用户名: 密码: 验证码:
CdS低维纳米材料的自旋极化及光电性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化镉(CdS)是典型的Ⅱ-Ⅵ族直接带隙半导体材料,室温下带隙宽度为2.42eV,是灵敏度较高的N型光电导器件材料,也是压电器件材料,具有许多优异的光学和电学性质,在发光二极管、传感器、太阳能电池、光探测器、光波导器件和非线性光学器件等领域有着广泛的应用。
     对于半导体材料而言掺杂是非常重要的,通过掺杂可以调控材料的物理性质。人们对CdS半导体的杂化做了大量的研究工作,尤其是如何设计铁磁性的半金属材料,使之在自旋电子学器件中有良好的应用前景,但对稀磁材料中的磁性起源有很多的争论。降低材料的尺寸或者维度也可以调控材料的物理性能,如量子尺寸效应能使CdS的表面构型和电子结构发生改变,对其磁学、电学和光学性质等产生重要影响。在2010年,对石墨烯的开创性研究获得诺贝尔物理学奖,受到石墨烯和类石墨烯氮化硼的启发,人们开始关注其他类石墨烯结构的二元化合物,他们具有丰富的电学特性。而一维纳米结构由于具有有利于载流子定向传输的有序结构,,并且能够提高材料中空穴和电子的传输效率和分离效率,也受到人们的广泛关注。近几年实验中对CdS的研究也取得了令人瞩目的成绩,已经合成了类石墨烯结构的六角蜂窝状的CdS纳米面和一维CdS纳米线/纳米带和量子点。
     同时,以密度泛函理论为基础的第一性原理计算在量子化学、凝聚态物理和材料科学中也得到非常广泛和成功的应用,也是研究纳米材料的有力工具。本论文采用第一性原理计算方法,首先研究非磁性元素掺杂对CdS纳米材料的自旋极化和光电性质的影响,其次通过改变CdS低维纳米材料的表面结构和氢化CdS表面原子的方式,达到对CdS纳米材料的电子能带结构进行调制的目的,使之成为在自旋电子学器件上有良好应用价值的纳米材料。主要的研究内容及研究结果如下:
     (1)综述CdS纳米材料的研究意义和国内外研究现状,提出本课题的选题意义和研究内容。
     (2)介绍本论文所使用的理论研究方法和应用程序软件,包括密度泛函理论的主要内容、针对不同具体问题所提出的多个密度泛函理论的发展方向及常见的密度泛函计算软件,和本论文研究过程中主要使用的WIEN2K软件特点。
     (3)虽然磁性元素掺杂半导体材料可获得铁磁性材料,但无法证明其磁性是内禀性的,所以本论文选择非磁性金属Cu掺杂CdS获得铁磁性材料。首先,通过形成能的计算结果讨论实验中选择非磁性金属Cu掺杂CdS的可行性,其次讨论广义梯度近似对Cu掺杂CdS费米能级附近电子结构的影响,研究Cu掺杂CdS超晶胞的电子结构、自旋极化特性,讨论体系的铁磁性起源,最后分析不同浓度的Cu掺杂对CdS光电性质的影响。
     计算结果表明:富硫情况下Cu替换Cd,体系结构更稳定;适中的形成能说明了实验中实现Cu高浓度掺杂CdS材料的可行性;由于Cu-3d和S-3p轨道杂化,系统呈现半金属性,具有100%自旋极化,产生了LOhb/Cd35CuS36的磁矩;通过Cu(3d)-S(3p)-Cd-S(3p)-Cu(3d)作用链使Cu掺杂CdS材料是室温下的长程铁磁性材料;也正是由于Cu的d轨道和S的p轨道在费米能级附近的杂化,提高了Cu的d轨道和S的p轨道间的电荷转移,增加了系统的导电性;随着Cu掺杂浓度的增加,Cu掺杂CdS材料从半金属逐渐过渡到金属,介电函数虚部的第一个峰发生了红移,静态介电常数改变明显;在紫外区,吸收系数非常大;Cu掺杂CdS后,在低能区出现了很多小的吸收峰,Cu掺杂CdS有利于可见光的吸收。
     (4)从纤锌矿结构沿着(0001)方向裁剪下来的单层CdS纳米面(CdSnanosheets,简称CdSNS),经过结构弛豫后成为类石墨烯结构的CdSNS。在第四章中我们主要讨论CdSNS的电学特性、氢化对CdSNS电子结构和磁学性质的影响,以及C掺杂CdSNS(?)寸其自旋极化、光电性质的影响。
     研究结果表明:CdSNS是直接带隙的半导体,带隙比体相材料的CdS带隙宽;在氢化CdSNS的所有结构中,H更容易吸附在Cd上,Cd-hydro CdSNS是室温下的铁磁性材料,呈现半金属特性,具有100%自旋极化;磁矩主要局域在没有吸附H的S未成对的2p电子上;C掺杂CdSNS也是有磁性的半金属材料,C-C是反铁磁耦合,当有电子注入时,C-C变为铁磁耦合,载流子调节的双交换理论可以解释C-C间的铁磁性耦合机制;C掺杂CdSNS,体系的导电性增加,低能区的介电峰向着低能方向移动,即发生了红移;吸收谱的光学吸收边向着低能方向移动,C掺杂CdSNS增加了可见光的吸收强度。
     (5)研究CdS纳米线(CdS nanowires,简称CdSNWs)的优化处理,讨论氢化CdS纳米线后的电子结构、磁学性质的变化情况。研究发现结构弛豫会大大影响CdS NWs的几何形状和电子结构;氢化不同的表面原子,可实现对CdS NWs的磁性调控,氢化S原子时,CdS NWs没有磁性,而氢化Cd时,尤其是表面的Cd有一半氢化时,CdS NWs是100%自旋极化的半金属,是良好的白旋电子学材料;氢化时,部分占据的S-3p态和H-1s态发生杂化,导致费米能级附近的能带发生了劈裂,是产生自旋极化的主要原因。
     (6)第六章对本论文的研究内容进行了总结,并提出了下一步的研究工作。
     该理论研究成果为实验中合成CdS基室温下具有长程铁磁性的半金属材料提供了新的途径,为材料的磁性起源提供了理论依据,推动了CdS纳米材料在自旋电子学和光电子器件上的应用。
Cadmium sulfide (CdS) is a typical Ⅱ-ⅥI direct band gap semiconductor material, with the band gap energy of around2.42eV at room temperature. CdS is high sensitivity n-type photoconductive device materials and piezoelectric materials, and it is widely used in the field of sensor, light emitting diode, solar cells, optical detector, optical waveguide devices and nonlinear optical devices.
