用户名: 密码: 验证码:
纳/微米TiO_2薄膜的自组装制备及光催化性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO_2)是一种重要的无机功能材料,具有许多独特的物理化学性质,广泛应用于废水废气净化的催化剂、涂料、陶瓷、抗菌剂等领域。由于TiO_2粉体在光催化过程中易失活、易团聚、难回收等,使其在应用中受到一定限制,而负载型TiO_2薄膜的制备可避免这些弊端。
     本文采用溶胶-凝胶法及自组装技术,分别以廉价的四氯化钛(TiCl_4)、硫酸氧钛(TiOSO_4)为原料,以SiO_2球、普通载玻片为载体进行了TiO_2/SiO_2、TiO_2/glass复合材料的制备;进行了聚乙二醇(PEG)、离子掺杂及酸处理改性研究;研究了表面活性剂对TiO_2粒子形貌和粒径的调控规律;并对样品的光催化性能等进行了探讨。本文的主要研究内容包括:
     1.以TiCl4为原料,SiO_2球为载体,制备了纳米TiO_2/SiO_2薄膜,研究了不同聚合度的PEG、Fe~(3+)掺杂及PEG2000和Fe~(3+)共掺杂对样品的影响。
     结果表明:以8mmol/L的十二烷基硫酸钠(SDS)为自组装介质、采用水浴80℃制胶和组装可得到粒径均匀且量多的TiO_2;随着PEG含量增加,薄膜的孔密度、孔径逐渐增大且更加均匀;PEG含量过高、组装次数过多、PEG聚合度过大时,TiO_2薄膜均易出现裂缝。PEG2000掺杂时,得到锐钛矿与金红石的混晶;锐钛矿相对含量随PEG2000浓度的增大而提高。光催化实验表明:添加PEG时,光催化性能有所提高,PEG600、PEG2000、PEG20000的光催化最佳浓度分别为12.0%、2.0%和0.10%;PEG2000掺杂时组装二次光催化性最佳;Fe~(3+)掺杂能提高光催化效果,Fe~(3+)最佳浓度为0.00125%;PEG2000与Fe~(3+)离子共掺杂时,光催化性能高于任一单独掺杂。
     2.以TiOSO_4为原料,SiO_2球为载体,研究了TiOSO_4-H_2O-乙二醇(C2H6O_2)体系中制备TiO_2/SiO_2薄膜的条件,并进行了Cu2+掺杂、硫酸(H2SO4)改性及其光催化性能研究。
     该体系制备TiO_2/SiO_2的最佳条件为:TiOSO_4(1.07mol/L)、乙二醇、H2O体积比为2:3:3;80℃水浴制胶30min;80℃水浴组装2h;随水浴陈化12h;550℃热处理2.5h。与以TiCl4为原料相比,该法制得的纳米TiO_2粒径更加细小,锐钛矿相含量相对较高。未掺杂时,550℃热处理所得样品的光催化效果最好;Cu~(2+)掺杂能提高光催化效果,最佳浓度为0.10%,组装三次光催化性最佳;TiO_2薄膜经H_2SO_4处理后光催化效果也得到提高。
     3.以TiCl_4为原料,普通载玻片为载体制备TiO_2/glass薄膜,研究了非离子表面活性剂PEG2000和阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对TiO_2的形貌、粒径、结构的影响及其光催化性能。
     PEG2000和SDBS均能调控TiO_2粒子的形貌和粒径。添加PEG2000时,热处理环境和PEG2000的浓度对TiO_2粒子的表面形貌都有影响,密闭条件下热处理时,随PEG2000浓度的增加,TiO_2粒子逐渐由棒状变为球状;通空气条件下热处理时,TiO_2粒子由不规状逐渐变为规则的卵石状,且通空气条件得到TiO_2的粒径较大。添加SDBS水浴条件制备时,随SDBS浓度的增加,TiO_2粒子逐渐由棒状变为球状,最终又变为棒状,当SDBS浓度为2.0%时,TiO_2薄膜呈现为直径约3um的圆环相互连结构成的网状;超声条件制备时,TiO_2粒子为类虫状。无论添加PEG2000还是SDBS,随其浓度的增加,所得TiO_2粒子的粒径均先减小后增大。XRD的研究表明,随PEG2000浓度的增加,金红石相对含量逐渐提高;随SDBS浓度的增加,锐钛矿相对含量逐渐提高,且当SDBS浓度为40.0%时,为纯锐钛矿相。光催化实验发现:添加PEG2000和SDBS后均能提高样品的光催化效果,且最佳浓度分别为9.8%和8.0%。
As an important inorganic functional material, Titania (TiO_2) has many unique physical and chemical properties. This material is extensively used as a catalyst in purification of air and water, a pigment in making paints, an enamel, an antimicrobial and so on. TiO_2 powders are usually restricted by some performances in the application because they are easier to become inactive, to reunite and harder to be reclaimed in the photocatalytic process. But TiO_2 films can avoid these disadvantages.
     The aim of this thesis is to obtain TiO_2 /SiO_2 or TiO_2/glass films through combining the sol-gel technology and the layer-by-layer self-assembly method by using low-cost Titanium chloride (TiCl_4) or Titanyl sulfate (TiOSO_4) as the raw material and SiO_2 beads or glass slides as the raw carriers. In this research we have studied the modification to the composite with polyethylene glycol (PEG), ions and acids, the control disciplinarians of surfactants to the shape and size of TiO_2, photocatalysis of the samples etc..
     The major work includes the following aspects:
     1. TiO_2/SiO_2 films are prepared by using TiCl4 and SiO_2 beads as the raw material and carriers respectively. The effect of PEG with different polymerization degree, Fe~(3+), polyethylene glycol 2000 (PEG2000) and Fe~(3+) doped together to the samples are studied.
     The results show that TiO_2 with uniform size and a large number can be obtained by using Sodium dodecyl sulphate (SDS) as the self-assembly medium, preparing sol and synthesizing in water bath at 80℃. The density and diameter of the holes become bigger and more uniform gradually with the increasing concentration of PEG. TiO_2 films are easier to split open when the concentration of PEG is too high, or the synthesis circle and polymerization degree of PEG are too much. The mixed phases of anatase and rutile can be obtained when PEG2000 is doped and the relative content of anatase increases with the increasing concentration of PEG2000. Photocatalytic experiments show that photocatalytic activity increases by doping PEG and the optimal concentration of PEG600, PEG2000 and PEG20000 are 12.0%, 2.0% and 0.10% respectively. And the optimal synthesis circle is two when PEG2000 is doped. Photocatalysis can be increased by doping Fe~(3+) and the optimal concentration is 0.00125%. And photocatalytic activity is higher by doping PEG2000 and Fe~(3+) together compared to doping separately.
     2. Preparation conditions of TiO_2/SiO_2 films in the system of TiOSO_4-H_2O-CH_6O_2 by using TiOSO_4 and SiO_2 beads as the raw material and carriers, modifying with Cu~(2+) or sulfuric acid (H_2SO_4) and photocatalysis are studied.
     The optimal preparation conditions of TiO_2/SiO_2 in this system are that the cubage ratio of TiOSO_4 (1.07 mol/L), C_2H_6O_2 and H2O is 2:3:3, preparing sol and synthesizing are in water bath at 80℃for 30min and 2h respectively, aging time in water bath is 12h and annealing time at 550℃is 2.5h. Compared to TiCl_4, TiO_2 with smaller size and higher relative content of anatase can be obtained by this method. Photocatalytic activity is the best when the samples undoped are annealed at 550℃. By doping Cu~(2+), photocatalytic activity increases and the optimal concentration is 0.10%. And the optimal synthesis circle is three. After treating with H_2SO_4, photocatalytic activity of TiO_2 also increases.
     3. TiO_2/glass films are prepared by using TiCl4 and glass slides as the raw material and carriers. The effect of nonionic surfactant PEG2000 and anionic surfactant Sodium dodecyl benzene sulfonate (SDBS) to the shape, size and structure of TiO_2 and photocatalysis are studied.
     PEG2000 and SDBS can both control the shape and size of TiO_2 particles. Annealing ambient and the concentration of PEG2000 can affect the shape of TiO_2 when PEG2000 is doped. After annealing in airtight ambient the shape of TiO_2 particle varieties from rod-like to sphere-like, whereas it varieties from irregular to egg-like in air ambient with the increasing concentration of PEG2000. And the size of TiO_2 obtained from air ambient is bigger. By doping SDBS and preparing in water bath, the shape of TiO_2 particle transforms from rod-like to sphere-like and again to rod-like with the increasing concentration of SDBS. And TiO_2 film arranges like a web consisting of some circles whose diameters are about 3um averagely when the concentration is 2.0 %. But the shape of TiO_2 is worm-like by preparing in ultrasonic ambient. After doping PEG2000 or SDBS, the size of TiO_2 becomes smaller at first and bigger afterward with the increasing concentrations of them. XRD patterns show that the relative content of rutile increases with the increasing concentration of PEG2000 and the relative content of anatase increases with the increasing concentration of SDBS. And pure anatase can be obtained when SDBS added is 40.0%. In photocatalytic experiments it can be concluded that PEG2000 and SDBS can both improve photocatalysis of the samples and the optimal concentration are 9.8% and 8.0% respectively.
引文
[1]Vasilios A, Sakkas, Triantafyllos A, Albanis. Photocatalyzed degradation of the biocides chlorothalonil and dichlofluanid over aqueous TiO2 suspensions [J]. Appl Catal B: Environ, 2003, 46(1): 175-188.
    [2]Kwon C H, Shin H, Kim J H, Choi W S, Yoon K H. Degradation of methylene blue via photocatalysis of titanium dioxide [J]. Mater Chem Phys, 2004, 86(1): 78–82.
    [3]Gr?tzel M. Mesoporous oxide junctions and nanostructured solar cells [J]. Curr Opin Colloid In, 1999, 4(4): 314-321.
    [4]Xu J C, Lu M, Guo X Y, Li H L. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water [J]. J Mol Catal A: Chem, 2005, 226(1): 123-127.
    [5]Yang P, Lu C, Hua N P, Du Y K. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis [J]. Mater Lett, 2002, 57(4): 794-801.
    [6]姜洪泉, 等. 用于环境功能涂料的纳米TiO2/SiO2复合光催化剂的制备工艺[J], 高校化学工程学报, 2005, 19(1): 113-118.
    [7]刘莹, 王向宇. 纳米二氧化钛光催化材料研究新进展[J]. 化工中间体, 2005, (1):6-10.
    [8]Kajitvichyanukul P, Ananpattarachai J, Pongpom S. Sol-gel preparation and properties study of TiO2 thin film forphotocatalytic reduction of chromium(VI) in photocatalysis process [J]. Sci Technol Advan Mater, 2005, 6(3-4): 352-358.
    [9]徐敏, 徐日红, 黎丽琼. 负载型TiO2 /蛇纹石光催化降解4BS染料的研究[J]. 环境科学与技术, 2005, 28(3): 18-19.
    [10]宋长友, 于之东, 刘大成. 纳米晶二氧化钛光催化薄膜的制备技术及表征[J]. 中国陶瓷工业, 2005, 12(1): 37-40.
    [11]Alberici R M, Jaradim W F. Photocatalytic destruct ion of VOCs in the gas-phase using titanium dioxide [J]. Appl Catal B: Environ, 1997, 14(1): 55458.
    [12]Fujishima A. Titanium dioxide photocatalisis [J]. J Photochem Photobiol C: Photochem Rev 2000, 1(1): 1-21.
    [13]符春林, 魏锡文. 二氧化钛晶型转变研究进展[J]. 材料导报, 1999, 13(3): 37-38.
    [14]许可, 吕德义, 郇昌永, 郑遗凡, 葛忠华. 离子掺杂对纳米二氧化钛晶型转变的影响[J]. 材料科学与工程学报, 2005, 23(4): 629-632.
    [15]于向阳, 梁文, 程继健. 提高二氧化钛光催化性能的途径[J]. 硅酸盐通报, 2001, (1): 53-57.
    [16]肖奇, 邱冠周, 胡岳华. 纳米TiO2制备及其应用新进展[J]. 材料导报, 2000, 14(8): 35-37.
    [17]郑红, 汤鸿霄, 王怡中. 有机污染物半导体多相光催化氧化机理及动力学研究进展[J]. 环境科学进展, 1996, 4(3): 1-18.
    [18]田宝柱, 童天中, 陈锋, 张金龙. 明胶对纳米二氧化钛相变和光催化活性的影响[J].感光科学与光化学, 2006, 24(2): 93-101.
    [19]陈代荣, 孟祥建, 李博, 等. 偏钛酸作前驱体水热合成TiO2微粉[J]. 无机材料学报, 1997, 12(1): 110-114.
    [20]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chem Rev, 1995, 95(3): 735-738.
    [21]Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces [J]. Chem Rev, 1993, 93(1): 267-300.
    [22]Chhabra V, Pillai V, Mishra B K, Morrone A, Shah D O. Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 Particles [J]. Langmuir, 1995, 11(9): 3307-3311.
    [23]侯强, 郭奋. 金红石型纳米二氧化钛制备中的若干影响因素[J]. 北京化工大学学报, 2004, 31(4): 16-18.
    [24]Wang H, Wu Y, Xu B Q. Synthesis and characterization of nanosized anatase TiO2 cuboids [J]. Chem J Chinese U, 2005, 26(4): 607-610.
    [25]蒋锡群, 杨昌正, 等. 聚硅氧烷聚醚嵌段聚氨酯及离聚体的研究[J]. 高分子材料科学与工程, 1987, 5(5): 20-26.
    [26]Ding X Z, Qi Z Z, He Y Z. Effect of hydrolysis water on the preparation of nanocrystalline titania powders via sol-gel process [J]. J Mater Sci Lett, 1995, 14(1): 21-22.
    [27]Ding X Z, Liu X H, He Y Z. Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders [J]. J Mater Sci Lett, 1996,15(6):1789-1791.
    [28]Oliverl G, Ramis G, Busca G, et al. Thermal stability of vanadia-titania catalysts [J]. J Mater Chem, 1993, 3(12):1239-1249.
    [29]Yilgor I, Sha’aban A K, et al. Segmented organosiloxane copolymers: 1. Synthesis of siloxane-urea copolymers [J]. Polymer, 1984, 25(2):1800-1806.
    [30]马薇. 纳米结构 TiO2/SiO2 复合材料的制备、改性及光催化性能的研究[D]. 河北: 河北师范大学, 2005: 26.
    [31]万士明, 余学海, 等. 聚脲-聚硅氧烷嵌段共聚物的合成及性能[J]. 高分子材料科学与工程, 1988, (5): 23-30.
    [32]井立强, 孙晓君, 辛柏福, 王百齐, 蔡伟民, 付宏刚. 掺杂镧和铈的TiO2纳米粒子的结构相变[J]. 材料科学与工艺, 2004, 12(2): 148-152.
    [33]周晓谦, 周文淮. 纳米二氧化钛的光催化特性及应用进展[J]. 辽宁化工, 2002, 31(10): 448-451.
    [34]肖汉宁, 李玉平. 纳米二氧化钛的光催化特性及其应用[J]. 陶瓷学报, 2001, 22(3): 191-195.
    [35]Pfaff G, Reynders P. Angle-dependent optical effects deriving from submicron structures of films and pigments [J]. Chem Rev, 1999, 99:1963-1981.
    [36]张青红, 高濂, 等. 燃烧温度对二氧化钛纳米晶性能的影响[J]. 无机材料学报, 2001, 16(5): 833-838.
    [37]高晓明, 邱克辉, 赵改青, 等. 光致发光材料的研究与进展[J]. 科技进步与对策, 2003, 增刊, 276-277.
    [38]Bickley I B, Gonzaler C T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysts [J]. J Solid State Chem, 1991, 92: 178-190.
    [39]Gao W, Wu F Q, Luo Z, et al. Studies on the relationship between the crystal form of TiO2 and its photocatalyzing degradation efficiency [J]. Chem J Chinese U, 2001, 22(4): 660.
    [40]孙丽萍, 高山, 赵辉, 霍丽华, 赵经贵. 纳米二氧化钛的晶型转变及光催化性能研究[J]. 功能材料, 2004, 35(5): 632-634.
    [41]赵晓红, 张渊明, 胡军文, 等. 低温水热法制备高活性纳米金红石相二氧化钛[J]. 化学研究与应用, 2006, 18(3): 235-239.
    [42]贺飞, 赵文宽. 纳米TiO2光催化剂负载技术研究[J]. 环境污染治理技术与设备, 2001, 2(2): 47-58.
    [43]王祖鹓, 张凤宝, 张前程. 负载型 TiO2 光催化剂的研究进展[J]. 化学工业与工程, 2004, 21(4): 248-253.
    [44]Rachel A, Subrahmesnyam M, Boule P. Comparison of photocatalytic efficiencies of TiO2 in susoendedand inmobilized form for the Photocatalytic degradation of Nitrobenzene sulfonic acids [J]. Appl Catal B: Environ, 2002, 37(4):301-308.
    [45]李炜罡, 霍冀川, 刘树信, 王海滨. 负载型TiO2光催化剂研究进展[J]. 陶瓷学报, 2004, 25(2): 133-138.
    [46]Kim D H, Anderson M A, Zeltner W A, Effects of firing temperature on the photocatalytic and photoelectrocatalytic properties of TiO2 [J]. J Environ Eng, 1995, 121 (8): 590-594.
    [47]谭怀琴, 全学军, 赵清华, 桑雪梅. 二氧化钛光催化技术研究进展[J]. 重庆工学院学报, 2005, 19(3): 79-83.
    [48]Uhlmann D R, Doulton J M , Teowee G. Sol-gel synthesis of optical thin films and coatings [J]. Spie, 1990, (1328): 270.
    [49]Valla B, Macedo M, Aegerter M A. Electrochromic smart windows [J]. J Non-Cryst Solids, 1992, 147/148(10): 792-798.
    [50]徐建梅, 张德. 溶胶-凝胶法的技术进展与应用现状[J]. 地质科技情报, 1999, 18(4): 103-106.
    [51]魏绍东, 王杏. 工业生产纳米二氧化钛存在的问题与解决方案[J]. 现代化工, 2005, 25(8): 50-52.
    [52]祖庸, 任莉, 马沛. 以偏钛酸(硫酸钛、硫酸氧钛)为原料制备纳米二氧化钛[J]. 钛工业进展, 1997, (1): 30-33.
    [53]雷闫盈, 俞行. 均匀沉淀法制备纳米二氧化钛工艺条件研究[J]. 无机盐工业, 2001, 33(2): 3-5.
    [54]黄晖, 罗宏杰, 杨明, 等. 水热沉淀法制备TiO2纳米粉体的研究[J]. 硅酸盐通报, 2000, 19(4): 8-11.
    [55]高桂兰, 段学臣. 纳米金红石型二氧化钛粉末的制备及表征[J]. 硅酸盐通报, 2004, (1): 88-90.
    [56]姜勇, 张平, 刘祖武, 等. TiO2纳米晶的制备[J]. 材料科学与工程学报, 2003, 21(3): 398-401.
    [57]Mills A, Lee S K. A web-based overview of semiconductor photochemistry-based current commercial applications [J]. J Photochem Photobiol A: Chem, 2002, 152: 233-247.
    [58]张文杰, 朱圣龙, 李瑛, 王福会. 玻璃和石英基体上沉积的TiO2薄膜的光催化性能[J].催化学报, 2007, 28(3): 269-273.
    [59]Peill N J, Hoffmann M R. Development and optimization of a TiO2-coated fiber-optic cable reaction: Photocatalytic degradation of 4-chlorophenol [J]. Environ Sci Technol, 1995, 29(12): 2974-2981.
    [60]Matsunaga T, Okochi M. TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers [J]. Environ Sci Technol, 1995, 29(2): 501-505.
    [61]亓新华, 王红娟. 二氧化钛光催化剂负载工艺研究进展[J]. 电镀与精饰, 2006, 28(1): 25-29.
    [62]Fernándz A, Lasssaletta G, Jiménez V M, et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports [J]. Appl Catal B: Environ,1995, 7(1-2): 49-53.
    [63]Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect [J]. J Photochem Photoboil A: Chem, 1997,106:51-56.
    [64]符小荣, 张校刚, 宋世庚, 等. TiO2/Pt/glass 纳米薄膜的制备及对可溶性染料的光电催化降解[J]. 应用化学, 1997, 14(4): 77-79.
    [65]黄艳娥. 纳米二氧化钛光催化降解水中有机污染物的研究[J]. 河北理工学院学报, 2000, 22(4): 107-110.
    [66]Yu J G, Zhao X J. Effect of Surface Microstructure of Porous TiO2 Thin Films on Photocatalytic Decolorization of MethylOrange [J]. Chinese J Catal, 2000, 21(3): 213-216.
    [67]Takahashi M, Matsuoka Y. Dip-coating of TiO2 films using a sol derived from Ti(O-i-Pr)4-diethanolamine-H2O-i-PrOH system [J]. J Mater Sci, 1998, 23: 2259-2266.
    [68]王承遇, 钟萍, 姜妍彦. 掺杂铈对玻璃表面 TiO2 薄膜上油酸的光催化降解的影响[J].催化学报, 2000, 21(5): 443-446.
    [69]Takahashi M, Keisude M, Toyuki H, et al. Pt-TiO2 thin films on glass substrates as efficient photocatalysts [J]. J Mater Sci, 1989, 24(1): 243-246.
    [70]武正簧. 用 TiO2 薄膜作催化剂降解苯酚的研究[J]. 化学工业与工程, 1994, 16(2): 102-104.
    [71]Byun D, Jin Y, et al. Photocatalytic TiO2 deposition by chemical vapor deposition [J]. J Hazard Mater, 2000, 73(2):199-206.
    [72]王晓萍, 于云, 高濂. TiO2 薄膜的液相沉积法制备及其性能表征[J]. 无机材料学报, 2000, 15(3): 573-576.
    [73]白玉兰, 孔德良, 叶庆国. 纳米TiO2光催化剂固定化技术及其改性的研究进展[J]. 青岛化工学院学报, 2001, 22(4): 326-332.
    [74]喻发全. 核-壳型复合结构纳米粒子研究进展[J]. 现代化工,2004, 24(2): 12.
    [75]Kim S H. Design of TiO2 namoparticle self-assembles aromatic polyamide thin-film-composite(TFC)membrane as an approach to solve biofouling problem [J]. J Membrane Sci, 2003, 211(1-2): 157-165.
    [76]Lin C H, Pei S C, Chin T S, Wu T P. Hydrothermal synthesis of PbTi1?xZrxO3 ceramic powders [J], Ceram Trans, 1993, 32: 261–274.
    [77]Caruso F. Studies on alkali thickening and film forming abilities of carboxylated polymer emulsion [J]. Chem Eur, 2000, 6: 413.
    [78]Caruso F, Spasova M, Susha A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layerimg approach [J]. Chem Mater, 2001, 13: 109-116.
    [79]Caruso R A, Susha A, Caruso F. Multilayered titaniasilica and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres [J]. Chem Mater, 2001, 13: 400.
    [80]Jian P M, Xia Y M, Li D H, Wang X Y. Preparation, characterization and photocatalytic activity of doped TiO2 nanopowders [J]. Chinese J Catal, 2001, 22(2): 161-164.
    [81]Choi W, Temin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem, 1994, 98(51): 13669-13679.
    [82]Hattori A, Yamamoto M. A promoting effect of NH4F addition on the photocatalyticactivity of sol-gel TiO2 films [J]. Chem Lett, 1998, 27(8): 707-708.
    [83]Jimmy C, Yu J L. Enhanced photocatalytic activity of Ti1-xVxO2 solid solution on the degradation of acetone [J]. J Photoch Photobio A: Chem, 1997, 111: 199-203.
    [84]Kato K. Crystal structures of TiO2 thin coatings preparation from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid [J]. J Mater Sci, 1994, 29: 5911-5915.
    [85]Uddin M J, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A. Photoactive TiO2 films on cellulose fibres: synthesis and characterization [J]. J Photoch Photobio A: Chem, 2007, 189(2-3): 286-294.
    [86]Liao D L, Liao B Q. Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants [J]. J Photoch Photobio A: Chem, 2007, 187(2-3): 363-369.
    [87]Qiu J J, Jin Z G, Liu Z F, Liu X X, Liu G Q, Wu W B, Zhang X, Gao X D. Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process [J]. Thin Solid Films, 2007, 515: 2897-2902.
    [88]Gao Y, Elder S A. TEM study of TiO2 nanocrystals with different particle size and Shape [J], Mater Lett, 2000, 44(3-4): 228-232.
    [89]Wang X C, Yu J C, et al. Photocatalytic activity of a hierarchically macro/mesoporous Titania [J]. Langmuir, 2005, 21: 2552-2559.
    [90]Mane R S, Lokhande C D, Todkar V V, et al. Photosensitization of nanocrystalline TiO2 film electrode with cadmium sulphoselenide [J]. Appl Surf Sci, 2007, 253(8): 3922-3926.
    [91]Gracia F, Holgado J P, Caballero A, Gonzalez-Elipe A R. Structural, optical, and photoelectrochemical properties of Mn+-TiO2 Model thin film photocatalysts [J]. J Phys Chem B, 2004, 108: 17466-17476.
    [92]Lee K, Lee N H, Shin S H, Lee H G, Kim S J. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols [J]. Mater Sci Eng B, 2006, 129: 109-115.
    [93]Dittert B, Stenzel F, Ziegler G. Development of novel surfactant-templated nanostructured thin SiO2, and SiO2–TiO2 films [J]. J Non-Cryst Solids, 2006, 352(50-51): 5437-5443.
    [94]刘洪波, 刘孝恒, 汪信, 陆路德, 杨绪杰. 表面活性剂在纳米粒子形状控制及自组装中应用新进展[J]. 材料导报, 2003, 17: 27-29.
    [95]Vidal-Iglesias F J, Solla-Gullón J, Rodr?g?uez P, Herrero E, Montiel V, Feliu J M, Aldaz A. Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces [J]. Electrochem Commun, 2004, 6(10): 1080-1084.
    [96]Hu X L, Chen D D, Hu X H, Ying H. The effect of surfactants on the particle size and shape of TiO2 [J]. China Ceram Ind, 2003, 10(4):25-28.
    [97]孔祥荣, 彭鹏, 孙桂香, 郑文君. 二氧化钛纳米管的研究进展[J]. 化学通报, 2007, (1): 8-13.
    [98]Jung J H, Kobayashi H, et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template [J]. Chem Mater, 2002, 14(4): 1445-1447.
    [99]Kato K, Tsuzuki A, Torii Y, et al. Affecting the photocatalytic decomposition of aqueous acetic acid [J]. J Mater Sci, 1995, 30: 837-840.
    [100]Kato K, Tsuzuki A, Taoda H,et al. Decompositiong of aqueous acetic acid [J]. J Mater Sci, 1994, 29: 5911-5915.
    [101]Wu P X, Tang J W, Dang Z. Preparation and photocatalysis of TiO2 nanoparticles doped with nitrogen and cadmium [J]. Mater Chem Phys, 2007, 103(2-3): 264-269.
    [102]Jin Z L, Zhang X J, Li Y X, Li S B, Lu G X. 5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation [J]. Catal Commun, 2007, 8: 1267-1273.
    [103]Say?lkan F, Asiltürk M, Tatar P, Kiraz N, Arpa? E, Say?lkan H. Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights [J]. J Hazard Mater, 2007, 144(1-2): 140-146.
    [104]夏金虹, 唐郁生. SiO2负载TiO2膜光催化降解亚甲基蓝和孔雀石绿[J]. 化工技术与开发, 2006, 35(1): 26-28.
    [105]Yuan Z F, Zhang J L, et al. Effect of metal ion dopants on photochemical properties of anatase TiO2 films synthesized by a modified sol-gel method [J]. Thin Solid Films, 2007, 515: 7091-7095.
    [106]Seo D S, Kim H. Synthesis and characterization of TiO2 nanocrystalline powderprepared by homogeneous precipitation using urea [J]. J Mater Res, 2003, 18(3): 571-577.
    [107]张磊. 负载型纳米 TiO2 复合材料的制备、改性及光催化性能的研究[D]. 河北: 河北师范大学, 2006: 50-51.
    [108]侯天意, 蒋引珊, 李芳菲, 孙申美. Fe 掺杂与天然沸石载体对 TiO2 光催化活性的影响[J], 高等学校化学学报, 2006, 27(1): 100-103.
    [109]魏绍东, 王玉倩. 以硫酸氧钛为原料制备纳米二氧化钛[J]. 无机盐工业, 2006, 38(2): 6-9.
    [110]魏绍东, 王杏. 以硫酸氧钛为原料制备纳米TiO2技术的研究[J]. 涂料工业, 2005, 35(8): 49-52.
    [111]Ge L, Xu M X, Fang H B, Sun M. Preparation of TiO2 thin films from autoclaved sol containing needle-like anatase crystals [J]. Appl Surf Sci, 2006, 253: 720-725.
    [112]雅菁, 崔希恩. 硫酸氧钛-水-乙二醇系溶胶浸涂制备TiO2薄膜[J]. 天津城市建设学院学报, 1995, 1(3): 13-16.
    [113]Margel S, Wiesel E. Acrolein polymerization: Monodisperse, homo, and hybrido microspheres, synthesis, mechanism, and reactions [J]. J Polym Sci Chem Ed, 1984, 22(1): 145-158.
    [114]白明辉. 纳米结构TiO2的制备、组装及其光催化性能研究[D]. 河北: 河北师范大学, 2005: 9-11.
    [115]Yin S, Hasegawa H, Maeda D, et al. Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution-reprecipitation process [J]. J Photochem Photobio A: Chem, 2004, 163(1-2): 1-8.
    [116]Zheng Y Q, Shi E W, Chen Z Z, et al. Infuence of solution concentration on the hydrothermal preparation of titania crystallites [J]. J Mater Chem, 2001, 11(5): 1547-1551.
    [117]刘超, 杨良准, 等. 不同金属离子掺杂TiO2薄膜的制备及光催化活性的研究[J]. 工业催化, 2006, 14(1): 56-60.
    [118]余火根, 余家国, 程蓓, 赵修建. 后处理对TiO2纳米薄膜的表面结构和光催化活性的影响[J], 无机化学学报, 2003, 19(8): 873-878.
    [119]Yu J G, Zhao X J. Hydrophilicity and photocatalytic activity of self-cleancing porous TiO2 thin films on glass [J]. Chem J Chinese U, 2000, 21(9): 1437-1440.[120]高健, 葛蔚, 李静海. 浓度对表面活性剂胶团形状影响的分子动力学模拟[J]. 中国科学B: 化学, 2005, 35(3): 252-257. [121]Sreemany M, Sen S. Influence of calcination ambient and film thickness on the optical and structural properties of sol-gel TiO2 thin films [J]. Mater Res Bull, 2007, 42(1): 177-189. [122]Yuan S L, Cai Z T, Xu G Y. Dynamic simulation of aggregation morphology in surfactant solution [J]. Acta Chim Sinica, 2002, 60(2): 241-245. [123]Zasadzinski J A, Kisak E, Evans C. Complex vesicle-based structures [J]. Curr Opin Colloid In, 2001, 6(1): 85-90. [124]Horváth O, Fendler J H. CdS-particle-mediated transmembrane photoelectron transfer in surfactant vesicles [J]. J Phys Chem, 1992, 96(24): 9591-9594. [125]Fendler J H. Atomic and molecular clusters in membrane mimetic chemistry [J]. Chem Rev, 1987, 87(50): 877-899. [126]Li Y, Wan J H, Gu Z N. The formation of cadmium sulfide nanowires in different liquid crystal systems [J]. Mater Sci Eng A, 2000, 286(1): 106-109. [127]Fang Q, Meier M, Yu J J, Wang Z M, Zhang J Y, Wu J X, Kenyon A, Hoffmann P, Boyd I W. FTIR and XPS investigation of Er-doped SiO2–TiO2 films [J]. Mater Sci Eng B, 2003, 105(1-3): 209-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700