAGA) and represses GAGAmediated activation. Nucleic Acids Res. 30. 4406-4413
    48. Platero, J.S. et al. (1998) Changes in chromosomal localization oflieterochromatin-binding proteins during the cell cycle in Drosophila. J. Cell Biol. 140. 1297-1306
    49. Poux. S. et al. (2001) Establishment of Polycomb silencing requires atransient interaction between PC and ESC. Genes Dev. 15, 2509-2514
    50. Poux, S. et al. (2002) The Drosophila Trithorax protein is a coactivatorrequired to prevent re-establishment of Polycomb silencing. Developmentl 29. 2483-2493
    51. Rego, E.M. and Pandolfi, P.P. (2002) Reciprocal products of chromosomaltranslocations in human cancer pathogenesis: key players or innocent bystanders? Trends Mol. Med. 8, 396-405
    52. Salvaing. .J. et al. (2003) The Drosophila Corto protein interacts withPolycomb-group proteins and the GAGA factor. Nucleic Acids Res. 31,2873-2882
    53. Santi, L. et al. (2003) The GA octodinucleotide repeat binding factorBBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J. 34, 813-826
    54. Schwerk, C. et al. (2003) ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol. Cell. Biol. 23, 2981-2990
    55. Schwendemann. A. and Lehmann, M. (2002) Pipsqueak and GAGAfactor act in concert as partners at homeotic and many other loci. Proc.Natl. Acad. Sci. U. S. A. 99, 12883-12888
    56. Shimojima. T. et al. (2003) Drosophila FACT contributes to Hox geneexpression through physical and functional interactions with GAGA factor. Genes Dev. 17, 1605-1616
    57. Siegmund. T. and Lehmann, M (2002) The Drosophila Pipsqueakprotein defines a new family of helix-turn-helix DNA-binding proteins.Dev. Genes Evol. 212, 152-157
    58. Simon, J.A. and Tamkun, J.W. (2002) Programming off and on states inchromatin: mechanisms of Polycomb and trithorax group complexes.Curr. Opin. Genet. Dev. 12. 210-218
    59. Soeller, W.C. et al. (1988) In vitro transcription of the Drosophilaengrailed gene. Genes Dev. 2, 68-81
    60. Strutt. H. et al. (1997) Co-localization of Polycomb protein and GAGAfactor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 16,3621-3632
    61. Tie, F. et al. (2003) A 1-megadalton ESC/E(Z) complex from Drosophilathat contains polycomblike and RPD3. Mol. Cell. Biol. 23, 3352-3362
    62. Tillib, S. et al. (1999) Trithorax-and Polycomb-group responseelements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol. Cell. Biol. 19,5189-5202
    63. Tsukiyama. T. and Wu, C. (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83, 1011-1020
    64. van Steensel. B. et al. (2003) Genomewide analysis of DrosophilaGAGA factor target genes reveals context-dependent DNA binding. Proc. Natl. Acad. Sci. U. S. A. 100. 2580-2585
    65. Vaquero, A. et al. (2000) Functional mapping of the GAGA factorassigns its transcriptional activity to the C-terminal glutamine-rich domain. J. Biol. Chem. 275, 19461-19468
    66. Wilkins, R.C. and Lis. J.T. (1997) Dynamics of potentiation andactivation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res. 25, 3963-3964
    67. Wilkins, R.C. and Lis, J.T. (1999) DNA distortion and multimerization: novel functions of the glutamine- rich domain of GAGA factor. J. Mol.Biol. 285, 515-525
    68. Xiao, H. et al. (2001) Dual functions of largest NURF subunitNURF301 in nucleosome sliding and transcription factor interactions. Mol. Cell 8, 531-543
    69. Zhang. Y. et al. (1997) Histone deacetylases and SAP 18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700