     Doping is very important for semiconductor material, doping can tailor the physical properties of the material. The researchers have done a lot of research work on hybridizing CdS semiconductor, especially on designing the ferromagnetic half metallic material, which makes the CdS semiconductor have a good prospect in application in the field of spintronics devices. But there are a lot of controversies on the origin of magnetism in dilute magnetic material. The physical properties of the material can also be adjusted by reducing the size or the dimension of the materials. For example, the quantum size effect can change the surface geometry and the electronic structure of CdS if the size or the dimension of Cds is reduced to nanometer magnitude, which has important influence on its magnetic, electrical and optical properties. In2010, the Nobel Physics Prize for pioneering research on Graphene, inspired by Graphene and Boron Nitride, people are beginning to pay attention to other types of graphenelike structure of binary compounds with rich electrical properties. One-dimensional nanostructures (wires, rods, tubes) and one-dimensional semi-conductor nanometer arrays receive extensive attention as well, because they have orderly structures, which are advantageous to the directional transmission of carrier and can improve the separation efficiency and transmission efficiency of electrons and holes. Low-dimensional materials are considered the foundation materials for next generation of nanoscale photoelectric devices. Very recently, the study of CdS has made remarkable achievements in experiment. People have synthesized two-dimensional (2D) CdS nanosheets (CdSNS). which have a graphenelike honeycomb structure, and one- dimensional (1D) CdS nanowires/nanoribbons and quantum dots.
     On the other hand, first-principles calculations are used widely and successfully in quautum chemistry, condensed matter and materials science. This method is also a powerful tool to study nanometer materials. In this dissertation, firstly, we apply the first principles method to study spin polarization and photoelectric properties of non-magnetic elements doping CdS. Secondly, the electronic band structure can be tailored by changing the surface structure of low dimensional CdS nanomaterials and controlling the hydrogen absorption on the CdS surface. The CdS nanomaterials can be tailored to have a good application value on spintronics devices. The main research contents and results are as follows:
     (1) The research significance and status at home and abroad of CdS nanomaterials are reviewed. And the significance and research content of the subject are advanced.
     (2) We introduce the research methods and simulation codes. The idea of density functional theory (DFT), the development of DFT on some specific problems and some commonly simulation pachages based DFT are introduced. At the end of this chapter, we briefly introduce WIEN2K used in our paper.
     (3) The ferromagnetic materials can be obtained by doping magnetic elements into semiconductor. But no convincing evidence can verify that the observed ferromagnetism is intrinsic. So we chose the non, magnetic metal Cu doping CdS semiconductor for ferromagnetism materials. First,we discuss the feasibility test of Cu doped CdS in the experiment by calculating formation energy. Secondly, we discuss the generalized gradient approximation effects on electronic structure of Cu doped CdS near fermi level, resaerch electronic structure and spin polarization characteristics of Cu doped CdS supercell, and analyse the origin of the ferromagnetism. Finally, we analyse the influence on the electronic structure and optical properties of Cu concentrations in the Cu-doped CdS semiconductor.
     The calculated results revealed that the moderate formation energy indicates that Cu doped CdS with high concentrations may be easily realized experimentally in S-rich conditions. Due to the d orbitals of Cu hybridized with the p orbitals of S near the Fermi level, Cu-doped CdS systems show half-metallic character with a total magnetic moment of I.Oub per Cd3sCuS36. The room-temperature long-range ferromagnetism is observed, which results from Cu(3d)-S(3p)-Cd-S(3p)-Cu(3d) coupling chain. We find that the d orbitals of Cu are strongly hybridized with the p orbitals of S near the Fermi level, resulting in p and d charge transfer between Cu and S atoms, and enhancing the conductivity of CdS significantly. Along with the increase of Cu concentrations, the materials transit from a semi-metal to a metal, and the first peak of imaginary part of the dielectric function move to the lower energy side (red shift). The static dielectric constant of Cu doped CdS changes obviously. The absorption coefficient is very large in ultraviolet region. There are several absorption peaks in the lower energy comparing with pure CdS. Cu doped CdS is conducive to the absorption of visible light.
     (4) The single-layer CdS nanosheets (CdSNS) are cut along (0001) direction from the Wurtzite structure. The pristine CdSNS transform to a flat graphitic structure after structures optimization. In the fourth chapter, we mainly discuss the electronic properties of CdSNS, study on the electronic and magnetic properties of hydrogenated CdSNS, and study the effect on the spin polarization and photoelectric properties of C doped CdS.
     We find that the calculated band structure of the CdSNS exhibits a direct bandgap, which is larger than that in bulk structure. For the structures that are hydrogenated. His easily adsorbed on Cd. Cd-hydro CdSNS are expected to show semimetallic properties with room-temperature ferromagnetism and100%spin polarization. It is noted that the hydrogen-induced magnetic moments are localized in unpaired2p electrons in the unhydrogenated S atoms. C doped CdSNS is also a semimetallic material with magnetic. C-C is antiferromagnetic coupling, but C-C becomes ferromagnetic coupling by the electron injection in C-doped CdSNS. The theory of carrier double exchange can explain the ferromagnetic coupling mechanism between C-C. The conductivity of C-doped CdSNS enhance significantly. The peak of imaginary part of the dielectric function in low energy moves to the lower energy side (red shift). The optical absorption edge of absorption spectrum shift to lower energy. C-doped CdSNS increase the absorption intensity of visible light.
     (5) CdS nanowires (CdSNWs) are relaxed, and electronic and magnetic properties of hydrogenated CdSNWs are investigated. We find that surface relaxation plays an important role for the hydrogenated CdS NWs and therefore leads to drastic changes of electronic properties. The magnetic properties can be tuned by controlling passivation on surface sites with hydrogen. While hydrogenated nanowires on surface S atoms are nonmagnetic, hydrogenation on surface Cd atoms, and especially a monolayer of H on the surface, results in half-metallic properties with100%spin-polarized carriers, which is helpful for spintronics. The partially filled sulfur3p states hybridized with H s states, which results in the splitting of the energy levels near Fermi level and is the main reason of spin polarization.
     (6)The major results of the paper are summarized, and the next research works are proposed in the chapter6.
     Therefore, our works offer a new route toward long-range high room-temperature ferromagnetism of CdS materials in experiment, provide a theory basis for the origin of magnetism, and may motivate potential applications of CdS nanostructures in spintronics and photoelectron devices.
引文
[1]w. p. Halperin, Quantum size effects in metal particles. Reviews of modern physics 1986,58 (3),533-606.
    [2]J. Jiang,A-K. Schaper,R. Schafer,T. Hihara,J. A. Becker, The structure of small GaAs clusters. Advanced materials 1997,9 (4),343-345.
    [3]L. E. Brus, Electronic wave functions in semiconductor clusters:experiment and theory. J. Phys. Chem.1986,90 (12),2555-2560.
    [4]李东升,吕功煊,李树本,有机-无机纳米复合光电材料研究进展.感光科学与光化学1999,17(4),364-375.
    [5]陈翌庆,纳米材料学基础.中南大学出版社2009,52-55.
    [6]H. W. Kroto,J. R. Heath, C60:Buckminster fullerence. nature 1985,318 (6042), 62-163.
    [7]K. S. Novoselov,A. K. Geim,S. V. Morozov,D. Jiang,Y. Zhang,S. V. Dubonos,I. V. Grigorieva,A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004,306,666.
    [8]T. Gao,T. Wang, Two-Dimensional Single crystal CdS nanosheets:synthesis and properties.. Crystal Growth& Design 2010,10,4995.
    [9]C. L. Freeman,F. Claeyssens,N. L. Allan,J. H. Harding, Graphitic nanofilms as precursors to wurtzite films:Theory. Phys. Rev. Lett 2006,96,066102.
    [10]F.Claeyssens,C.L.Freeman,N.L.Allan,Y.Sun,M.N.R.Ashfold,J.H.Harding., Growth of ZnO thin films-experiment and theory. J. Mater. Chem 2005,15,139.
    [11]C. Tusche,H. L. Meyerheim,J. Kirschner, Observation of depolarized ZnO(0001) monolayers:formation of unreconstructed planar sheets. Phys. Rev. Lett 2007,99, 026102.
    [12]Z. Q. Wang,J. F. Gong,J. H. Duan,H. B. Huang,S. G. Yang,X. N. Zhao,R. Zhang,Y. W. Du., Direct synthesis and characterization of CdS nanobelts. Appl. Phys.Lett. 2006,59,033102.
    [13]L. Chen,L. Zengtao,Y. Yong, The selective synthesis of single-crystalline CdS nanobelts and nanowires by thermal evaporation at lower temperature. Nanotechnology 2006,17,1851.
    [14]H. Rho,K. Y. Lee,T. B. Hoang, Spatially resolved photoluminescence mapping of single CdS nanosheets. Appl. Phys.Lett.2008,92 (013111).
    [15]M. Montazeri,L-M. Smith,H. E. Jackson,J. M. Yarrison-Rice,Y. J. Choi.J. G. Park, Raman stress mapping of CdS nanosheets. Appl Phys.Lett.2009,95,083105.
    [16]R. M. Ma,L. Dai,G. G. Qin, High-performance nano-schottky diodes and nano-MESFETs made on single CdS nanobelts. Nano Lett.2007,7,868.
    [17]X. F. Duan,C. M. Niu,V. Sahi,J. Chen,J. W. Parce,S. Empedocles,J. L. Goldman, High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003,425,274.
    [18]T. Gao,Q. H. Li,T. H. Wang, CdS nanobelts as photoconductors. Appl. Phys.Lett. 2005,86,173105.
    [19]R. M. Ma,L. Dai,H. B. Huo,W. Q. Yang,G. G. Qin,P. H. Tan,C. H.Huang.J. Zheng., Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Appl Phys.Lett.2006,89,203120.
    [20]Y. Jiang,J. Z. Wen,S. J. Jian,M. M. Xiang,X. Fan,S. T. Lee, Photoresponse properties of CdSe single-nanoribbon photodectors. Adv. Fund. Mater 2007,17, 1795.
    [21]J. S. Jie,W. J. Zhang,Y. Jiang,X. M. Meng,Y. Q. Li,S. T. Lee. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett.2006,6,1887.
    [22]R. Zhang,S. Kumar,S. Zou,L. L. Kerr, High-density vertically aligned ZnO rods with a multistage terrace structure and their improved solar cell efficiency. Crystal Growth & Design 2008,8 (2),381-383.
    [23]X.J. Feng,K. Shankan,O. K. Varghese.M. Paulose,T. J. Latempa,C. A. Grimes. Vertieally aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications. Nano Letters 2008,5(11).3781-3786.
    [24]M. Stadermann,S. P. Sherlock,J. B. In.e. a. F. Fornasiero. Mechanism and kinetics of growth termination in controlled chemical Vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett.2009,9 (2),738-744.
    [25]Y. Huang.X. F. Duan,C. M. Lieber, Semiconductor nanowire for multi-color photonics. Small 2005,1 (1),142.
    [26]C. J. Barrelet,A. B. Greytak,C. M. Lieber, Nanowire photonic circuit elements. Nano Lett.2004,4(10),1981.
    [27]D. X. F,H. Y,L. C. M, Single-nanowire electrically driven lasers. Nature 2003,421 (241).
    [28]B. L. Cao,Y. Jiang,C. Wang,W. H. Wang,L. Z. Wang,M. Niu,W. J. Zhang,Y. Q. Li,S. T. Lee, Synthesis and lasing properties of highly ordered CdS nanowire arrays. Advanced Functional Materials 2007,17 (9),1501-1506.
    [29]Y. F. Lin,J. Song,Y. Ding,S. Y. Lu,Z. L. Wang, Piezoelectric nanogenerator using CdS nanowires. Appl. Phys.Lett.2008,92 ((2)),022105.1-022105.3.
    [30]张立德,牟季美,纳米材料和纳米结构.北京:科学出版社2001,79-85.
    [31]V.I.Klimov,S.A.Ivanov,J.Nanda,A.Piryatinski, Single-exciton optical gain in semiconductor nanocrystals. Nature 2007,447,441-446.
    [32]X.Michalet,F.F.Pinaud,e. a. S.Weiss, Quantum dots for live cells,in vivo imaging,and diagnostics. Science 2005,307,538.
    [33]I.Gur,N.A.Fromer,M.L.Geier,A.P.Alivisatos, Air stable all-inorganic nanocrystal solar cells processed fromsolution. Science 2005,310,462.
    [34]C. Wang.B. L. Wenrenberg,P. Guyot-Sionnest, Light emission and amplification in charged CdSe quantum dots. J. Phy Chem. B 2004,108,9027.
    [35]N. Pradhan.D. Goorskey,X. Peng, An alternative of CdSe nanocrystal emitters:pure and tunable impurity emissions in ZnSe nanocrystals. Journal of the American Chemical Society IMS,127,17586.
    [36]A.L.Efros,E.I.Rashba,M.Rosen, Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter. Phys. Rev. Lett 2001,87,206601.
    [37]S. C.Erwin,L. j. Zu.T. A.Kennedy, Doping semiconductor nanocrystals. Nature 2005,436(7).91-94.
    [38]林涛,万能,韩敏,徐骏,陈坤基,SnO2纳米颗粒晶体的制备、结构与发光性质.物理学报2009,(8),5821-5825.
    [39]C. W. Zhang.S. S. Yan, First-principles study on ferromagnetism in Mg-doped SnO2. Appl. Phys. Lett.2009,95,232108.
    [40]S. W. Fan,K. L. Yao,Z. L. Liu,G Y. Gao,Y. Min,H. G. Cheng, Ferromagnetic properties, electronic structure, and formation energy of Ga0.9375M0.0625N(M=Ca) by first principles study. J. Appl. Phys 2008,104,043912.
    [41]C. W. Zhang,S. S. Yan, First-principles prediction of half-metallic ferromagnetism inCu-doped ZnS. Journal of applied physics 2007.107,043913.
    [42]S. W. Fan,K. L. Yao,Z. L. Liu, Half-metallic ferromagnetism in C-doped ZnS: Density functional calculations Appl. Phys. Lett.2009,94,152506.
    [43]H. Pan,Y. P. Feng.Q. Y. Wu,Z. G. HuangJ. Y. Lin, Magnetic properties of carbon doped CdS:A first-principles and Monte Carlo study. Phys. Rev. B 2008,77, 125211.
    [44]A. A. Bol, R. van Beek. J. Ferwerda, A. Mcijerink, Temperature dependence of the luminescence of nanocrystalline CdS/Mn2+. J. Phys. Chem. solids 2003,64, 247-252.
    [45]M. Herbich, W. Mac and A. Twardowski, Role of the Jahn-Teller effect of the V2+center in the magnetic anisotropy of Cd1-xVxS and Cd1-xVxSe. Phys. Rev. B 1999. 59.2726-2730
    [46]V. Ladizhansky, V. Lyahovitskaya and S. Vega,113Cd NMR study of transferred hyperfine interactions in the dilute magnetic semiconductors Cd1-xCoxS and Cd1-xFex S and impurity distribution in CdO.994Co0.006S. Phys. Rev. B 1999,60. 8097-8104.
    [1]P. Hohenbrg,W. Kohn, Inhomogeneous electron gas. Phys Rev 1964,136 (3B), 864-871.
    [2]R. M. Martin, Electronic Structures:Basic Theory and Practical Methods. Cambridge University Press:2005.
    [3]谢希德,陆栋,体能带理论.科学出版社:2003.
    [4]M. Bom.K. Huang, Dynamical Theory of Crystal Lattices. Oxford University Press: 1954.
    [5]W. KohnX. J. Sham, Self-consistent equations including exchange and correlation effects. Phys Rev 1965,140 (4A), A1133-A1138.
    [6]P. A. Sterne,J. C. Inkson, Exchange-correlation potential in semiconductors and insulators. J. Phys. C:Solid State Phys.1984,17 (9),1497-1510.
    [7]C. Lee,W. Yang.R. C. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988,37 (2),785-789.
    [8]D. M. Ceplerley,B. J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev.Lett.1980,45 (7),566-569.
    [9]J. P. Perdew.J. A. Chevary.e. a. S. H. Vosko, Atoms, molecules.solids. and surfaces:applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46 (11),6671-6687.
    [10]J. P. Perdew,K. Burke.M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77(18),3865-3868.
    [11]B. HammerX. B. HansenJ. K. Norskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev.51999,59(11),7413-7421.
    [12]O. K. Anderson, Linear methods in band theory. Phys. Rev. B 1975,72,3060.
    [1]P. Blaha,K. Schwarz,G. K. H. Madsen,D. Kvasnicka,J. Luitz, WlEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn Wien, Austria,2001).
    [2]J. P. Perdew,K. Burke,M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77,3865-3868.
    [3]H. J. Monkhorst,J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. 51976,75(12),5188-5192.
    [4]D. D. Awschalom.M. E. Flatte, Challenges for semiconductor spintronics. Nat. Phys. 2007,5,153-159.
    [5]R. Jansen, Nat. Phys.2007,5 (8),521-522.
    [6]J. H. Park,M. G. Kim,H. M. Jang.S. Ryu,Y. M. Kim, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett 2004,84, 1338-1341.
    [7]T. C. Kaspar.T. Droubay,S. M. Heald,M. H. Engelhard,P. Nachimuthu,S. A. Chambers, Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 2008,77,201303R.
    [8]S. Q. Zhou,K. Potzger,J. v. Borany,R. Grotzschel,W. Skorupa,M.Helm,J. Fassbender, Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B 2008,77,035209.
    [9]S. Duhalde,M. F. Vignolo.F. Golmar,e. a. C. Chiliotte, Appearance of room-temperature ferromagnetism in Cu-doped TiO2-8 films. Phys. Rev. B 2005,72, 161313.
    [10]L. M. Huang,A. L. Rosa,R. Ahuja, Ferromagnetism in Cu-doped ZnO from first-principles theory. Phys. Rev. B 2006,74,075206.
    [11]C.-w. zhang.H. Kao,J.-m. Dong,R Li, Electronic structure and magnetic properties of Cu-doped SnO2 from first-principles study Phys Status Solidi B 2009,246, 1652-1655.
    [12]K. Nishidate,T. Sato,Y. Matsukura,M. Baba,M. Hasegawa,T. Sasaki, Density-functional electronic structure calculations for native defects and Cu impurities in CdS. Phys. Rev. B 2006,74,035210.
    [13]N. G. Stoffel, Experimental band structure of cadmium sulfide. Phys. Rev. B 1983, 25,3306-3319.
    [14]H. Pan,Y. P. Feng,Q. Y. Wu,Z. G. Huang,J. Lin, Magnetic properties of carbon doped CdS:A first-principles and Monte Carlo study. Phys. Rev. B 2008,77, 125211.
    [15]T. Dietl,H. Ohno,F. MatsukuraJ. Cibert,D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000,287, 1019-1022.
    [16]D. B. Buchholz,R. P. H. Chang,J. H. Song.J. B. Ketterson, Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett 2005,87,082504.
    [17]R. Q. Wu,G. W. Peng.L. Liu.Y. P. Feng.Z. G Huang,Q. Y. Wu, Cu-doped GaN:A dilute magnetic semiconductor from first-principles study Appl. Phys. Lett 2006,89, 062505.
    [18]D. D. Sarma,P. Mahadevan,T. Saha-Dasgupta,S. Ray,A. Kumar, Electronic structure of Sr2FeMoO6. Phys. Rev. Lett.2000,85,2549-2552.
    [19]D. D. Sarma,C. Opin, Solid State Mater 2001,5,262.
    [20]H. R. Moutinbo,D. Albin,e. a. Y. Yan, Deposition and properties of CBD and CSS CdS thin films for solar cell application. Thin Solid Films 2003,436,175-180.
    [21]M. L. Curri,A. Agostiano,G Leo,A. Mallardi,P. Cosma.M. D. Monica, Development of a novel enzyme/semiconductor nanoparticles system for biosensor application Materials Science and Engineering C 2002,22,449-452.
    [22]V. Golovanov,V. Smyntyna,G. Mattogno,e. al. Oxygen interaction of CdS-based gas sensors with different stoichionmetric composition. Sensors and Actuators B: Chemical 1995,26,108-112.
    [23]M. Innocenti.S. Cattarin,M. Cavallini,e. al, Characterisation of thin films of CdS deposited on Ag (111) by ECALE. A morphological and photoelectrochemical investigation. Journal of Electroanalytical Chemistry 2002,532,219-225.
    [24]U. V. Desnica,I. D. Desnica-Frankovie,R. Magerle,M. Deicher, Compensating defects and electrical activation of donors in CdS. Physica B 1999,273,907-910.
    [25]李春霞,党随虎,Ag,Zn掺杂对CdS电子结构和光学性质的影响.物理学报2012,61(1),017202.
    [26]S. Saha,T. P. Sinha,A. Mookerjee, Electronic structure,chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B 2000,62 (13),8828-8834.
    [1]K. S. Novoselov,A. K. Geim.S. V. Morozov,D. Jiang,Y. Zhang,S. V. Dubonos,I. V. Grigorieva,A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004,306,666.
    [2]Y. Zhu,S. Murali,W. Cai,X. Li,J. Suk,J. Potts,R. Ruoff, Graphene and graphene oxide:Synthesis, properties, and applications. Adv. Mater 2010,22,3906-3924.
    [3]A. Geim, Graphene:Status and prospects. Science 2009,324,1530-1534.
    [4]A. Geim,K. Novoselov, The rise of graphene. Nat Mater 2007,6,183-191.
    [5]M. Acik,G. Lee,C. Mattevi.M. Chhowalla.K. Cho.Y. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater 2005,9.840-845.
    [6]J. Goniakowski,C. Noguera.L. Giordano. Prediction of uncompensated polarity in ultrathin films. Phys. Rev. Lett.2007,98,205701.
    [7]C. L. Freeman,F. Claeyssens.a. J. H. H. N. L. Allan, Graphitic nanofilms as precursors to Wurtzite films:Theory. Phys. Rev. Lett.2006,96,066102.
    [8]F. Claeyssens,C. L. Freeman,N. L. Allan,Y. Sun,M. N. R. Ashfold,J. H. Harding, Growth of ZnO thin films-experiment and theory J. Mater. Chem.2005,15, 139-148.
    [9]C. Tusche,H. L. Meyerheim.J. Kirschner, Observation of depolarized ZnO(0001) monolayers:formation of unreconstructed panar sheets. Phys. Rev. Lett.2007,99, 026102.
    [10]F. Xia,D. Farmer,Y. Lin,P. Avouris, Graphene field-effect transistors with high On/Off current ratio and large transport band gap at room temperature. Nano Lett 2010,10,715-718.
    [11]T. M. Schmidt,R. H. Miwa,A. Fazzio, Ferromagnetic coupling in a Co-doped graphenelike ZnO sheet. Phys. Rev. B 2010,81,195413.
    [12]K. Mak,C. Lee,J. Hone,J. Shan,T. Heinz, Atomically thin MoS2:A new direct-gap semiconductor. Phys. Rev. Lett.2010,105,136805.
    [13]D. Teweldebrhan,V. Goyal.A. Balandin, Exfoliation and characterization of Bismuth Telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett 2010,10,1209-1218.
    [14]Y. Zhang.J. Ye,Y. Matsuhashi,Y. Iwasa, Ambipolar MoS2 thin flake transistors. Nano Lett 2012,72,1136-1140.
    [15]Z. Yin,H. Li,L. Jiang,Y. Shi,Y. Sun,G. Lu,Q. Zhang,X. Chen,H. Zhang, Single-layer MoS 2 phototransistors. ACS Nano 2011,6,74-80.
    [16]K. Chang,W. Chen, Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011,5 (4720-4728).
    [17]Z. Q. WangJ. F. Gong.J. H. Duan,H. B. Huang.S. G. Yang,X. N. Zhao,R. Zhang,Y. W. Du. Direct synthesis and characterization of CdS nanobelts. Appl. Phys. Lett. 2006,59,033102.
    [18]M. MontazeriX. M. Smith,H. E. Jackson,J. M. Yarrison-Rice,Y. J. Choi,J. G. Park, Raman stress mapping of CdS nanoshcets. Appl. Phys. Lett.2009,95,083105.
    [19]R. M. Ma,L. Dai,H. B. Huo,W. Q. Yang,G. G. Qin,P. H. Tan,C. H.HuangJ. Zheng., Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Appl. Phys. Lett.2006,89,203102.
    [20]J. S. Jie,W. J. Zhang,Y. Jiang,X. M. Meng,Y. Q. Li,S. T. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett 2006,6,1887.
    [21]Q. ChenJ. L. Wang,L. Y. Zhu,S. D. Wang.F. Ding, Fluorination induced half metallicity in two-dimensional few zinc oxide layers. J. Chem. Phys.2010,132, 204703.
    [22]Q. Tang.Y. Li,Z. Zhou,Y. Chen,Z. Chen, Tuning Electronic and Magnetic Properties of Wurtzite ZnO Nanosheets by Surface Hydrogenation. ACS Appl. Mater. Interfaces 2010,2,2242-2447.
    [23]E. J. Kan,H. J. Xiang.F. Wu,C. Tian,C. Lee.J. L. Yang.M. H. Whangbo, Prediction for room-temperature half-metallic ferromagnetism in the half-fluorinated single layers of BN and ZnO Appl. Phys. Lett.2010,97,122503.
    [24]Y. L. Wang,Y. Ding,J. Ni,S. Q. Shi,C. R. Li,J. J. Shi, Electronic structures of fully fluorinated and semifluorinated zinc oxide sheets Appl. Phys. Lett.2010,96, 213117.
    [25]H. Pan,Y. P. Feng,Q. Y. Wu.Z. G. Huang,J. Lin, Magnetic properties of carbon doped CdS:A first-principles and Monte Carlo study. Phys. Rev. B 2008,77, 125211.
    [26]R. M. Ma,L. Dai.G. G. Qin, High-performance logic circuits constructed on single CdS nanowires. Nano Lett 2007,7,868-873.
    [27]C. W. Zhang,S. S. Yan,P. J. Wang,Z. Zhang, Density-functional theory study on ferromagnetism in N:ZnS. Chem. Phys. Lett 2010,496,46-49.
    [28]Y. Ding.J. Ni, Electronic structures of silicon nanoribbons Appl. Phys. Lett.2009, 95,083115.
    [1]R. Zhang,S. Kumar,S-Zou,L. L. Kerr, High-density vertically aligned ZnO rods with a multistage terrace structure and their improved solar cell efficiency. Crystal Growth& Design 2008,5,381-383.
    [2]X. J. Feng.K. Shankan.O. K. Varghese.M. Paulose.T. J. Latempa.C. A. Grimes. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and pplications. Nano. Letters 2008, 5,3781-3786.
    [3]M. Stadermann,S. P. Sherlock,J. B. In,e. a. F. Fornasiero, Mechanism and kinetics of growth termination in controlled chemical Vapor deposition growth of multiwall carbon nanotube arrays. Nano. Letters 2009,9,738-744.
    [4]Y. H. Y,X. F. Duan,C. M. Lieber, Semiconductor nanowire for multi-color photonics. Small 2005,1,142.
    [5]C. J. Barrelet,A. B. Greytak,C. M. Lieber, Nanowire photonic circuit elements. Nano. Letters 2004,4,1981.
    [6]X. F. Duan,Y. Huang,C. M. Lieber, Single-nanowire electrically driven lasers. Nature 2003,421,241.
    [7]Z. Q. Wang,J. F. Gong,J. H. Duan,H. B. Huang,S. G. Yang,X. N. Zhao,R. Zhang,Y. W. Du, Direct synthesis and characterization of CdS nanobelts. Appl. Phys. Lett.2006, 59,033102.
    [8]R. M. Ma,L. Dai,H. B. Huo,W. Q. Yang,G. G. Qin,P. H. Tan,C. H.Huang,J. Zheng, Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Appl. Phys. Lett.2006,89,203102.
    [9]B. L. Cao,Y. Jiang,C. Wang,W. H. Wang,L. Z. Wang,M. Niu,W. J. Zhang,Y. Q. Li,S. T. Lee, Synthesis and lasing properties of highly ordered CdS nanowire arrays. Advanced Functional Materials 2007,17,1501-1506.
    [10]Y. F. Lin,J. Song,Y. Ding,S. Y. Lu,Z. L. Wang, Piezoelectric nanogenerator using CdS nanowires. Appl. Phys. Lett.2008,92,022105.
    [11]Y. Wang.B. Meyer,X. Yin,M. Kunat,D. Langenberg,F. Traeger,A. Birkner,C. Wo"ll, Hydrogen Induced Metallicity on the ZnO Surface. Phys. Rev. Lett 2005,95,266104.
    [12]G. Kresse,Furthm,uuml,J. Her, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996,54,11169-11186.
    [13]H. Pan.Y P. Feng.Q. Y. Wu,Z. G. Huang,J. Lin, Magnetic properties of carbon doped CdS:A first-principles and Monte Carlo study. Phys. Rev.52008,77,125211.
    [14]L. B. K. Jr.,W. W. Jr., Hyperfine Interaction, Chemical Bonding, and Isotope Effect in ZnH. CdH, and HgH Molecules. J. