用户名: 密码: 验证码:
BTB/POZ-ZF结构蛋白DPZF在肝细胞癌中的表达及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景和目的
     肝细胞性肝癌(简称肝癌,Hepatocellular Carcinoma,HCC)是我国最常见的恶性肿瘤之一,目前的研究认为:肝炎病毒感染及其他致癌因素是肝癌发生的主要外因。同时,肝癌和其它恶性肿瘤一样,其发生发展是由体内多基因多蛋白参与、多步骤协同的复杂过程。因此,寻找肝癌相关蛋白有助于研究肝癌发生及发展的机制,从而为肝癌的预防、诊断及治疗提供理论基础。
     BTB/POZ-ZF(broad complex,tramtrack,and bric a brac;poxvirus and zinc finger-zincfinger)结构域家族是一类转录因子,其N末端含共同的保守结构域(BTB/POZ),能介导蛋白质间自联作用,C端则含各种不同的锌指结构域(以C2H2锌指为多),能介导与DNA的相互作用。包括BCL-6(B cell lymphoma 6)、PLZF(promyelocytic leukemia zincfinger)等在内的该家族成员参与多种细胞功能,如转录调节、细胞增殖、凋亡等,在DNA损伤反应、肿瘤形成及发育过程中起重要作用。DPZF(dendritic cell-derived BTB/POZ zincfinger)是该家族的一个成员,是从人类DC细胞中克隆鉴定并得名,又名Zbtb20、HOF、Znf288及Zfp288等。它编码形成两个剪接体(分别称HOF~L和HOF~S),其N端含有一个BTB/POZ结构域,C端含有4个C2H2锌指结构。该基因定位在3号染色体(3q27),广泛表达于造血系统及部分血液系统恶性肿瘤细胞中,同时也表达于神经系统,参与神经发育,促进椎体神经元形成并能调控新生神经元的细胞命运转化。目前,尚无DPZF在实体肿瘤如肝癌组织中表达与作用的相关研究报道。本研究旨在通过研究DPZF在肝癌组织中的表达及分布,结合相关临床资料探讨其表达与肝癌发生发展的关系,为寻找肝癌基因治疗的新靶点提供实验和理论依据。
     二、材料和方法
     收集2003-2006年间第二军医大学附属东方肝胆外科医院的手术切除肝细胞癌标本148例(男122,女26),平均年龄52.5(23~76)岁,患者术前未经任何抗癌治疗,每例标本均包括肝癌组织及距肿瘤边缘≤2 cm的癌旁组织;正常肝组织12例取自直径小于5cm的肝血管瘤周围2cm以上部位的肝组织,标本经分装后将用于免疫组化检测的样本行甲醛固定,Western Blot和RT-PCR检测的标本行液氮保存,所有病例均经临床和病理检查明确诊断。
     应用免疫组织化学方法检测DPZF在组织中的表达及分布,进一步用Western blot及RT-PCR验证其在肝癌及癌旁组织中的差异表达,并应用SPSS统计软件对结果进行统计分析。
     三、结果
     免疫组化法检测发现:(1)DPZF在人正常肝脏组织中的表达呈弱阳性表达,阳性着色主要位于肝细胞的细胞核,也见于胞浆;(2)在人肝癌组织中的表达明显增强,呈阳性或强阳性表达,与正常肝脏组织相比有显著差异(P<0.05),阳性着色主要位于肝细胞的细胞核,胞浆中染色也增强;(3)DPZF在癌旁组织中的表达略有增强,与肝癌组织相比有显著差异(P<0.05),阳性着色位于肝细胞胞核,也见于胞浆及炎细胞;(4)DPZF在HBsAg阴性肝癌组织中的表达呈阴性或弱阳性表达,与HBsAg阳性肝癌组织相比有显著差异(P<0.05);(4) DPZF在移性肝癌(结肠癌和胃癌肝转移)中的表达基本为阴性,而在胆囊腺癌及肝门部胆管癌中为弱阳性表达。
     Western blot检测发现DPZF在Huh7、7721、PLC及HepG2等肝癌细胞系中有较明显表达,在L02等正常肝细胞系中有低水平表达。同时证实DPZF蛋白在正常肝组织中存在较低水平的表达,在肝癌中的表达高于正常肝及癌旁。RT-PCR同样证实DPZF在肝癌组织中存在转录水平的上调。
     与肿瘤的临床病理特征的关系相关统计学分析发现:DPZF在HBsAg阳性肝癌中的表达高于HBsAg阴性组,二者差异有统计学意义(P<0.0001);在伴肝硬化的肝癌中的表达高于不伴肝硬化组(P<0.0001);在伴门静脉癌栓和子灶的肝癌中的表达高于不伴癌栓和子灶组(P<0.05);在有复发或转移的肝癌中的表达高于无复发或转移组(P<0.0001)。而DPZF的表达与患者性别、年龄、甲胎蛋白(AFP)、肿瘤大小、病理分级、有无淋巴结转移及包膜无明显相关性。多因素Logistic回归分析发现男性、直径较大肿瘤(>50mm)、血清AFP阳性以及DPZF高表达均是肝癌复发的独立危险性因素。
     四、结论
     1.DPZF在人正常肝组织中呈弱阳性表达,主要位于肝细胞的细胞核,在胞浆中也有表达。
     2.DPZF在肝癌中表达明显增强,与正常肝及癌旁组织相比有显著差异(P<0.05),提示其可能参与肝癌的发生发展。
     3.DPZF在HBV感染的肝癌组织中表达水平较未感染者高(P<0.05),提示其可能与HBV感染及炎症相关的肝癌形成有关。
     4.DPZF在伴随有癌栓和子灶的肝癌以及出现术后复发或肝外转移的肝癌中表达明显高于对照组(P<0.05),提示其可能与肝癌的复发转移相关。
     5.建立肝癌复发危险因素的多因素Logistic回归模型发现DPZF高表达是肝癌复发的独立危险性因素(P<0.05)。
Background & Objective:
     Hepatocelluar carcinoma(HCC) is one of the most prevalent malignant tumor in China. The development and progression of HCC is a complicated process involving multiple genes and transforming steps.Up to now,though over 20 genes have been found to be relative to hepatocarcinogenesis,the mechanisms underlying the development of HCC remain unclear. Therefore,searching for new HCC associated molecules may give some clues to study the mechanism of HCC.
     The BTB/POZ-ZF[Broad complex,Tramtrack,Bric a' brac(BTB) or poxvirus and zinc finger(POZ)-zinc finger]protein family comprises a diverse group of transcription factors. These factors are so named because of a distinct and unique N-terminal BTB/POZ domain and C-terminal DNA-binding zinc fingers domains.POZ-ZF proteins have been implicated in many biological processes,including B cell fate determination,DNA damage responses,cell cycle progression and a multitude of developmental events.Consequently,dysfunction of vertebrate POZ-ZF proteins,such as promyelocytic leukemia zinc finger(PLZF),B cell lymphoma 6(Bcl-6),has been linked to tumorigenesis.
     DPZF(dendritic cell-derived BTB/POZ zinc finger) is a novel BTB/POZ zinc finger gene identified from human dendritic cells(DC),which encodes a 733-residue protein with a BTB/POZ domain at the N-terminal and 4 C2H2 zinc fingers at C-terminal.It is localized on chromosome 3q27 and is widely expressed in hematopoietic tissues and nervous tissues. DPZF protein expression is detectable in lymphoid neoplasm with a molecular mass of about 100 kDa,especially in B lymphoma.It is a transcription factor may be involved in hematopoiesis,immune responses,development and oncogenesis.
     This research was focused on the elucidation of DPZF gene's role in the development and progression of HCC,through detecting its expression level in HCC tissues by immunohistochemistry,Western blot,RT-PCR and statistic analysis based on the clinicapathologic data.
     Materials & Methods:
     The sections of 12 normal hepatic tissues and 148 HCC tissues were collected from the East Hepatobiliary Hospital affiliated to Second Military Medical University during the year of 2003-2006.HCC patients were 122 males and 26 females,with a mean age of 52.5 years (range,23-76 years).Serum hepatitis B surface antigen(HBsAg) was positive in 113 cases. The Edmonson staging of these patients was based on the clinical and pathological diagnosis. Informed consent was obtained from each patient before operation.The expression of DPZF in the samples was detected by immunohistochemical staining,Western blot and RT-PCR.
     Results:
     Immunohistochemical staining showed that:(1)The expression of DPZF in human normal hepatic tissue was weakly positive.And it was mainly located in nucleus,occasionally in cytoplasm.(2)The expression of DPZF in HCC tissue was strongly positive.The level of DPZF expression in the HCC was higher than the corresponding para-cancerous tissues and the normal hepatic tissue(p<0.05).And it was mainly located in nucleus,occasionally in cytoplasm.(3)The expression of DPZF in HBsAg positive HCC tissue was substantially higher than the HBsAg negative HCC tissue(p<0.05).(4) The expression of DPZF in secondary liver cancer were negative and the expression in hilar cholangiocarcinoma and cholecyst adencarcinoma were weakly positive.
     Expression of DPZF was detectable in Huh7、7721、PLC、HepG2 and L02 cell lines by Western blot.Western blot and RT-PCR analysis confirmed over expression of DPZF in HCC tissues compared with corresponding para-cancerous tissues and normal liver tissues.
     To elucidate the significance of DPZF in HCC,its expression was correlated with various clinicopathological features.Increased DPZF expression levels in HCC were positively correlated with hepatic cirrhosis(P<0.0001),HBV infection(P<0.0001),portal vein invasion(P=0.019),and satellite nodules involvement(P=0.0001).Importantly,the recurrence or metastasis rates of HCCs with higher DPZF expression were markedly greater than those of HCCs with lower expression(P=0.0001,P=0.0001,respectively).However, there was no significant correlation between DPZF expression and other variable parameters, including age,gender,serum AFP level,tumor size,formation of tumor capsule and Edmonson's grade of HCC.Furthermore,Multivariate analysis confirmed that DPZF overexpression(P=0.005),male(P=0.006),larger tumor size(≥50mm)(P=0.009),and serum AFP positive(P=0.016) were the independent risk factors for the recurrence of HCC by using multivariate logistic analysis.
     Conclusions:
     1.The expression of DPZF in human normal hepatic tissue was weakly positive and it was located in nucleus,occasionally in cytoplasm.
     2.The expression of DPZF in HCC tissue was strongly positive.The level of DPZF expression in the HCC was higher than the corresponding para-cancerous tissues and the normal hepatic tissue.It indicated that DPZF may be associated with the genesis and development of HCC.
     3.The expression of DPZF in HBsAg positive HCC tissue was higher compared with HBsAg negative HCC tissue.It indicated that DPZF may be associated with the mechanism of hepatocarcinogenesis induced by infection of HBV.
     4.DPZF level was significantly higher(p<0.05) in portal vein thrombus,satellite nodules,recurrence and metastasis involvement groups than in the control groups. This indicated that DPZF may be associated with the recurrence and metastasis of HCC.
     5.Multivariate logistic analysis confirmed higher expression of DPZF(P=0.005) was the independent risk factor for the reccurence of HCC.
引文
1. D. Max Parkin, MD; Freddie Bray; J. Ferlay; Paola Pisani, PhD. Global Cancer Statistics, 2002.CA Cancer J Clin 2005;55;74-108
    
    2. HASHEM B. EL-SERAG and K. LENHARD RUDOLPH. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. GASTROENTEROLOGY 2007; 132:2557-2576
    3. Paraskevi A. Farazi and Ronald A. DePinho. Hepatocellular carcinoma pathogenesis:from genes to environment. Nat Rev Cancer. 2006 Sep;6(9):674-87.
    4. Montalto G, Cervello M, et al. Epidemiology, risk factors, and natural history of hepatocellular carcinoma. Ann N Y Acad Sci 2002; 963: 13-20
    5. Li H, Fu X, et al.Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology. 2005 Jun; 128(7):2029-41
    6. Albagli, O. et al. The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 1995, 6, 1193-1198
    7. Kevin F.Kelly and Juliet M. Daniel. POZ for effect - POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 2006 Nov; 16(11):578-87.
    8. Peter J Stogios, Gregory S Downs. et al. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005, 6, R82
    9. Chen Z, Brand NJ, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993 Mar;12(3):1161-1167
    10. Polo JM, Dell'Oso T, et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med. 2004 Dec;10(12):1329-1335.
    11. Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004 Dec 2; 432(7017):635-639.
    12. Margalit, O. et al. BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood 2006 107, 1599-1607.
    13. Ranuncolo SM, Polo JM, et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol. 2007 Jul;8(7):705-714.
    14. Yeyati PL, Shaknovich R, et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene. 1999 Jan 28;18(4):925-934.
    15. Felicetti F, Errico MC, et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 2008 Apr 15;68(8):2745-2754.
    16. Shiraishi K, Yamasaki K, et al. Pre-B-cell leukemia transcription factor 1 is a major target of promyelocytic leukemia zinc-finger-mediated melanoma cell growth suppression. Oncogene. 2007 Jan 18;26(3):339-348.
    17. Parrado A, Robledo M, et al. The promyelocytic leukemia zinc finger protein down-regulates apoptosis and expression of the proapoptotic BID protein in lymphocytes. Proc Natl Acad Sci U S A. 2004, 17;101(7):1898-1903.
    18. Mondal AM, Chinnadurai S, et al. Identification and functional characterization of a novel unspliced transcript variant of HIC-1 in human cancer cells exposed to adverse growth conditions. Cancer Res. 2006 Nov 1;66(21):10466-77
    19. Waha A, Koch A, et al. Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol. 2003 Nov;62(11):1192-201
    20. Nishida N, Nagasaka T, et al. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma Hepatology. 2008 Mar;47(3):908-18.
    21. Hayashi M, Tokuchi Y, et al. Reduced HIC-1 gene expression in non-small cell lung cancer and its clinical significance. Anticancer Res. 2001 Jan-Feb;21(1B):535-40.
    22. Nicoll G, Crichton DN, et al. Expression of the Hypermethylated in Cancer gene (HIC-1) is associated with good outcome in human breast cancer. Br J Cancer. 2001 Dec 14;85(12):1878-82.
    23. Maeda T, Hobbs RM, et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature. 2005 Jan 20;433(7023):278-285.
    24. Maeda T, Hobbs RM, et al. The transcription factor Pokemon: a new key player in cancer pathogenesis. Cancer Res. 2005 Oct 1;65(19):8575-8578.
    25. Maeda T, Hobbs RM, et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature. 2005 Jan 20; 433(7023):278-285.
    26. Maeda T, Merghoub T, et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science. 2007 May 11; 316(5826):860-866.
    27. ZHAO Zhi-hong, WANG Sheng-fa, et al. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance. Chin. Med. J. 2008; 121(5):445-449
    28. Mackler, S.A. et al. NAC-1 is a brain POZ/BTB protein that can prevent cocaine-induced sensitization in the rat. J. Neurosci. 2000, 20, 6210-6217.
    29. Korutla, L. et al. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells. Neurosci. Res. 2003, 46, 33-39.
    30. Kentaro Nakayama, Naomi Nakayama, et al. A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. PNAS 2006 December 5, 103(49) 18739-18744.
    31. Yeasmin S, Nakayama K, et al. Expression of the bric-a-brac tramtrack broad complex protein NAC-1 in cervical carcinomas seems to correlate with poorer prognosis. Clin Cancer Res. 2008 Mar 15; 14(6): 1686-91.
    
    32. Davidson B, Berner A, et al. Expression and clinical role of the bric-a-brac tramtrack broad complex/poxvirus and zinc protein NAC-1 in ovarian carcinoma effusions Hum Pathol. 2007 Jul;38(7): 1030-6..
    33. Nakayama K, Nakayama N, et al. NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer Res. 2007 ;67(17):8058-64
    34. Prokhortchouk A, Sansom O, et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006 Jan; 26(1): 199-208.
    35. Frans M. van Roy and Pierre D. McCrea. A role for Kaiso-p120ctn complexes in cancer? Nat. Rev. Cancer. 2005 Dec; 5(12):956-64.
    36. Daniel JM, Reynolds AB.The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999 May; 19(5):3614-23.
    37. Soubry A, van Hengel J, et al. Expression and nuclear location of the transcriptional repressor Kaiso is regulated by the tumor microenvironment. Cancer Res. 2005 Mar 15; 65(6):2224-33.
    38. Weiping Zhang, Jing Mi, et al. Identification and Characterization of DPZF, a Novel Human BTB/POZ Zinc Finger Protein Sharing Homology to BCL-6. BIOCHEM BIOPH RES CO 2001, 282, 1067-1073.
    39. Cathy Mitchelmore, Karen M. Kj(?)rulff, et al. Characterization of Two Novel Nuclear BTB/POZ Domain Zinc Finger Isoforms. J BIOL CHEM 2002, 277(9), 7598-7609.
    40. Jakob V. Nielsen, Flemming H. Nielsen, et al. Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice. Development 2007, 134(6), 1133-1140.
    41. F.B. Fromowitz, M.V.Voila, S.Chao, et al. Ras P21 expression in the progression of breast cancer. Hum Pathol. 1987(18): 1268-1275.
    42. Ivan Bilic, Wilfried Ellmeier. The role of BTB domain-containing zinc finger proteins in T cell development and function. Immunology Letters 2007 (108) 1-9
    43. Manders PM, Hunter PJ, et al. BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7418-25.
    44. Jardin F, Sahota SS.Targeted somatic mutation of the BCL6 proto-oncogene and its impact on lymphomagenesis. Hematology. 2005 Apr;10(2):115-29
    45. Dhordain P, Albagli O, et al. Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene. 2000 Dec 14;19(54):6240-50.
    46. Hoatlin ME, Zhi Y, et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood. 1999 Dec 1;94(11):3737-47.
    47. Peng SY, Chen WJ, et al. High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer. 2004;112(1):44-50.
    48. Willscott E. Naugler, Toshiharu Sakurai, et al. Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production. Science 2007, 317(6), 121-124.
    1.Albagli,O.et al.The BTB/POZ domain:a new protein-protein interaction motif common to DNA- and actin-binding proteins.Cell Growth Differ.1995,6,1193-1198
    2.van Roy,F.M.and McCrea,P.D.A role for Kaiso-pl20ctn complexes in cancer? Nat.Rev.Cancer.2005,5,956-964
    3.Stogios,P.J.et al.Sequence and struetural analysis of BTB domain proteins.Genome Biol.2005,6,R82
    4.Restifo,L.L.and White,K.Mutations in a steroid hormone-regulated gene disrupt the metamorphosis of the central nervous system in Drosophila.Dev.Biol.1991,148,174-194
    5.Karim,F.D.et al.The Drosophila broad-complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis.Development.1993,118,977-988
    6.Xiong,W.C.and Montell,C.Tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye.Genes Dev.1993,7,1085-1096
    7.Sahut-Barnola,I.et al.Drosophila ovary morphogenesis:analysis of terminal filament formation and identification of a gene required for this process.Dev.Biol.1995,170,127-135
    8.Godt,D.et al.Pattern formation in the limbs of Drosophila:bric a brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development. 1993,119,799-812
    9. Chen, Z. et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993,12, 1161-1167
    10. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997, 89, 373-380
    11. Lin, R.J. et al. Role of the histone deactylase complex in acute promyelocytic leukemia. Nature. 1998, 391,811-814
    12. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-a recruit histone deactylase in promyelocytic leukemia. Nature. 1998, 391,815-818
    13. Alcalay, M. et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 2003, 112, 1751-1761
    14. Park, D.J. et al. Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood. 2003, 102, 3727-3736
    15. Muller, C. et al. The aberrant fusion proteins PML-RAR alpha and PLZF-RAR alpha contribute to the overexpression of cyclin Al in acute promyelocytic leukemia. Blood. 2000,96, 3894-3899
    16. Kwok, C. et al. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell. 2006, 9, 95-108
    17. McConnell, M.J. et al. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell. Biol. 2003, 23, 9375-9388
    18. Insinga, A. et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. 2004, 23, 1144-1154
    19. Barna, M. et al. PLZF regulates limb and axial skeletal patterning. Nat. Genet. 2000, 25, 166-172
    20. Barna, M. et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev. Cell.2002, 3, 499-510
    21. Pasqualucci, L. et al. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma. 2003, 44 (Suppl. 3), S5-S12
    22. Chang, C.C. et al. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. U S A 1996, 93, 6947-6952
    23. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell. 2005, 7, 445-455
    24. Stella Maris Ranuncolol, Jose M Polol, et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat immunology, 2007, 8(7)
    25. Baron, B.W. et al. The human BCL6 transgene promotes the development of lymphomas in the mouse. Proc. Natl. Acad. Sci. U S A 2004, 101, 14198-14203
    26. Phan, R.T. and Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004,432, 635-639
    27. Polo, J.M. et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 2004, 10, 1329-1335
    28. Chattopadhyay, A. et al. A peptide aptamer to antagonize BCL-6 function. Oncogene. 2006, 25, 2223-2233
    29. Margalit, O. et al. BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood. 2006, 107, 1599-1607.
    30. Ahmad, K.F. et al. Mechanismof SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell. 2003, 12, 1551-1564
    31. Niu, H. The proto-oncogene BCL-6 in normal and malignant B cell development. Hematol. Oncol. 2002, 20, 155-166
    32. Calame, K.L. et al. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 2003, 21,205-230
    33. Kojima, S. et al. Testicular germ cell apoptosis in Bcl6-deficient mice. Development. 2001, 128, 57-65
    34. Wales, M.M. et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat. Med. 1995, 1, 570-577
    35. Fujii, H. et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene. 1998, 16,2159-2164
    36. Chen, W.Y. et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat. Genet. 2003, 33, 197-202
    37. Chen, W. et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell. 2004, 6, 387-398
    38. Chen, W.Y. et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005, 123, 437-448
    39. Daniel, J.M. and Reynolds, A.B. The catenin p120ctn interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol. 1999, 19, 3614-3623
    40. Reynolds, A.B. and Carnahan, R.H. Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer. Semin. Cell Dev. Biol. 2004, 15, 657-663
    41. Spring, CM. et al. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin. Exp. Cell Res. 2005, 305, 253-265
    42. Park, J.I. et al. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev.Cell. 2005, 8, 843-854
    43. Shiomi, T. and Okada, Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. 2003, 22,145-152
    44. Nusse, R. Wnt signaling in disease and in development. Cell Res. 2005, 15, 28-32
    45. Prokhortchouk, A. et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol. Cell. Biol. 2006, 26, 199-208
    46. Filion, G.J. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 2006, 26,169-181
    47. Soubry, A. et al. Expression and nuclear location of the transcriptional repressor Kaiso is regulated by the tumor microenvironment. Cancer Res. 2005, 65, 2224-2233
    48. Kelly, K.F. et al. Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J. Cell Sci. 2004, 117,6143-6152
    49. Kim, S.W. et al. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat. Cell Biol. 2004, 6, 1212-1220
    50. Maeda, T. et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature. 2005, 433, 278-285
    51. Hoatlin, M.E. et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood. 1999, 94, 3737-3747
    52. Niedernhofer, LJ. et al. Fanconi anemia (cross)linked to DNA repair. Cell. 2005, 123, 1191-1198
    53. Dai, M.S. et al. The effects of the Fanconi anemia zinc finger (FAZF) on cell cycle, apoptosis, and proliferation are differentiation stage-specific. J. Biol. Chem. 2002, 277, 26327-26334
    54. Piazza, F. et al. Disruption of PLZP in mice leads to increased T-lymphocyte proliferation, cytokine production, and altered hematopoietic stem cell homeostasis. Mol. Cell. Biol. 2004, 24, 10456-10469
    55. Mackler, S.A. et al. NAC-1 is a brain POZ/BTB protein that can prevent cocaine-induced sensitization in the rat. J. Neurosci. 2000, 20, 6210-6217
    56. Korutla, L. et al. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells. Neurosci. Res. 2003, 46, 33-39
    57. Mackler, S.A. et al. NAC-1 is a brain POZ/BTB protein that can prevent cocaine-induced sensitization in the rat. J. Neurosci. 2000, 20, 6210-6217.
    58. Korutla, L. et al. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells. Neurosci. Res. 2003, 46, 33-39.
    59. Kentaro Nakayama, Naomi Nakayama, et al. A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. PNAS. 2006, December 5, 103(49) 18739-18744.
    60. Yeasmin S, Nakayama K, et al. Expression of the bric-a-brac tramtrack broad complex protein NAC-1 in cervical carcinomas seems to correlate with poorer prognosis. Clin Cancer Res. 2008, Mar 15;14(6):1686-91.
    61. Davidson B, Berner A, et al. Expression and clinical role of the bric-a-brac tramtrack broad complex/poxvirus and zinc protein NAC-1 in ovarian carcinoma effusions Hum Pathol. 2007 Jul;38(7): 1030-6..
    62. Nakayama K, Nakayama N, et al. NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIPl, a candidate tumor suppressor. Cancer Res. 2007 ;67(17):8058-64
    63. Valenta, T. et al. HIC1 attenuates Wnt signaling by recruitment of TCF-4 and beta-catenin to the nuclear bodies. EMBO J. 2006, 25, 2326-2337
    64. Sengupta, N. and Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem. 2004, 93, 57-67
    65. David, G. et al. Histone deactylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene. 1998, 16, 2549-2556
    66. Chauchereau, A. et al. HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF. Oncogene. 2004, 23, 8777-8784
    67. Dhordain, P. et al. The LAZ3(Bcl-6) oncoprotein recruits a SMRT/mSin3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 1998, 26,4645-4651
    68. Huynh, K.D. and Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT.Oncogene. 1998, 17, 2473-2484
    69. Huynh, K.D. et al. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000, 14, 1810-1823
    70. Lemercier, C. et al. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J. Biol. Chem. 2002, 277, 22045-22052
    71. Chevallier, N. et al. ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood. 2004, 103, 1454-1463
    72. Daniel, J.M. et al. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002, 13,2911-2919.
    73. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001, 15, 1613-1618.
    74. Staller, P. et al. Repression of pl5INK4b expression by Myc through association with Miz-1. Nat. Cell. Biol. 2001,3, 392-399
    75. Adhikary, S. et al. Mizl is required for early embryonic development during gastrulation. Mol. Cell. Biol. 2003, 23, 7648-7657
    76. Pendergrast, P.S. et al. FBI-1 can stimulate HIV-1 Tat activity and is targeted to a novel subnuclear domain that includes the Tat-P-TEFb-containing nuclear speckles. Mol. Biol. Cell. 2002, 13, 915-929
    77. Rodova, M. et al. Regulation of the rapsyn promoter by Kaiso and delta-catenin. Mol. Cell. Biol. 2004, 24,7188-7196
    78. Takamori, M. et al. BAZF is required for activation of naive CD4 T cells by TCR triggering. Int. Immunol. 2004, 16, 1439-1449
    79. Reuter, S. et al. APM-1, a novel human gene, identified by aberrant co-transcription with papillomavirus oncogenes in a cervical carcinoma cell line, encodes a BTB/POZ-zinc finger protein with growth inhibitory activity. EMBO J. 1998, 17, 215-222
    80. Melnick, A. et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol. Cell. Biol. 2002, 22, 1804-1818
    81. Kelly, K.F. et al. NLS-dependent nuclear localization of p120ctnis necessary to relieve Kaiso-mediated transcriptional repression. J.Cell. Sci. 2004, 117, 2675-2686
    82. Yoon, H.G. et al. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell. 2003, 12,723-734
    83. Defossez, P.A. et al. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J. Biol. Chem. 2005, 280,43017-43023
    84. Deltour, S. et al. Recruitment of SMRT/N-CoR-mSin3A-HDACrepressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and gFBP-B. Proc. Natl. Acad. Sci. U S A 1999, 96, 14832-14836
    85. Deltour, S. et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol. Cell.Biol. 2002, 22, 4890-4901
    86. Dhordain, P. et al. Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene. 2000, 19, 6240-6250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700