用户名: 密码: 验证码:
1.TBP和TLP对hTERT的转录调节作用及机制 2.DNA甲基化在宫颈癌诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
端粒酶的激活是细胞癌变过程中的重要步骤,研究发现多种因素影响细胞中端粒酶的活性。人端粒酶催化亚单位(hTERT)是人端粒酶活性的必需成分,hTERT的表达是端粒酶激活的限速步骤,其水平决定了细胞中端粒酶的活性。研究发现,hTERT基因表达的调节主要发生在转录水平,目前已发现几种转录因子调节hTERT基因的转录,但确切的调控机制有待深入研究。细胞中编码功能蛋白的基因转录已经证明依赖RNA聚合酶II的活性。但是,RNA聚合酶II并不是直接与启动子区结合而是通过细胞蛋白的介导。所以,转录起始的第一步是蛋白识别并物理性的结合启动子区的一些特殊序列,随后引发RNA聚合酶II的催化作用。
     转录起始蛋白主要包含两种: TBP ( TATA-binding protein )和TLP ( TBP-like protein )。已经证明前者是一种能与TATA盒结合的蛋白,TATA盒是位于基因上游并带有TATA重复结构的一段序列。有时候,如果其他一些启动子缺乏TATA盒结构(TATA less)那么TLP就会参与其转录,但是关于TLP在启动子区的识别位点还所知甚少。本实验主要包括两个方面:1、TBP和TLP蛋白是否能与hTERT基因启动子区结合。2、TBP和TLP蛋白是否可以调节hTERT基因启动子的表达及所涉及的细胞生物学活动。主要的实验方法及结果如下:
     1.构建含有TBP基因和TLP基因的原核表达载体pEK-TBP和pEK-TLP,转化大肠杆菌E. coli诱导表达原核6×His-TBP和6×His-TLP融合蛋白,经SDS-PAGE鉴定、变性调节下利用亲和层析纯化和透析复性。
     2. EMSA试验证实TBP蛋白可以与hTERT基因启动子核心区特异性结合,但TLP蛋白不与hTERT基因启动子区结合。
     3.荧光素酶报告基因分析观察TBP对hTERT启动子区的调节。构建含有TBP基因的真核表达载体,与含有hTERT启动子的荧光酶报告载体共转染HeLa细胞,荧光酶活性分析显示TBP蛋白可以激活hTERT启动子的表达。
     4.染色体免疫共沉淀(ChIP)检测到TBP蛋白在HeLa细胞内可以与hTERT启动子结合。
     5.使用Footprinting分析TBP蛋白与hTERT启动子结合位点的序列。
     结论:TBP蛋白可以与hTERT基因启动子核心区特异性结合,但TLP蛋白不与hTERT基因启动子区结合。TBP蛋白在细胞内也可与hTERT启动子结合并激活其表达。TBP很可能是一个重要的转录调节因子并参与hTERT的激活。
     目的:基因启动子的甲基化是肿瘤形成过程中的一个重要的机制。一些基因启动子在宫颈癌中高甲基化已经有了相关报道。但是,关于宫颈癌前病变的甲基化还所知甚少。为了获得更多关于宫颈癌形成过程中甲基化进程的知识,并筛选和调整一个能用于诊断宫颈刮片标本中宫颈癌和鳞状上皮内高度病变的诊断标志物,我们利用实时定量甲基特异性PCR(QMSP)分析了九个基因启动子的甲基化状态,这些基因在宫颈癌中高甲基化已经有过相关报道。
     方法:石蜡包埋正常宫颈组织(20例),鳞状上皮内低度病变(20例),鳞状上皮内高度病变(20例),腺癌(20例)和鳞癌(40例)。对应的宫颈刮片标本55例。提取DNA后,用QMSP方法分析DAPK, CALCA, ESR1, APC, RAR-β2, TFPI2, SPARC, CCNA1和CADM1基因的甲基化状态。
     结果:所有基因的甲基化水平都随着标本的恶性度增加而增加。除了CALCA, ESR1和RAR-β2基因,其他基因启动子甲基化的样品数量也随着标本的恶性度增加而增加。DAPK和CADM1基因在HSIL标本中就已经显著的甲基化了,但CCNA1, TFPI2和ESR1基因主要在宫颈癌中甲基化。宫颈刮片标本中甲基化比率反映了病变的甲基化状态。此外,CCNA1基因在宫颈癌和HSIL病例中甲基化比例很高,分别为80%和56%,而LSIL中只有25%甲基化。
     结论:无论在石蜡包埋还是宫刮片标本中,标本甲基化的数目和水平都在肿瘤发生形成过程中增加。DAPK和CADM1基因是最好的区分LSIL和HSIL病变的基因启动子,这对SIL病变的治疗可能很重要。
Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase in human, has been identified the rate-limiting factor in telomerase activity, but its detailed mechanism of transcription regulation remains unclear. Many investigations are focusing on the precise mechanism of hTERT transcription regulation. The transcription of genes encoding functional proteins in cells has been identified to be dependent on activity of RNA polymerase II. However, RNA polymerase II does not directly bind to promoter as elucidated so far but mediated by cellular proteins. The proteins for initiating transcription include two major proteins: TBP (TATA-binding protein) and TLP (TBP-like protein). In this investigation, TBP and TLP were expressed and purificated. The interaction of TBP with hTERT promoter was identified, but the interaction of TLP with hTERT promoter was not identified. The in vivo interaction between TBP and hTERT promoter was identified by chromatin immunoprecipitation (ChIP) assay. Transfection of TBP into HeLa cells presented marked transactivation of hTERT promoter. These results suggested that TBP protein might be a transcription regulator and take part in activation of hTERT.
     Objectives: Gene promoter hypermethylation is an important mechanism involved in carcinogenesis. Several gene promoters are known to be hypermethylated in cervical cancer. However, not much is known about hypermethylation in cervical cancer precursor lesions. In order to obtain more insight in the course of hypermethylation throughout cervical carcinogenesis, and to allow selection and adjustment of a marker panel for the detection of cervical cancer and high grade (H)SIL in scrapings, the hypermethylation status of nine gene promoters, previously reported to be hypermethylated in cervical cancer, was analyzed using quantitative methylation specific PCR (QMSP).
     Methods: Paraffin embedded tissue from normal cervix (n=20), LSIL (n=20), HSIL (n=20), adenocarcinomas (AC) (n=20) and squamous cell cervical cancers (SCC) (n=40) was retrieved together with 55 corresponding cervical scrapings and DNA was extracted. Promoter methylation analysis was performed using QMSP for DAPK, CALCA, ESR1, APC, RAR-β2, TFPI2, SPARC, CCNA1 and CADM1.
     Results: The level of methylation of all gene promoters was increased with severity of the underlying lesion. The number of samples methylated of most gene promoters was increased as well with the severity of the lesion, except for CALCA, ESR1 and RAR-β2. DAPK and CADM1 became more prominently methylated in HSIL lesions compared to LSIL, while CCNA1, TFPI2 and ESR1 became mainly methylated in cervical cancers. Methylation ratios determined in the scrapings were reflecting the methylation status of the underlying lesion. Furthermore, in cervical scrapings, CCNA1 was most frequently hypermethylated in cervical cancer cases (80%) and in HSIL (56%), while only 25% of LSIL showed hypermethylation.
     Conclusion: The number of samples methylated and the level of methylation was increased during carcinogenesis in paraffin embedded tissue as well as in corresponding cervical scrapings. DAPK and CADM1 gene promoter methylation were the best gene promoters to distinguish LSIL vs HSIL lesions, which might be important for treatment of SIL lesions.
引文
1. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. Extension of life-span by introduction of telomerase into normal human cells. Science, 279: 349-352, 1998.
    2. Cong, Y. S., Wen, J. P., and Bacchetti, S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Human Molecular Genetics, 8: 137-142, 1999.
    3. Farwell, D. G., Shera, K. A., Koop, J. I., Bonnet, G. A., Matthews, C. P., Reuther, G. W., Coltrera, M. D., McDougall, J. K., and Klingelhutz, A. J. Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. American Journal of Pathology, 156: 1537-1547, 2000.
    4. Feng, J. L., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J. H., Le, S. Y., West, M. D., Harley, C. B., Andrews, W. H., Greider, C. W., and Villeponteau, B. The Rna Component of Human Telomerase. Science, 269: 1236-1241, 1995.
    5. Fujimoto, K., Kyo, S., Takakura, M., Kanaya, T., Kitagawa, Y., Itoh, H., Takahashi, M., and Inoue, M. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT) gene promoter: possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Research, 28: 2557-2562, 2000.
    6. Greider, C. W. and Blackburn, E. H. Telomeres, telomerase and cancer. Scientific American, 274: 92-97, 1996.
    7. Greider, C. W. Telomerase activity, cell proliferation, and cancer. Proceedings of the National Academy of Sciences of the United States of America, 95: 90-92, 1998.
    8. Gunes, C., Lichtsteiner, S., Vasserot, A. P., and Englert, C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res, 60: 2116-2121, 2000.
    9. Horikawa, I., Cable, P. L., Afshari, C., and Barrett, J. J. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Research, 59: 826-830, 1999.
    10. Kadonaga, J. T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell, 116: 247-257, 2004.
    11. Koyanagi, Y., Kobayashi, D., Yajima, T., Asanuma, K., Kimura, T., Sato, T., Kida, T., Yagihashi, A., Kameshima, H., and Watanabe, N. Telomerase activity is down regulated via decreases in hTERT mRNA but not TEP1 mRNA or hTERC during the differentiation ofleukemic cells. Anticancer Res, 20: 773-778, 2000.
    12. Kyo, S., Takakura, M., Kanaya, T., Zhuo, W., Fujimoto, K., Nishio, Y., Orimo, A., and Inoue, M. Estrogen activates telomerase. Cancer Research, 59: 5917-5921, 1999.
    13. Kyo, S., Takakura, M., Taira, T., Kanaya, T., Itoh, H., Yutsudo, M., Ariga, H., and Inoue, M. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res, 28: 669-677, 2000.
    14. Liu, Y., Snow, B. E., Hande, M. P., Yeung, D., Erdmann, N. J., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O., and Harrington, L. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Current Biology, 10: 1459-1462, 2000.
    15. Martel, L. S., Brown, H. J., and Berk, A. J. Evidence that TAF-TATA box-binding protein interactions are required for activated transcription in mammalian cells. Molecular and Cellular Biology, 22: 2788-2798, 2002.
    16. Meyerson, M., Counter, C. M., Eaton, E. N., Ellisen, L. W., Steiner, P., Caddle, S. D., Ziaugra, L., Beijersbergen, R. L., Davidoff, M. J., Liu, Q. Y., Bacchetti, S., Haber, D. A., and Weinberg, R. A. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 90: 785-795, 1997.
    17. Nakadai, T., Shimada, M., Shima, D., Handa, H., and Tamura, T. A. Specific interaction with transcription factor IIA and localization of the mammalian TATA-binding protein-like protein (TLP/TRF2/TLF). J Biol Chem, 279: 7447-7455, 2004.
    18. Nakayama, J., Tahara, H., Tahara, E., Saito, M., Ito, K., Nakamura, H., Nakanishi, T., Tahara, E., Ide, T., and Ishikawa, F. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet, 18: 65-68, 1998.
    19. Oh, S., Song, Y. H., Kim, U. J., Yim, J., and Kim, T. K. In vivo and in vitro analyses of Myc for differential promoter activities of the human telomerase (hTERT) gene in normal and tumor cells. Biochemical and Biophysical Research Communications, 263: 361-365, 1999.
    20. Oh, S., Song, Y., Yim, J., and Kim, T. K. The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. Journal of Biological Chemistry, 274: 37473-37478, 1999.
    21. Oh, S., Song, Y. H., Yim, J., and Kim, T. K. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene, 19: 1485-1490, 2000.
    22. Ohbayashi, T., Kishimoto, T., Makino, Y., Shimada, M., Nakadai, T., Aoki, T., Kawata, T., Niwa, S., and Tamura, T. Isolation of cDNA, chromosome mapping, and expression of the human TBP-like protein. Biochem Biophys Res Commun, 255: 137-142, 1999.
    23. Peterson, M. G., Tanese, N., Pugh, B. F., and Tjian, R. Functional Domains and UpstreamActivation Properties of Cloned Human Tata Binding-Protein. Science, 248: 1625-1630, 1990.
    24. Piera-Velazquez, S., Jimenez, S. A., and Stokes, D. G. Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis and Rheumatism, 46: 683-693, 2002.
    25. Shay, J. Hot Papers - Telomere biology - Specific association of human telomerase activity with immortal cells and cancer by N.W. Kim, M.A. Piatyszek, K.R. Prowse, C.B. Harley, M.D. West, P.L.C. Ho, G.M. Coviello, W.E. Wright, S.L. Weinrich, J.W. Shay - Comments. Scientist, 10: 14, 1996.
    26. Shay, J. W. and Bacchetti, S. A survey of telomerase activity in human cancer. European Journal of Cancer, 33: 787-791, 1997.
    27. Takakura, M., Kyo, S., Kanaya, T., Hirano, H., Takeda, J., Yutsudo, M., and Inoue, M. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Research, 59: 551-557, 1999.
    28. Vaziri, H. and Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Current Biology, 8: 279-282, 1998.
    29. Weinrich, S. L., Pruzan, R., Ma, L. B., Ouellette, M., Tesmer, V. M., Holt, S. E., Bodnar, A. G., Lichtsteiner, S., Kim, N. W., Trager, J. B., Taylor, R. D., Carlos, R., Andrews, W. H., Wright, W. E., Shay, J. W., Harley, C. B., and Morin, G. B. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genetics, 17: 498-502, 1997.
    30. Wick, M., Zubov, D., and Hagen, G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene, 232: 97-106, 1999.
    31. Won, J., Yim, Y., and Kim, T. K. Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. Journal of Biological Chemistry, 277: 38230-38238, 2002.
    32. Woychik, N. A. and Hampsey, M. The RNA polymerase II machinery: Structure illuminates function. Cell, 108: 453-463, 2002.
    33. Xu, D. W., Wang, Q., Gruber, A., Bjorkholm, M., Chen, Z. G., Zaid, A., Selivanova, G., Peterson, C., Wiman, K. G., and Pisa, P. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene, 19: 5123-5133, 2000.
    1. Petignat, P. and Roy, M. Diagnosis and management of cervical cancer. BMJ, 335: 765-768, 2007.
    2. Peto, J., Gilham, C., Fletcher, O., and Matthews, F. E. The cervical cancer epidemic that screening has prevented in the UK. Lancet, 364: 249-256, 2004.
    3. Mitchell, M. F., Tortolero-Luna, G., Wright, T., Sarkar, A., Richards-Kortum, R., Hong, W. K., and Schottenfeld, D. Cervical human papillomavirus infection and intraepithelial neoplasia: a review. J Natl Cancer Inst Monogr, 17-25, 1996.
    4. Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., Snijders, P. J., Peto, J., Meijer, C. J., and Munoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189: 12-19, 1999.
    5. Clifford, G. M., Smith, J. S., Plummer, M., Munoz, N., and Franceschi, S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. British Journal of Cancer, 88: 63-73, 2003.
    6. Munoz, N., Bosch, F. X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K. V., Snijders, P. J. F., and Meijer, C. J. L. M. Epidemiologic classification of human papillomavirus types associated with cervical cancer. New England Journal of Medicine, 348: 518-527, 2003.
    7. Bosch, F. X., Manos, M. M., Munoz, N., Sherman, M., Jansen, A. M., Peto, J., Schiffman, M. H., Moreno, V., Kurman, R., Shah, K. V., Alihonou, E., Bayo, S., Mokhtar, H. C., Chicareon, S., Daudt, A., Delosrios, E., Ghadirian, P., Kitinya, J. N., Koulibaly, M., Ngelangel, C., Tintore, L. M. P., Riosdalenz, J. L., SARJADI, Schneider, A., Tafur, L., Teyssie, A. R., Rolon, P. A., Torroella, M., Tapia, A. V., Wabinga, H. R., Zatonski, W., Sylla, B., Vizcaino, P., Magnin, D., Kaldor, J., Greer, C., and Wheeler, C. Prevalence of Human Papillomavirus in Cervical-Cancer - A Worldwide Perspective. Journal of the National Cancer Institute, 87: 796-802, 1995.
    8. Waggoner, S. E. Cervical cancer. Lancet, 361: 2217-2225, 2003.
    9. Green, J. A., Kirwan, J. M., Tierney, J. F., Symonds, P., Fresco, L., Collingwood, M., and Williams, C. J. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet, 358: 781-786, 2001.
    10. Landoni, F., Maneo, A., Colombo, A., Placa, F., Milani, R., Perego, P., Favini, G., Ferri, L., and Mangioni, C. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet, 350: 535-540, 1997.
    11. Rose, P. G., Bundy, B. N., Watkins, E. B., Thigpen, J. T., Deppe, G., Maiman, M. A., Clarke-Pearson, D. L., and Insalaco, S. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med, 340: 1144-1153, 1999.
    12. Whitney, C. W., Sause, W., Bundy, B. N., Malfetano, J. H., Hannigan, E. V., Fowler, W. C., Jr., Clarke-Pearson, D. L., and Liao, S. Y. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol, 17: 1339-1348, 1999.
    13. Koss, L. G. The Papanicolaou Test for Cervical-Cancer Detection - A Triumph and A Tragedy. Jama-Journal of the American Medical Association, 261: 737-743, 1989.
    14. Papanicolaou, G. N. and Traut, H. F. The diagnostic value of vaginal smears in carcinoma of the uterus (Reprinted from American Journal of Obstetrics and Gynecology, vol 42, 1941). Archives of Pathology & Laboratory Medicine, 121: 211-223, 1997.
    15. Clifford, G. M., Rana, R. K., Franceschi, S., Smith, J. S., Gough, G., and Pimenta, J. M. Human papillomavirus genotype distribution in low-grade cervical lesions: comparison by geographic region and with cervical cancer. Cancer Epidemiol Biomarkers Prev, 14: 1157-1164, 2005.
    16. Wright, T. C., Jr., Massad, L. S., Dunton, C. J., Spitzer, M., Wilkinson, E. J., and Solomon, D. 2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ. J Low Genit Tract Dis, 11: 223-239, 2007.
    17. Melnikow, J., Nuovo, J., Willan, A. R., Chan, B. K., and Howell, L. P. Natural history of cervical squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol, 92: 727-735, 1998.
    18. Creasman, W. T. New Gynecologic Cancer Staging. Gynecologic Oncology, 58: 157-158, 1995.
    19. Canavan, T. P. and Doshi, N. R. Cervical cancer. Am Fam Physician, 61: 1369-1376, 2000.
    20. Anttila, A., Ronco, G., Clifford, G., Bray, F., Hakama, M., Arbyn, M., and Weiderpass, E. Cervical cancer screening programmes and policies in 18 European countries. Br J Cancer, 91: 935-941, 2004.
    21. Ostor, A. G. Natural-History of Cervical Intraepithelial Neoplasia - A Critical-Review. International Journal of Gynecological Pathology, 12: 186-192, 1993.
    22. Nijhuis, E. R., Reesink-Peters, N., Wisman, G. B. A., Nijman, H. W., van Zanden, J., Volders, H., Hollema, H., Suurmeijer, A. J. H., Schuuring, E., and van der Zee, A. G. J. An overview of innovative techniques to improve cervical cancer screening. Cellular Oncology, 28: 233-246, 2006.
    23. Hutchinson, M. L., Zahniser, D. J., Sherman, M. E., Herrero, R., Alfaro, M., Bratti, M. C., Hildesheim, A., Lorincz, A. T., Greenberg, M. D., Morales, J., and Schiffman, M. Utility of liquid-based cytology for cervical carcinoma screening: results of a population-based study conducted in a region of Costa Rica with a high incidence of cervical carcinoma. Cancer, 87: 48-55, 1999.
    24. Hanahan, D. and Weinberg, R. A. The hallmarks of cancer. Cell, 100: 57-70, 2000.
    25. Bosch, F. X., Lorincz, A., Munoz, N., Meijer, C. J., and Shah, K. V. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol, 55: 244-265, 2002.
    26. Jenkins, D. Histopathology and cytopathology of cervical cancer. Dis Markers, 23: 199-212, 2007.
    27. Baldwin, P., Laskey, R., and Coleman, N. Translational approaches to improving cervical screening. Nat Rev Cancer, 3: 217-226, 2003.
    28. Jones, P. A. and Gonzalgo, M. L. Altered DNA methylation and genome instability: a new pathway to cancer? Proc Natl Acad Sci U S A, 94: 2103-2105, 1997.
    29. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 89: 1827-1831, 1992.
    30. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A, 93: 9821-9826, 1996.
    31. Feng, Q., Balasubramanian, A., Hawes, S. E., Toure, P., Sow, P. S., Dem, A., Dembele, B., Critchlow, C. W., Xi, L., Lu, H., McIntosh, M. W., Young, A. M., and Kiviat, N. B. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst, 97: 273-282, 2005.
    32. Kitkumthorn, N., Yanatatsanajit, P., Kiatpongsan, S., Phokaew, C., Triratanachat, S., Trivijitsilp, P., Termrungruanglert, W., Tresukosol, D., Niruthisard, S., and Mutirangura, A. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer, 6: 55, 2006.
    33. Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., and Kiviat, N. Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev, 15: 114-123, 2006.
    34. Reesink-Peters, N., Wisman, G. B., Jeronimo, C., Tokumaru, C. Y., Cohen, Y., Dong, S. M., Klip, H. G., Buikema, H. J., Suurmeijer, A. J., Hollema, H., Boezen, H. M., Sidransky, D., and van der Zee, A. G. Detecting cervical cancer by quantitative promoter hypermethylation assay on cervical scrapings: a feasibility study. Mol Cancer Res, 2: 289-295, 2004.
    35. Wisman, G. B., Nijhuis, E. R., Hoque, M. O., Reesink-Peters, N., Koning, A. J., Volders, H. H., Buikema, H. J., Boezen, H. M., Hollema, H., Schuuring, E., Sidransky, D., and van der Zee, A. G. Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer, 2006.
     36. Sanchez-Cespedes, M., Esteller, M., Hibi, K., Cope, F. O., Westra, W. H., Piantadosi, S., Herman, J. G., Jen, J., and Sidransky, D. Molecular detection of neoplastic cells in lymph nodes of metastatic colorectal cancer patients predicts recurrence. Clin Cancer Res, 5: 2450-2454, 1999.
     37. Visser, J., van Baarle, D., Hoogeboom, B. N., Reesink, N., Klip, H., Schuuring, E., Nijhuis, E., Pawlita, M., Bungener, L., Vries-Idema, J., Nijman, H., Miedema, F., Daemen, T., and van der Zee, A. Enhancement of human papilloma virus type 16 E7 specific T cell responses by local invasive procedures in patients with (pre)malignant cervical neoplasia. Int J Cancer, 2005.
     38. Baay, M. F., Quint, W. G., Koudstaal, J., Hollema, H., Duk, J. M., Burger, M. P., Stolz, E., and Herbrink, P. Comprehensive study of several general and type-specific primer pairs for detection of human papillomavirus DNA by PCR in paraffin-embedded cervical carcinomas. J Clin Microbiol, 34: 745-747, 1996.
     39. Krul, E. J., van de Vijver, M. J., Schuuring, E., Van Kanten, R. W., Peters, A. A., and Fleuren, G. J. Human papillomavirus in malignant cervical lesions in Surinam, a high-risk country, compared to the Netherlands, a low-risk country. Int J Gynecol Cancer, 9: 206-211, 1999.
     40. van Dongen, J. J., Langerak, A. W., Bruggemann, M., Evans, P. A., Hummel, M., Lavender, F. L., Delabesse, E., Davi, F., Schuuring, E., Garcia-Sanz, R., Van Krieken, J. H., Droese, J., Gonzalez, D., Bastard, C., White, H. E., Spaargaren, M., Gonzalez, M., Parreira, A., Smith, J. L., Morgan, G. J., Kneba, M., and Macintyre, E. A. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia, 17: 2257-2317, 2003.
     41. Jerónimo, C., Henrique, R., Hoque, M. O., Ribeiro, F. R., Oliveira, J., Fonseca, D., Teixeira, M. R., Lopes, C., and Sidransky, D. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res, 10: 4010-4014, 2004.
     42. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res, 28: E32, 2000.
     43. Steenbergen, R. D., Kramer, D., Braakhuis, B. J., Stern, P. L., Verheijen, R. H., Meijer, C. J., and Snijders, P. J. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst, 96: 294-305, 2004.
     44. Virmani, A. K., Muller, C., Rathi, A., Zoechbauer-Mueller, S., Mathis, M., and Gazdar, A. F. Aberrant methylation during cervical carcinogenesis. Clin Cancer Res, 7: 584-589, 2001.
     45. Widschwendter, A., Gattringer, C., Ivarsson, L., Fiegl, H., Schneitter, A., Ramoni, A., Muller, H. M., Wiedemair, A., Jerabek, S., Muller-Holzner, E., Goebel, G., Marth, C., and Widschwendter, M. Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res, 10: 3396-3400, 2004.
    46. Sawada, M., Kanai, Y., Arai, E., Ushijima, S., Ojima, H., and Hirohashi, S. Increased expression of DNA methyltransferase 1 (DNMT1) protein in uterine cervix squamous cell carcinoma and its precursor lesion. Cancer Letters, 251: 211-219, 2007.
    47. Burgers, W. A., Blanchon, L., Pradhan, S., de, L. Y., Kouzarides, T., and Fuks, F. Viral oncoproteins target the DNA methyltransferases. Oncogene, 26: 1650-1655, 2007.
    48. Harper, D. M., Franco, E. L., Wheeler, C., Ferris, D. G., Jenkins, D., Schuind, A., Zahaf, T., Innis, B., Naud, P., De Carvalho, N. S., Roteli-Martins, C. M., Teixeira, J., Blatter, M. M., Korn, A. P., Quint, W., and Dubin, G. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet, 364: 1757-1765, 2004.
    49. Hughes, J. P., Garnett, G. P., and Koutsky, L. The theoretical population-level impact of a prophylactic human papilloma virus vaccine. Epidemiology, 13: 631-639, 2002.
    50. Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., Chiacchierini, L. M., and Jansen, K. U. A controlled trial of a human papillomavirus type 16 vaccine. New England Journal of Medicine, 347: 1645-1651, 2002.
    51. Villa, L. L. Prophylactic HPV vaccines: Reducing the burden of HPV-related diseases. Vaccine, 24: 23-28, 2006.
    52. Moon, H. S., Park, W. I., Choi, E. A., Chung, H. W., and Kim, S. C. The expression and tyrosine phosphorylation of E-cadherin/catenin adhesion complex, and focal adhesion kinase in invasive cervical carcinomas. Int J Gynecol Cancer, 13: 640-646, 2003.
    53. Usadel, H., Brabender, J., Danenberg, K. D., Jeronimo, C., Harden, S., Engles, J., Danenberg, P. V., Yang, S., and Sidransky, D. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res, 62: 371-375, 2002.
    54. Harden, S. V., Tokumaru, Y., Westra, W. H., Goodman, S., Ahrendt, S. A., Yang, S. C., and Sidransky, D. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res, 9: 1370-1375, 2003.
    1. Jones, P. A. and Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3: 415-428, 2002.
    2. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev, 16: 6-21, 2002.
    3. Laird, P. W. Cancer epigenetics. Hum Mol Genet, 14 Spec No 1: R65-R76, 2005.
    4. Bestor, T. H. The DNA methyltransferases of mammals. Human Molecular Genetics, 9: 2395-2402, 2000.
    5. Bestor, T. Structure of Mammalian Dna Methyltransferase As Deduced from the Inferred Amino-Acid Sequence and Direct Studies of the Protein. Biochemical Society Transactions, 16: 944-947, 1988.
    6. Hendrich, B. and Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology, 18: 6538-6547, 1998.
    7. Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., and Baylin, S. B. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet, 7: 536-540, 1994.
    8. Jones, P. A. and Laird, P. W. Cancer epigenetics comes of age. Nature Genetics, 21: 163-167, 1999.
    9. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21: 5427-5440, 2002.
    10. Plass, C. Cancer epigenomics. Human Molecular Genetics, 11: 2479-2488, 2002.
    11. Jones, P. A. and Gonzalgo, M. L. Altered DNA methylation and genome instability: a new pathway to cancer? Proc Natl Acad Sci U S A, 94: 2103-2105, 1997.
    12. Esteller, M., Corn, P. G., Baylin, S. B., and Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Research, 61: 3225-3229, 2001.
    13. Widschwendter, M., Siegmund, K. D., Muller, H. M., Fiegl, H., Marth, C., Muller-Holzner, E., Jones, P. A., and Laird, P. W. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res, 64: 3807-3813, 2004.
    14. Hegi, M. E., Diserens, A., Gorlia, T., Hamou, M., de Tribolet, N., Weller, M., Kros, J. M., Hainfellner, J. A., Mason, W., Mariani, L., Bromberg, J. E. C., Hau, P., Mirimanoff, R. O., Cairncross, J. G., Janzer, R. C., and Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal of Medicine, 352: 997-1003, 2005.
    15. Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., and Herman, J. G. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer.Human Molecular Genetics, 10: 687-692, 2001.
    16. Taylor, S. M. and Jones, P. A. Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol, 111: 187-194, 1982.
    17. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 89: 1827-1831, 1992.
    18. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93: 9821-9826, 1996.
    19. Laird, P. W. The power and the promise of DNA methylation markers. Nature Reviews Cancer, 3: 253-266, 2003.
    20. Kuo, K. C., Mccune, R. A., Gehrke, C. W., Midgett, R., and Ehrlich, M. Quantitative Reversed-Phase High-Performance Liquid-Chromatographic Determination of Major and Modified Deoxyribonucleosides in Dna. Nucleic Acids Research, 8: 4763-4776, 1980.
    21. Fraga, M. F., Uriol, E., Borja, D. L., Berdasco, M., Esteller, M., Canal, M. J., and Rodriguez, R. High-performance capillary electrophoretic method for the quantification of 5-methyl 2'-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis, 23: 1677-1681, 2002.
    22. Wu, J. J., Issa, J. P., Herman, J., Bassett, D. E., Nelkin, B. D., and Baylin, S. B. Expression of An Exogenous Eukaryotic Dna Methyltransferase Gene Induces Transformation of Nih-3T3 Cells. Proceedings of the National Academy of Sciences of the United States of America, 90: 8891-8895, 1993.
    23. Oakeley, E. J., Schmitt, F., and Jost, J. P. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques, 27: 744-+, 1999.
    24. Sano, H., Royer, H. D., and Sager, R. Identification of 5-methylcytosine in DNA fragments immobilized on nitrocellulose paper. Proc Natl Acad Sci U S A, 77: 3581-3585, 1980.
    25. Oakeley, E. J., Podesta, A., and Jost, J. P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proceedings of the National Academy of Sciences of the United States of America, 94: 11721-11725, 1997.
    26. Gonzalgo, M. L., Liang, G. N., Spruck, C. H., Zingg, J. M., Rideout, W. M., and Jones, P. A. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Research, 57: 594-599, 1997.
    27. Peinado, M. A., Malkhosyan, S., Velazquez, A., and Perucho, M. Isolation andcharacterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci U S A, 89: 10065-10069, 1992.
    28. Welsh, J. and Mcclelland, M. Fingerprinting Genomes Using Pcr with Arbitrary Primers. Nucleic Acids Research, 18: 7213-7218, 1990.
    29. Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. J. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Research, 59: 2307-2312, 1999.
    30. Huang, T. H. M., Perry, M. R., and Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Human Molecular Genetics, 8: 459-470, 1999.
    31. Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., Wright, F. A., Feramisco, J. D., Peltomaki, P., Lang, J. C., Schuller, D. E., Yu, L., Bloomfield, C. D., Caligiuri, M. A., Yates, A., Nishikawa, R., Su, H. H., Petrelli, N. J., Zhang, X., O'Dorisio, M. S., Held, W. A., Cavenee, W. K., and Plass, C. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet, 24: 132-138, 2000.
    32. Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M. P., Herman, J. G., and Baylin, S. B. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics, 31: 141-149, 2002.
    33. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21: 103-107, 1999.
    34. Gitan, R. S., Shi, H. D., Chen, C. M., Yan, P. S., and Huang, T. H. M. Methylation-specific oligonucleotide microarray: A new potential for high-throughput methylation analysis. Genome Research, 12: 158-164, 2002.
    35. Frigola, J., Ribas, M., Risques, R. A., and Peinado, M. A. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res, 30: e28, 2002.
    36. Southern, E. M. Detection of Specific Sequences Among Dna Fragments Separated by Gel-Electrophoresis. Journal of Molecular Biology, 98: 503-&, 1975.
    37. Singer-Sam, J., LeBon, J. M., Tanguay, R. L., and Riggs, A. D. A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res, 18: 687, 1990.
    38. Wojdacz, T. K. and Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Research, 35: 2007.
    39. Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G., and Pryor, R. J. High-resolutiongenotyping by amplicon melting analysis using LCGreen. Clin Chem, 49: 853-860, 2003.
    40. Worm, J., Aggerholm, A., and Guldberg, P. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clinical Chemistry, 47: 1183-1189, 2001.
    41. Gonzalgo, M. L. and Jones, P. A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Research, 25: 2529-2531, 1997.
    42. Xiong, Z. G. and Laird, P. W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Research, 25: 2532-2534, 1997.
    43. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res, 28: E32, 2000.
    44. Aggerholm, A., Guldberg, P., Hokland, M., and Hokland, P. Extensive intra- and interindividual heterogeneity of p15INK4B methylation in acute myeloid leukemia. Cancer Res, 59: 436-441, 1999.
    45. Maekawa, M., Sugano, K., Kashiwabara, H., Ushiama, M., Fujita, S., Yoshimori, M., and Kakizoe, T. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability. Biochemical and Biophysical Research Communications, 262: 671-676, 1999.
    46. Baumer, A., Wiedemann, U., Hergersberg, M., and Schinzel, A. A novel MSP/DHPLC method for the investigation of the methylation status of imprinted genes enables the molecular detection of low cell mosaicisms. Hum Mutat, 17: 423-430, 2001.
    47. Harden, S. V., Sanderson, H., Goodman, S. N., Partin, A. A. W., Walsh, P. C., Epstein, J. I., and Sidransky, D. Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. Journal of the National Cancer Institute, 95: 1634-1637, 2003.
    48. Jeronimo, C., Henrique, R., Hoque, M. O., Mambo, E., Ribeiro, F. R., Varzim, G., Oliveira, J., Teixeira, M. R., Lopes, C., and Sidransky, D. A quantitative promoter methylation profile of prostate cancer. Clinical Cancer Research, 10: 8472-8478, 2004.
    49. Grote, H. J., Schmiemann, V., Geddert, H., Rohr, U. P., Kappes, R., Gabbert, H. E., and Bocking, A. Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. Int J Cancer, 116: 720-725, 2005.
    50. Matsubayashi, H., Canto, M., Sato, N., Klein, A., Abe, T., Yamashita, K., Yeo, C. J., Kalloo, A., Hruban, R., and Goggins, M. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Research, 66: 1208-1217, 2006.
    51. Taback, B., Giuliano, A. E., Lai, R., Hansen, N., Singer, F. R., Pantel, K., and Hoon, D. S. B.Epigenetic analysis of body fluids and tumor tissues - Application of a comprehensive molecular assessment for early-stage breast cancer patients. Circulating Nucleic Acids in Plasma and Serum Iv, 1075: 211-221, 2006.
     52. Reesink-Peters, N., Wisman, G. B. A., Jeronimo, C., Tokumaru, C. Y., Cohen, Y., Dong, S. M., Klip, H. G., Buikema, H. J., Suurmeijer, A. J. H., Hollema, H., Boezen, H. M., Sidransky, D., and van der Zee, A. G. J. Detecting cervical cancer by quantitative promoter hypermethylation assay on cervical scrapings: A feasibility study. Molecular Cancer Research, 2: 289-295, 2004.
     53. Wisman, G. B. A., Nijhuis, E. R., Hoque, M. O., Reesink-Peters, N., Koning, A. J., Volders, H. H., Buikema, H. J., Boezen, H. M., Hollema, H., Schuuring, E., Sidransky, D., and van der Zee, A. G. J. Assessment of gene promoter hypermethylation for detection of cervical neoplasia. International Journal of Cancer, 119: 1908-1914, 2006.
     54. Dominguez, G., Carballido, J., Silva, J., Silva, J. M., Garcia, J. M., Menendez, J., Provencio, M., Espana, P., and Bonilla, F. p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res, 8: 980-985, 2002.
     55. Chan, M. W. Y., Chan, L. W., Tang, N. L. S., Tong, J. H. M., Lo, K. W., Lee, T. L., Cheung, H. Y., Wong, W. S., Chan, P. S. F., Lai, F. M. M., and To, K. F. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clinical Cancer Research, 8: 464-470, 2002.
     56. Silva, J. M., Dominguez, G., Garcia, J. M., Gonzalez, R., Villanueva, M. J., Navarro, F., Provencio, M., San, M. S., Espana, P., and Bonilla, F. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res, 59: 3251-3256, 1999.
     57. Silva, J. M., Dominguez, G., Villanueva, M. J., Gonzalez, R., Garcia, J. M., Corbacho, C., Provencio, M., Espana, P., and Bonilla, F. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer, 80: 1262-1264, 1999.
     58. Evron, E., Dooley, W. C., Umbricht, C. B., Rosenthal, D., Sacchi, N., Gabrielson, E., Soito, A. B., Hung, D. T., Ljung, B. M., Davidson, N. E., and Sukumar, S. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet, 357: 1335-1336, 2001.
     59. Rodenhiser, D., Chakraborty, P., Andrews, J., Ainsworth, P., Mancini, D., Lopes, E., and Singh, S. Heterogenous point mutations in the BRCA1 breast cancer susceptibility gene occur in high frequency at the site of homonucleotide tracts, short repeats and methylatable CpG/CpNpG motifs. Oncogene, 12: 2623-2629, 1996.
     60. Lapidus, R. G., Ferguson, A. T., Ottaviano, Y. L., Parl, F. F., Smith, H. S., Weitzman, S. A., Baylin, S. B., Issa, J. P. J., and Davidson, N. E. Methylation of estrogen and progesterone receptor gene 5' CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clinical Cancer Research, 2: 805-810, 1996.
     61. Xu, X. L., Wu, L. C., Du, F. H., Davis, A., Peyton, M., Tomizawa, Y., Maitra, A., Tomlinson, G., Gazdar, A. F., Weissman, B. E., Bowcock, A. M., Baer, R., and Minna, J. D. Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Research, 61: 7943-7949, 2001.
    62. Yuan, Y. F., Mendez, R., Sahin, A., and Dai, J. L. Hypermethylation leads to silencing of the SYK gene in human breast cancer. Cancer Research, 61: 5558-5561, 2001.
    63. Conway, K. E., McConnell, B. B., Bowring, C. E., Donald, C. D., Warren, S. T., and Vertino, P. M. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Research, 60: 6236-6242, 2000.
    64. Chang, H. W., Chan, A., Kwong, D. L. W., Wei, W. I., Sham, J. S. T., and Yuen, A. P. W. Detection of hypermethylated RIZ1 gene in primary tumor, mouth, and throat rinsing fluid, nasopharyngeal swab, and peripheral blood of nasopharyngeal carcinoma patient. Clinical Cancer Research, 9: 1033-1038, 2003.
    65. Kawakami, K., Brabender, J., Lord, R. V., Groshen, S., Greenwald, B. D., Krasna, M. J., Yin, J., Fleisher, A. S., Abraham, J. M., Beer, D. G., Sidransky, D., Huss, H. T., Demeester, T. R., Eads, C., Laird, P. W., Ilson, D. H., Kelsen, D. P., Harpole, D., Moore, M. B., Danenberg, K. D., Danenberg, P. V., and Meltzer, S. J. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst, 92: 1805-1811, 2000.
    66. Hibi, K., Taguchi, M., Nakayama, H., Takase, T., Kasai, Y., Ito, K., Akiyama, S., and Nakao, A. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clinical Cancer Research, 7: 3135-3138, 2001.
    67. Lee, T. L., Leung, W. K., Chan, M. W. Y., Ng, E. K. W., Tong, J. H. M., Lo, K. W., Chung, S. C. S., Sung, J. J. Y., and To, K. F. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clinical Cancer Research, 8: 1761-1766, 2002.
    68. Zou, H. Z., Yu, B. M., Wang, Z. W., Sun, J. Y., Cang, H., Gao, F., Li, D. H., Zhao, R., Feng, G. G., and Yi, J. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clinical Cancer Research, 8: 188-191, 2002.
    69. Grady, W. M., Rajput, A., Lutterbaugh, J. D., and Markowitz, S. D. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res, 61: 900-902, 2001.
    70. Lecomte, T., Berger, A., Zinzindohoue, F., Micard, S., Landi, B., Blons, H., Beaune, P., Cugnenc, P. H., and Laurent-Puig, P. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer, 100: 542-548, 2002.
    71. Toyota, M., Shen, L., Ohe-Toyota, M., Hamilton, S. R., Sinicrope, F. A., and Issa, J. P. J. Aberrant methylation of the Cyclooxygenase 2 CpG island in colorectal tumors. Cancer Research, 60: 4044-4048, 2000.
     72. Akiyama, Y., Watkins, N., Suzuki, H., Jair, K. W., van Engeland, M., Esteller, M., Sakai, H., Ren, C. Y., Yuasa, Y., Herman, J. G., and Baylin, S. B. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Molecular and Cellular Biology, 23: 8429-8439, 2003.
     73. Sanchez-Cespedes, M., Esteller, M., Wu, L., Nawroz-Danish, H., Yoo, G. H., Koch, W. M., Jen, J., Herman, J. G., and Sidransky, D. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res, 60: 892-895, 2000.
     74. Wong, I. H. N., Lo, Y. M. D., Zhang, J., Liew, C. T., Ng, M. H. L., Wong, N., Lai, P. B. S., Lau, W. Y., Hjelm, N. M., and Johnson, P. J. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Research, 59: 71-73, 1999.
     75. Wong, I. H., Lo, Y. M., Yeo, W., Lau, W. Y., and Johnson, P. J. Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients. Clin Cancer Res, 6: 3516-3521, 2000.
     76. Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S. B., and Herman, J. G. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res, 59: 67-70, 1999.
     77. An, Q., Liu, Y., Gao, Y. N., Huang, J. F., Fong, X. L., Li, L., Zhang, D. C., and Cheng, S. J. Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Letters, 188: 109-114, 2002.
     78. Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., Balestra, D., Tavecchio, L., Daidone, M. G., and Sozzi, G. p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin Cancer Res, 8: 3782-3787, 2002.
     79. Kurakawa, E., Shimamoto, T., Utsumi, K., Hirano, T., Kato, H., and Ohyashiki, K. Hypermethylation of p16(INK4a) and p15(INK4b) genes in non-small cell lung cancer. International Journal of Oncology, 19: 277-281, 2001.
     80. Usadel, H., Brabender, J., Danenberg, K. D., Jeronimo, C., Harden, S., Engles, J., Danenberg, P. V., Yang, S., and Sidransky, D. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Research, 62: 371-375, 2002.
     81. He, B., You, L., Uematsu, K., Zang, K. L., Xu, Z. D., Lee, A. Y., Costello, J. F., McCormick, F., and Jablons, D. M. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 100: 14133-14138, 2003.
     82. Dammann, R., Takahashi, T., and Pfeifer, G. P. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene, 20: 3563-3567, 2001.
    83. Goessl, C., Krause, H., Muller, M., Heicappell, R., Schrader, M., Sachsinger, J., and Miller, K. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res, 60: 5941-5945, 2000.
    84. Widschwendter, A., Gattringer, C., Ivarsson, L., Fiegl, H., Schneitter, A., Ramoni, A., Muller, H. M., Wiedemair, A., Jerabek, S., Muller-Holzner, E., Goebel, G., Marth, C., and Widschwendter, M. Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clinical Cancer Research, 10: 3396-3400, 2004.
    85. Virmani, A. K., Muller, C., Rathi, A., Zoechbauer-Mueller, S., Mathis, M., and Gazdar, A. F. Aberrant methylation during cervical carcinogenesis. Clinical Cancer Research, 7: 584-589, 2001.
    86. Feng, Q. H., Balasubramanian, A., Hawes, S. E., Toure, P., Sow, P. S., Dem, A., Dembele, B., Critchlow, C. W., Xi, L. F., Lu, H., McIntosh, M. W., Young, A. M., and Kiviat, N. B. Detection of hypermethylated genes in women with and without cervical neoplasia. Journal of the National Cancer Institute, 97: 273-282, 2005.
    87. Gustafson, K. S., Furth, E. E., Heitjan, D. F., Fansler, Z. B., and Clark, D. P. DNA methylation profiling of cervical squamous intraepithelial lesions using liquid-based cytology specimens - An approach that utilizes receiver-operating characteristic analysis. Cancer Cytopathology, 102: 259-268, 2004.
    88. Kitkumthorn, N., Yanatatsanajit, P., Kiatpongsan, S., Phokaew, C., Triratanachat, S., Trivijitsilp, P., Termrungruanglert, W., Tresukosol, D., Niruthisard, S., and Mutirangura, A. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. Bmc Cancer, 6: 2006.
    89. Steenbergen, R. D., Kramer, D., Braakhuis, B. J., Stern, P. L., Verheijen, R. H., Meijer, C. J., and Snijders, P. J. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst, 96: 294-305, 2004.
    90. Sova, P., Feng, Q. H., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., and Kiviat, N. Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiology Biomarkers & Prevention, 15: 114-123, 2006.
    91. Schmitt, F., Oakeley, E. J., and Jost, J. P. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem, 272: 1534-1540, 1997.
    92. Shi, H. D., Yan, P. S., Chen, C. M., Rahmatpanah, F., Lofton-Day, C., Caldwell, C. W., and Huang, T. H. M. Expressed CpG island sequence tag microarray for dual screening of DNA hypermethylation and gene silencing in cancer cells. Cancer Research, 62: 3214-3220, 2002.
    93. Shi, H. D., Wei, S. H., Leu, Y. W., Rahmatpanah, F., Liu, J. C., Yan, P. S., Nephew, K. P., and Huang, T. H. M. Triple analysis of the cancer epigenome: An integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Research, 63:2164-2171, 2003.
    94. Liang, G., Gonzales, F. A., Jones, P. A., Orntoft, T. F., and Thykjaer, T. Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2 '-deoxycytidine. Cancer Research, 62: 961-966, 2002.
    95. Adorjan, P., Distler, J., Lipscher, E., Model, F., Muller, J., Pelet, C., Braun, A., Florl, A. R., Gutig, D., Grabs, G., Howe, A., Kursar, M., Lesche, R., Leu, E., Lewin, A., Maier, S., Muller, V., Otto, T., Scholz, C., Schulz, W. A., Seifert, H. H., Schwope, I., Ziebarth, H., Berlin, K., Piepenbrock, C., and Olek, A. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Research, 30: 2002.
    96. Bibikova, M., Lin, Z. W., Zhou, L. X., Chudin, E., Garcia, E. W., Wu, B., Doucet, D., Thomas, N. J., Wang, Y. H., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D. L., Chee, M. S., Floros, J., and Fan, J. B. High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16: 383-393, 2006.
    97. Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., and Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37: 853-862, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700