用户名: 密码: 验证码:
川芎提取物解除精异丙甲草胺对水稻药害的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从植物中寻找具有生物活性的化合物,直接将其开发成为新农药,或者间接把这些活性物质当做先导化合物,进行结构修饰开发出生物活性更高的化合物,是目前农药研发的一条重要途径,也是新农药创制的研究热点。
     伞形科植物川芎(Ligusticum chuanxiong)根茎是重要的传统中药,能够活血化瘀,治疗心血管、脑血管疾病、头痛和月经失调等疾病。本实验室经过多年的研究证实川芎具有解除酰胺类除草剂对水稻药害的作用,本论文在前人的研究基础上采用CO2超临界流体萃取法(CO2-SFE)提取川芎解除精异丙甲草胺对水稻药害的有效成分,通过高速逆流色谱法(HSCCC)一步分离获得活性成分,对其进行了结构鉴定和活性测定,并初步研究其作用机理。为活性成分的开发应用提供了必要的实验基础。获得的主要研究成果如下:
     1川芎解除精异丙甲草胺对水稻药害的有效成分提取
     CO2-SFE提取川芎活性成分,优化CO2-SFE萃取条件,优化条件为:萃取温度70℃、萃取压力35MPa、萃取时间2.5h和提取率4.45%。以Z-藁本内酯和洋川芎内酯A为指标,对川芎提取物进行质量控制,提取物中洋川芎内酯A和Z-藁本内酯的含量为17.85%和40.58%。
     2川芎提取物室内和田间生物活性测定
     室内生物测定表明提取物明显缓解精异丙甲草胺对水稻药害。提取物在琼脂培养基中能够完全恢复除草剂对水稻株高的抑制,对根长的恢复接近对照水平;在土壤基质培养中对株高的恢复接近对照水平。
     提取物的田间试验表明60g/hm2和90g/hm2精异丙甲草胺对水稻有明显的抑制作用,影响水稻整个生育期。川芎提取物能够很好的缓解除草剂的伤害作用,对60g/hm2除草剂的伤害可以完全恢复到空白处理的水平;对90g/hm2除草剂的恢复作用下降;过量的提取物反而对水稻有伤害作用,影响对水稻的恢复作用;对照安全剂解草啶对水稻的解毒效果一般。测产结果证明240g/hm2提取物和60g/hm2除草剂组合处理的产量最高,空白处理因为受杂草的影响,产量减少。
     稗草防效调查结果表明2个除草剂用量对禾本科杂草防效很好,低剂量除草剂的防效接近90%,高剂量除草剂的防效95%左右,2个时间点内稗草防效稳定。提取物和解草啶对除草剂的防效没有显著的影响。
     3川芎提取物中生物活性成分的分离与鉴定
     提取物四个主要成分对应的目标峰1-4的K值在溶剂体系正己烷-乙酸乙酯-乙醇-水[5:4:3:2(v/v)]中分别为0.18、0.50、2.01和3.40。经HSCCC分离获得四个主要成分,其中目标峰1和2经过HPLC或者GC-MS检测,纯度没有达到结构鉴定的要求,另外两个目标峰3和4经NMR鉴定确认为Z-藁本内酯和洋川芎内酯A,分子量分别为190和192。两者结构极为相似,只有C8和C9之间双键和单键之差,两者属于苯酞类化合物。
     4室内生物活性测定
     Z-藁本内酯明显缓解精异丙甲草胺对水稻药害。其在琼脂培养基中能够完全恢复除草剂对水稻株高的抑制,对根长的恢复接近对照水平;其在土壤基质培养中对株高的恢复接近对照水平。洋川芎内酯A在两种培养方式中对水稻的恢复作用一般。
     5活性成分Z-藁本内酯解除精异丙甲草胺对水稻药害的机理研究
     藁本内酯提高GST活性,增强植物对除草剂的解毒代谢能力,恢复除草剂对水稻的抑制作用。除草剂对水稻根和茎叶GST活性的影响与空白处理无明显差异,能够抑制水稻生长。Z-藁本内酯的解毒处理后,随着Z-藁本内酯浓度增大,根和茎叶的GST活性随之提高,水稻幼苗根和茎叶的恢复率也随之提高;当浓度为4mg/L,根和茎叶的GST活性分别是空白处理11倍和5倍左右,水稻幼苗的恢复率达到最大值;当浓度大于4mg/L,GST活性基本保持不变,此时对水稻幼苗恢复作用下降。
     经Real-time PCR分析,水稻OsGSTU2基因的mRNA在空白处理、除草剂处理和除草剂与Z-藁本内酯组合处理中呈现差异表达。经除草剂和Z-藁本内酯组合处理,水稻OsGSTU2基因的mRNA表达量大于除草剂处理和清水处理。
Currently, it is an important way for development of pesticides that chemical compounds obtained from natural product are directly developed as new pesticides or structurally modified in an attempt to develop new compounds with higher activities.
     L. chuanxiong belonged to Apiaceae is well-known in Traditional Chinese Medicine, which disperses blood stasis and is used extensively for the treatments of cardiovascular and cerebrovascular diseases, headache and menstrual disorders. It is also proved that L. chuanxiong could reverse the effect on rice caused by chloroacetamides in our lab. Hence, purpose of this paper was to obtain extract from L. chuanxiong by CO2-SFE and separate active compounds from the extract by HSCCC, which could protect rice from the injury of S-metolachlor. Finally, mode of action of active compounds as saferners was studied.
     1Active extract from L. chuanxiong by CO2-SFE.
     Extract was achieved to4.45%in extraction ratio by CO2-SFE under optimized condtions. The optimized process was to extract L. chuanxiong under temperature of70℃and pressure of35MPa for2.5h. Furthermore, the quality control of extract was conducted in terms of main active compounds Z-ligustilide and senkyunolide A, which were quantified by17.85%and40.58%respectively.
     2Laboratory or field determination of activities of extract from L. chuanxiong.
     In laboratory experiment, extract significantly protected rice from the damage of S-metolachlor. The level of Shoots height was totally recovered to that of the untreated and the level of roots length was close to that of the untreated after extract treatment in agar medium. Meanwhile, the level of shoots height was close to that of the untreated after extract treatment in soil-based medium.
     The results of field experiments verified that S-metolachlor at ratio of60g/hm2or90g/hm2obviously inhibited the rice growth during entire period of rice growth. Extract could totally reverse the effect which caused by S-metolachlor at60g/hm2, with the reduced capability of reversing the effect on rice caused by S-metolachlor at90g/hm2. In contrast, overdose of extract could produce harm to rice. Results of the final rice yields verified that the highest rice yield was achieved after the detoxification of60g/hm2metolachlor by240g/hm2extact. and less achieved from the untreated due to the competitive growth of weeds.
     Results demonstrated S-metolachlor effectively controlled barnyard grass with90%at60g/hm2and95%at90g/hm2in control efficacy. Extract and feclorim didn't significantly influenced barnyard grass control.
     3Separation and identification of active compounds from extract
     The targeted peaks1-4from extract was separated in a run of HSCCC by the appropriate solvent system which was n-hexane/ethyl acetate/ethanol/water [5:4:3:2(v/v)], corresponding to the K values of0.18,0.50,2.01and3.40separately. Among the compounds1-4, compounds1and2needed for further purification after analysis of HPLC and GC-MS. The other compounds3and4were identified as Z-ligustilide and senkyunolide A, corresponding to the molecule weight of190and192, respectively. The slight difference was found between C8and C9in bonding of compounds3and4which both belong to phthalide.
     4Bioassay of separated compounds.
     In laboratory experiment, protective effect on rice by Z-ligustilide was better than that by senkyunolide A. The level of shoots height was totally recovered to that of the untreated and the level of roots length was close to that of the untreated after Z-ligustilide treatment in agar medium. Meanwhile, the level of shoots height was close to that of the untreated after extract treatment in soil-based medium.
     5Mode of action of Z-ligustilide protecting rice against S-metolachlor.
     Z-ligustilide could enhance the ability for rice plants to detoxify S-metolachlor by increasing GST activities in plants, subsequently leading to reversion of effect on rice cause by S-metolachlor. GST activities in roots or shoots from S-metolachlor-treated rice seedlings presented no significant difference from the untreated control, while rice growth was severly inhibited by S-metolachlor. After detoxification of herbicide by Z-ligustilide ranging from1-4mg/L, GST activities of roots and shoots were increased, positively correlated to recoveries in roots and shoots. However, GST activities in roots or shoots maintained the highest level after detoxification treatment of more than4mg/L Z-ligustilide, on the contrary, recoveries in roots and shoots were reduced.
     Further study was focused on mRNA of OsGSTU2in rice roots and shoots analyzed by Real-time PCR. Results showed that there were significant difference in expression level of OsGSTU2mRNA in roots and shoots between the untreated, the S-metolachlor-treated and combined treatment, suggesting expression level of OsGSTU2mRNA was positively correlated to GST activities.
引文
[1]O'Connell PJ, Harms CT, Allen JRF. Metolachlor, S-metolachlor and their role within sustainable weed-management [J]. Crop Protection,1998,17 (3):207-212.
    [2]Armel GR, Wilson HP, Richardson RJ, et al. Mesotrione, acetochlor, and atrazine for weed management in corn (Zea mays) [J]. Weed Technology,2003,17 (2):284-290.
    [3]Brar HS, Gill GS. Studies with new promising herbicides for weed control in cotton (Gossypium hirsutum L) [J]. Indian Journal of Weed Science,1974,6 (1):28-32.
    [4]Hoffman OL. Inhibition of auxin effects by 2,4,6-trichlorophenoxyacetic acid [J]. Plant Physiology,1953,28:622-628.
    [5]Keifer DW. Method for safening crops from the phytotoxic effects of herbicides by use of phosphorated esters [P]. US-20050009702,2.2005.
    [6]Chang FY, Bandeen JD, Stephenson GR. A selective antidote for prevention of EPTC injury in corn [J]. Canadian Journal of Plant Science,1972,52:707-714.
    [7]Baldwin A, Rogers HJ, Francis D, et al. Fatty acid elongation is important in the activity of thiocarbamate herbicides and in safening by dichlormid [J]. Journal of Experimental Botany,2003,54:1289-1294.
    [8]Moser H. Compostion for the protection of cultivated plants against the phytotoxic action of herbicides [P]. US-4601745,7.1986.
    [9]Boldt LD, Barrett M. Factors in alachlor and metolachlor injury to corn (Zea mays) seedlings [J]. Weed Technology,1989,3:30-306.
    [10]Rowe L, Kells JJ, Penner D. Efficacy and mode of action of CGA-154281, a protectant for corn (Zea mays) from metolachlor injury [J]. Weed Science,1991,39: 78-82.
    [11]Viger PR, Eberlein CV, Fuerst EP. Influence of available soil water content, temperature, and CGA-154281 on metolachlor injury to corn [J]. Weed Science, 1991,39:227-231.
    [12]Viger PR, Eberlein CV, Fuerst EP, et al. Effects of CGA-154281 and temperature on metolachlor absorption and metabolism, glutathione content, and glutathione-S-transferase activity in corn (Zea mays) [J]. Weed Science,1991,39:324-328.
    [13]Kunkel DL, Bellinder RR, Steffens JC. Safeners reduce corn (Zea mays) chloroacetanilide and dicamba injury under different soil temperatures [J]. Weed Technology,1996,10:115-120.
    [14]Hatzios KK, Hoagland RE (editors). Crop safeners for herbicides [M]. San Diego (USA):Academic Press,1989.
    [15]Amrein J, Nyffeler A, Rufener J. CGA 184'927+S:a new post-emergence grasskiller for use in cereals [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,1989,1:71-76.
    [16]Hacker E. Bieringer H, Willms L, et al. Iodosulfuron plus mefenpyr-diethyl-a new foliar herbicide for weed control in cereals [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,1999,1:15-22.
    [17]Hacker E. Bieringer H, Willms L, et al. Foramsulfuron plus safener-a new technology for weed control in maize [J]. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz:Sonderheft XVIII,2002,747-756.
    [18]Bieringer H, Bauer K, Hacker E, et al. Hoe 70542-a new molecule for use in combination with fenoxaprop-ethyl allowing selective post-emergence grass weed control in wheat [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,1989,1:77-82.
    [19]Hacker E, Bieringer H, Willms L, et al. Mefenpyr-diethyl:a safener for fenoxaprop-P-ethyl and iodosulfuron in cereals [J]. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz:Sonderheft XVIII,2000,493-500
    [20]Kocher H, Buttner B, Schmidt E, et al. Influence of Hoe 70542 on the behaviour of fenoxaprop-ethyl in wheat [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,1989,495-500.
    [21]Walton JD, Casida JE. Specific binding of a dichloroacetamide herbicide safener in maize at a site that also binds thiocarbamate and chloroacetanilide herbicides [J]. Plant Physiology,1995,109(1):213-9.
    [22]Scott-Craig JS, Casida JE, Poduje L, et al. Herbicide safener-binding protein of maize. Purification,cloning,and expression of an encoding cDNA [J]. Plant Physiology,1998,116(3):1083-1089.
    [23]Rubin B, Casida JE. R-25788 Effects on Chlorsulfuron Injury and Acetohydroxyacid Synthase Activity [J]. Weed Science,1985,33:462-468.
    [24]Milhomme H, Bastide J. Uptake and phytotoxicity of the herbicide metsulfuron methyl in corn root tissue in the presence of the safener 1,8-naphthalic anhydride [J]. Plant physiology,1990,93:730-738.
    [25]Milhomme H, Roux C. Bastide J. Safeners as corn seedling protectants against acetolactate synthase inhibitors [J]. Zeitschrift fuer Naturforschung,1991,46: 945-949.
    [26]Kocher H. Mesosulfuron-methyl and combination partner iodosulfuron-methyl-sodium-mode of herbicidal action [J]. Pflanzenschutz Nachrichten-Bayer,2005,58: 179-194.
    [27]Davies J, Caseley JC. Herbicide safeners:a review [J]. Pesticide science,1999,55: 1043-1058.
    [28]Fuerst EP, Lamoureux GL. Mode of action of the dichloroacetamide antidote BAS 145-138 in corn:Ⅱ. Effects on metabolism,absorption,and mobility of metolachlor [J]. Pesticide biochemistry and physiology,1992,42:78-87.
    [29]Sweetser PB. Safening of sulfonylurea herbicides to cereal crops:Mode of herbicide antidote action [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,1985:1147-1154.
    [30]Persans MW, Schuler MA. Differential induction of cytochrome P450-mediated triasulfuron metabolism by naphthalic anhydride and triasulfuron [J]. Plant Physiology,1995,109:1483-1490.
    [31]Persans MW, Wang J, Schuler MA. Characterization of Maize Cytochrome P450 Monooxygenases Induced in Response to Safeners and Bacterial Pathogens [J]. Plant Physiology,2001,125:1126-1138.
    [32]Gronwald JW, Fuerst EP, Eberlein CV, et al. Effect of herbicide antidotes on glutathione content and glutathione S-transferase activity of sorghum shoots [J]. Pesticide Biochemistry and Physiology,1987,29:66-76.
    [33]Ekler Z, Stephenson GR. Physiological responses of maize and sorghum to four different safeners for metolachlor [J]. Weed Research,1989,29:181-191.
    [34]Riechers DE, Irzyk GP, Jones SS, et al. Partial characterization of glutathione S-transferases from wheat (Triticum spp.) and purification of a safener-induced glutathione S-transferase from Triticum tauschii [J]. Plant Physiology,1997,114: 1461-1470.
    [35]Zhang Q, Riechers DE. Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings [J]. Proteomics,2004,4(7): 2058-71.
    [36]Fuerst EP, Irzyk GP, Miller KD. Partial Characterization of Glutathione S-Transferase Isozymes Induced by the Herbicide Safener Benoxacor in Maize [J]. Plant Physiology,1993,102(3):795-802.
    [37]Jepson I, Lay VJ, Holt DC. Greenland,Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms Ⅰ,Ⅱ and Ⅳ [J]. Plant Molecular Biology,1994,26:1855-1866.
    [38]Holt DC, Lay VJ, Clarke ED, et al. Characterization of the safener-induced glutathione S-transferase isoform Ⅱ from maize [J]. Planta,1995,196 (2):295-302.
    [39]Leavitt JRC. Mode of action of the herbicide antidote R-25788 (N, N-diallyl-2, 2-dichloroacetamide) [M]. Michigan State University:Ann Arbor of Michigan,1979, 7:84.
    [40]Braziera M, Coleb DJ, Edwardsa R. O-Glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicidesusceptible black-grass (Alopecurus myosuroides) [J]. Phytochemistry, 2002:149-156.
    [41]Deng FH, Hatzios KK. Characterization and Safener Induction of Multiple Glutathione S-Transferases in Three Genetic Lines of Rice [J]. Pesticide Biochemistry and Physiology,2002,72:24-39.
    [42]Cummins I, Cole DJ, Edwards R. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole-ethyl [J]. Pesticide Biochemistry and Physiology,1997, 59:35-49.
    [43]Gaillard C, Dufaud A, Tommasini R, et al. A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide [J]. FEBS Letter,1994,352 (2):219-21.
    [44]Riechers DE, Zhang Q, Xu,F, et al. Tissue-specific expression and localization of safener-induced glutathione S-transferase proteins in Triticum tauschii [J]. Planta, 2003,217 (5):831-40.
    [45]Kreuz K, Gaudin J, Stingelin J, et al. Metabolism of the aryloxyphenoxypropanoate herbicide,CGA 184927, in wheat, barley and maize:differential effects of the safener,CGA 185072 [J]. Zeitschrift fuer Naturforschung,1991,46:901-905.
    [46]Kreuz K. Herbicide safeners:recent advances and biochemical aspects of their mode of action [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,1993:1249-1258.
    [47]Scalla R, Roulet A. Cloning and characterization of a glutathione S-transferase induced by a herbicide safener in barley (Hordeum vulgare) [J]. Physiologia Plantarum,2002,116:336-344.
    [48]Hacker E, Bieringer H, Willms L, et al. Mesosulfuron-methyl-a new active ingredient for grass weed control in cereals [J]. Proceedings of the Brighton Crop Protection Conference-Weeds,2001:43-48.
    [49]DeRidder BP, Dixon DP, Beussman DJ, et al. Induction of Glutathione S-Transferases in Arabidopsis by Herbicide Safeners [J]. Plant Physiology,2002, 130:1497-1505.
    [50]Siminszky B, Corbin FT, Ward ER, et al. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides [J]. Plant Biology,1999,96:1750-1755.
    [51]Shiota N, Nagasawa A, Sakaki T, et al. Herbicide-Resistant Tobacco Plants Expressing the Fused Enzyme between Rat Cytochrome P4501A1 (CYP1A1) and Yeast NADPH-Cytochrome P450 Oxidoreductase [J]. Plant Physiology,1994,106: 17-23.
    [52]Yamada T, Ohashi Y, Ohshima M. Inducible cross-tolerance to herbicides in transgenic potato plants with the rat CYP1A1 gene [J]. Theoretical and Applied Genetics,2002,104:308-314.
    [53]O'Keefe DP, Tepperman JM, Dean C, et al. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide [J]. Plant Physiology,1994,105:473-482.
    [54]Grzam A, Martin MN, Hell R, et al. γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis [J]. FEBS Letters 2007,581:3131-3138.
    [55]Gatz C. Chemical control of gene expression [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:89-108.
    [56]Xu F, Lagudah ES, Moose SP, et al. Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome-and organ-specific expression in hexaploid wheat [J]. Plant Physiology,2002,130 (1): 362-373.
    [57]Veylder LD, Montagu V, Inze D. Herbicide safener-inducible gene expression in Arabidopsis thaliana [J]. Plant Cell Physiology,1997,38 (5):568-577.
    [58]Buono DD, Scarponi L, Espen L. Glutathione S-transferases in Festuca arundinacea: identification, characterization and inducibility by safener benoxacor [J]. Phytochemistry,2007,68 (21):2614-24.
    [59]Grzam A, Tennstedt P, Clemens S. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase [J]. FEBS Letters,2006,580:6384-6390.
    [60]Wiegand RC, Shah DM, Mozer TJ, et al. Messenger RNA encoding a glutathione-S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment [J]. Plant Molecular Biology,1986,7:235-243.
    [61]Hershey HP, Stoner TD. Isolation and characterization of cDNA clones for RNA species induced by substituted benzenesulfonamides in corn [J]. Plant Molecular Biology,1991,17:679-690.
    [62]Ito Y, Bowman RL. Countercurrent Chromatography:Liquid-Liquid Partition Chromatography without Solid Support [J]. Science,1970,167:281-283
    [63]Tanimura T, Pisano JJ, Ito Y, et al. Droplet Countercurrent Chromatography [J]. Science,1970,169:54-56
    [64]Ito Y. Efficient preparative counter-current chromatography with a coil planet centrifuge [J]. Journal of Chromatography,1981,214:122-125.
    [65]Ito Y (Editors). Countercurrent Chromatography:Theory and Practice [M]. Marcel Dekker, New York,1988:79-442.
    [66]Conway WD. Countercurrent Chromatography:Apparatus, Theory and Applications [M]. VCH, New York,1990.
    [67]Conway WD, Petroski RJ (Editors). Modern Countercurrent Chromatography (ACS Symposium Series No.593) [M]. American Chemical Society, Washington, DC,1995.
    [68]Ito Y. Conway WD (Editors). High-speed Countercurrent Chromatography [M]. Wiley-Interscience, New York,1996.
    [69]Menet JM, Thiebaut D (Editors). Countercurrent Chromatography [M]. Marcel Dekker, New York,1999.
    [70]Berthod A (Editor). Countercurrent Chromatography [M]. Elsevier, Amsterdam, 2003.
    [71]Ito Y (Editor). Chromatography V, Part A, Chapter 2,Journal of Chromatography Library [M]. Elsevier, Amsterdam,1992:A69-A107.
    [72]Ito Y, in:Townshend A, Fullerlove G (Editors). Encyclopedia of Analytical Science [M], Academic Press, London,1995,2:910-916.
    [73]Ito Y (Editor). Encyclopedia of Chromatography [M]. Marcel Dekker, New York, 2001:438-440.
    [74]Ito Y, Conway WD. High-speed countercurrent chromatography [J]. Critical Reviews in Analytical Chemistry,1986,17:65-143.
    [75]Lee J, Jang DS, Yoo NH, et al. Single-step separation of bioactive flavonol glucosides from Osteomeles schwerinae by high-speed counter-current chromatography [J]. Journal of Separation Science,2010,33 (45):582-586.
    [76]Li J, Ma X, Li F, et al. Preparative separation and purification of bufadienolides from Chinese traditional medicine of ChanSu using high-speed counter-current chromatography [J]. Journal of Separation Science,2010,33 (9):1325-1330.
    [77]Liu D, Su Z, Wang C, et al. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography [J]. Journal of Separation Science,2010,33 (15): 2266-2271.
    [78]Liu R, Xu L, Li A, et al. Preparative isolation of flavonoid compounds from Oroxylum indicum by high-speed counter-current chromatography by using ionic liquids as the modifier of two-phase solvent system [J]. Journal of Separation Science,2010,33 (8):1058-1063.
    [79]Liu S, Wang B, Li XZ, et al. Preparative separation and purification of liensinine,isoliensinine and neferine from seed embryo of Nelumbo nucifera Gaertn using high-speed counter-current chromatography [J]. Journal of Separation Science,2009,32 (14):2476-2481.
    [80]Ma C, Li G, Zhang J, et al. An efficient combination of supercritical fluid extraction and high-speed counter-current chromatography to extract and purify homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler [J]. Journal of Separation Science,2009,32 (11):1949-1956.
    [81]Ma XC, Xin X, Zhang BJ, et al. Efficient isolation and purification of five products from microbial biotransformation of cinobufagin by high-speed counter-current chromatography [J]. Journal of Separation Science,2010,33 (15):2272-2277.
    [82]Peng A, Ye H, Li X, et al. Preparative separation of capsaicin and dihydrocapsaicin from Capsicum frutescens by high-speed counter-current chromatography [J]. Journal of Separation Science,2009,32 (17):2967-2973.
    [83]Qiu F, Luo J, Yao S, et al. Preparative isolation and purification of anthocyanins from purple sweet potato by high-speed counter-current chromatography [J]. Journal of Separation Science,2009,32 (12):2146-2151.
    [84]Shi J, Hu R, Lu Y, et al. Single-step purification of dracorhodin from dragon's blood resin of Daemonorops draco using high-speed counter-current chromatography combined with pH modulation [J]. Journal of Separation Science, 2009,32 (23-24):4040-4047.
    [85]Shi S, Zhang Y, Zhao Y, et al. Preparative isolation and purification of three flavonoid glycosides from Taraxacum mongolicum by high-speed counter-current chromatography [J]. Journal of Separation Science,2008,31 (4):683-688.
    [86]Su Z, Wu H, Yang Y, et al. Preparative isolation of guaipyridine sesquiterpene alkaloid from Artemisia rupestris L. flowers using high-speed counter-current chromatography [J]. Journal of Separation Science,2008,31 (12):2161-2166.
    [87]Wu D, Jiang X, Wu S. Direct purification of tanshinones from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography without presaturation of the two-phase solvent mixture [J]. Journal of Separation Science,2010,33 (1):67-73.
    [88]Xu Y, Han X, Dong D, et al. Efficient protocol for purification of diosgenin and two fatty acids from Rhizoma dioscoreae by SFE coupled with high-speed counter-current chromatography and evaporative light scattering detection [J]. Journal of Separation Science,2008,31 (20):3638-3646.
    [89]Ye H, Zhong S, Li Y, et al. Enrichment and isolation of barbigerone from Millettia pachycarpa Benth. using high-speed counter-current chromatography and preparative HPLC [J]. Journal of Separation Science,2010,33 (8):1010-1017.
    [90]Zhang Q, Chen LJ, Ye HY, et al. Isolation and purification of ginkgo flavonol glycosides from Ginkgo biloba leaves by high-speed counter-current chromatography [J]. Journal of Separation Science,2007,30 (13):2153-2159.
    [91]Deng J, Xiao X, Li G, et al. Application of microwave-assisted extraction coupled with high-speed counter-current chromatography for separation and purification of dehydrocavidine from Corydalis saxicola Bunting [J]. Phytochemical Analysis, 2009,20 (6):498-502.
    [92]Ha YW, Kim YS. Preparative isolation of six major saponins from Platycodi Radix by high-speed counter-current chromatography [J]. Phytochemical Analysis,2009, 20 (3):207-213.
    [93]Liu R, Wu S, Sun A. Separation and purification of four chromones from Radix saposhnikoviae by high-speed counter-current chromatography [J]. Phytochemical Analysis,2008,19 (3):206-211.
    [94]Peng J, Dong F, Qi Y, et al. Preparative separation of four triterpene saponins from Radix astragali by high-speed counter-current chromatography coupled with evaporative light scattering detection [J]. Phytochemical Analysis,2008,19(3): 212-217.
    [95]Tang Q, Yang C, Ye W, et al. Preparative isolation and purification of chemical components from Aconitum coreanum by high-speed counter-current chromatography coupled with evaporative light scattering detection [J]. Phytochemical Analysis,2008,19 (2):155-159.
    [96]Wang X, Shi X, Li F, et al. Application of analytical and preparative high-speed counter-current chromatography for the separation of Z-ligustilide from a crude extract of Angelica sinensis [J]. Phytochemical Analysis,2008,19 (3):193-197.
    [97]Wang Y, Liu B. Preparative isolation and purification of dicaffeoylquinic acids from the Ainsliaea fragrans champ by high-speed counter-current chromatography [J]. Phytochemical Analysis,2007,18 (5):436-440.
    [98]Guo XF, Wang DL, Duan WJ, et al. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography [J]. Phytochemical Analysis,2010,21 (3):268-272.
    [99]Yang Y, Gu D, Yili A, et al. One-step separation and purification of rupestonic acid and chrysosptertin B from Artemisia rupestris L. by high-speed counter-current chromatography [J]. Phytochemical Analysis,2010,21 (2):205-209.
    [100]Chen J, Wang F, Lee FS, et al. Separation and identification of water-soluble salvianolic acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis [J]. Talanta,2006,69 (1):172-179.
    [101]Han C, Chen J, Liu J, et al. Isolation and purification of Pseudostellarin B (cyclic peptide) from Pseudostellaria heterophylla (Miq.) Pax by high-speed counter-current chromatography [J]. Talanta,2007,71 (2):801-805.
    [102]Liu Z, Jin Y, Shen P, et al. Separation and purification of verticine and verticinone from Bulbus Fritillariae Thunbergii by high-speed counter-current chromatography coupled with evaporative light scattering detection [J]. Talanta,2007,71 (5): 1873-1876.
    [103]Ito Y. Speculation on the Mechanism of Unilateral Hydrodynamic Distribution of Two Immiscible Solvent Phases in the Rotating Coil [J]. Journal of Liquid Chromatography,1992,15:2639-2675.
    [104]Zhang D, Teng H, Li G, et al. Separation and Purification of Z Ligustilide and Senkyunolide A from Ligusticum chuanxiong Hort. with Supercritical Fluid Extraction and High-Speed Counter-Current Chromatography [J]. Separation Science and Technology,2006,41:3397-3408.
    [105]Zhang C, Qi M, Shao Q, et al. Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS [J]. Journal of Pharmaceutical and Biomedical Analysis,2007,44:464-470.
    [106]Chen Q, Li B, Yang H, et al. A GC-MS-SIM Simultaneous Determination of Ligustilide and Butylidenephthalide from Ligusticum chuanxiong Using SFE [J]. Chromatographia,2010,72:963-967.
    [107]Kong L, Yu Z, Bao Y, et al. Screening and analysis of an antineoplastic compound in Rhizoma Chuanxiong by means of in vitro metabolism and HPLC-MS [J]. Analytical and Bioanalytical Chemistry,2006,386:264-274.
    [108]Sim Y, Shin S. Combinatorial Anti-Trichophyton Effects of Ligusticum chuanxiong Essential Oil Components with Antibiotics [J]. Archives of Pharmacal Research, 2008,31:497-502.
    [109]Lim LS, Shen P, Gong YH, etal. Dimeric progestins from rhizomes of Ligusticum chuanxiong [J]. Phytochemistry,2006,67:728-734.
    [110]Zschocke S, Klaiber I, Bauer R, et al. HPLC-coupled spectroscopic techniques (UV,MS,NMR) for the structure elucidation of phthalides in Ligusticum chuanxiong [J]. Molecular Diversity,2005,9:33-39.
    [111]Li HB,Chen F. Preparative isolation and purification of chuanxiongzine from the medicinal plant Ligusticum chuanxiong by high-speed counter-current chromatography [J]. Journal of Chromatography A,2004,1047 (2):249-53.
    [112]Chan SSK, Choi AOK, Jones RL. Mechanisms underlying the vasorelaxing effects of butylidenephthalide,an active constituent of Ligusticum chuanxiong,in rat isolated aorta [J]. European Journal of Pharmacology,2006,537:111-117.
    [113]Liang MJ, He LC, Yang GD. Screening,analysis and in vitro vasodilatation of effective components from Ligusticum Chuanxiong [J]. Life Sciences,2005,78: 128-133.
    [114]Yi T, Leung KSY, Lu GH, et al. Simultaneous Qualitative and Quantitative Analyses of the Major Constituents in the Rhizome of Ligusticum Chuanxiong Using HPLC-DAD-MS [J]. Chemical & Pharmaceutical Bulletin,2006,54: 255-259.
    [115]Hou YZ, Zhao GR, Yuan YJ, et al. Inhibition of rat vascular smooth muscle cell proliferation by extract of Ligusticum chuanxiong and Angelica sinensis [J]. Journal of Ethnopharmacology,2005,100:140-144.
    [116]Beck JJ, Chou SC. The Structural Diversity of Phthalides from the Apiaceae [J]. Journal of Natural Products,2007,70:891-900.
    [117]中国医学科学院药物研究所主编,中草药现代研究[M].北京医科大学中国协和医科大学联合出版社,1996,6:423-431.
    [118]中国医学科学院药物研究所主编,中草药现代研究[M].北京医科大学中国协和医科大学联合出版社,1996,6:30-35.
    [119]忻志鸣,周晓明.川芎制剂的药理作用及临床作用[J].河北医药,1999,21(1):41-42.
    [120]曾立昆.本草新用途第二版[M].北京:人民卫生出版社,2004,1:301-310.
    [121]杨金蓉,李祖伦,胡荣,等.川芎挥发油解热作用及其对家兔下丘脑5-HT、DA含量的影[J].中药药理与临床,2003,19(2):17-18.
    [122]杨金蓉,胡荣,李祖伦,等.川芎挥发油解热作用及其对家兔下丘脑单胺类神经递质含量的影响[J].四川生理科学杂志,2001,23(3):130-131.
    [123]Yu Y, Du JR, Wang CY, et al. Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells [J]. Experimental Brain Research,2008,184: 307-312.
    [124]Miyazawa M, Tsukamoto T, Anzai J, et al. Insecticidal Effect of Phthalides and Furanocoumarins from Angelica acutiloba against Drosophila melanogaster [J]. Journal of Agricultural and Food Chemistry,2004,52:4401-4405.
    [125]Meepagala KM, Sturtz G, Wedge DE, et al. Phytotoxic and Antifugal Compounds from two Apiaceae Species,Lomatium californicum and Ligusticum hultenii, Rich Sources of Z-Ligustilide and Apiol,Respectively [J]. Journal of Chemical Ecology, 2005,31:1567-1578.
    [126]郭自强,王硕仁,朱陵群,等.丹参素和川芎嗪对血管紧张素Ⅱ致心肌肥大相关基因的影响[J].中国中西医结合杂志,2005,25(4):342-344.
    [127]王万铁,许涛,徐正价,等.川芎嗪对缺血-再灌注损伤兔心肌线粒体结构及功能的影[J].基础医学与临床,2004,24(3):295-298.
    [128]文飞,冯义柏,田莉,等.川芎嗪预处理对大鼠心肌缺血/再灌注损伤的保护[J].中华实用中西医杂志,2005,18(8):1099-1101.
    [129]邓春玉,钱卫民,阮小薇,等.川芎嗪对大鼠胸主动脉平滑肌电压依赖性C1-通道的影响[J].中国应用生理学杂志,2002,18(3):212-217.
    [130]Li Z, Li D, Huang J, et al. Preparation of cardiovascular disease-related genesmicroarray and its application in exploring ligustrazine-induced changes in endothelial gene expression [J]. Polish Journal of Pharmacology,2004,56: 427-433.
    [131]孙志伟,王翠莲.川芎嗪对血液流变学指标影响的研究[J].中华实用中西医杂志,2005,18(6):783-784.
    [132]唐刚华,姜国辉,唐小兰.川芎哚及其类似物对凝血功能和血液流变学的影响[J].中国药理学通报,2002,18(2):238-239.
    [133]杨莉,陈径,王文建,等.川芎嗪对哮喘大鼠Th1/Th2型细胞因子水平的影响[J].江苏医药杂志,2004,30(11):822-823.
    [134]李自成,李丽,严亨秀,等.川芎嗪对缺氧所致大鼠呼吸效应和脑干神经元型一氧化氮合酶表达的影响[J].生理学报,2005,57(2):147-153.
    [135]彭安,叶红军.川芎嗪诱导Be127402人肝癌细胞恶性表型逆转的研究[J].临床肝胆病杂志,2002,18(3):157-158.
    [136]梅英,石毓君,左国庆,等.川芎嗪逆转HepG2/ADM细胞多药耐药性的体外研究[J].中国中药杂志,2004,29(10):970-973.
    [137]刘振芳,孙汉英,刘文励,等.川芎嗪促进急性放射损伤小鼠骨髓造血修复作用的研究[J].中华放射医学与防护杂志,2004,24(5):396-398.
    [138]傅红,黎七雄.川芎嗪对大鼠加速型抗肾小球基底膜抗体肾炎的保护作用及机制[J].中国药理学通报,2004,20(2):196-199.
    [139]狄柯坪,常立功,杜军英,等.川芎嗪对家兔肠系膜微血管运动的作用机理与一氧化氮的关系[J].中成药,2003,25(1):49-51.
    [140]Rukkumani R, Aruna K, Varma PS, et al. Influence of ferulic acid on circulatory prooxidant-antioxidant status during alcohol and PUFA induced toxicity [J]. Journal of Physiology and pharmocology,2004,55 (3):551-561.
    [141]Kanski J, Aksenova M, Stoyanova A, et al. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synap tosomal and neuronal cell culture systems in vitro:structure-activity studies [J]. The Journal of Nutritional Biochemistry,2002,13 (5):273-281.
    [142]Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography [J]. Journal of Chromatogaphy A,2005,1065 (2): 145-68.
    [143]DeRidder BP, Goldsbrough PB. Organ-Specific Expression of Glutathione S-Transferases and the Efficacy of Herbicide Safeners in Arabidopsis [J]. Plant Physiology,2006,140.
    [144]Ho CC, Kumaran A, Hwang LS. Bio-assay guided isolation and identification of anti-Alzheimer active compounds from the root of Angelica sinensis [J]. Food Chemistry,2009,114:246-252.
    [145]杨文钰,屠乃美.作物栽培学各论[M].中国农业出版社,2003:6-63.
    [146]Deng F, Jelesko J, Cramer CL, et al. Use of an antisense gene to characterize glutathione S-transferase functions in transformed suspension-cultured rice cells and calli [J]. Pesticide Biochemistry and Physiology,2003,75:27-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700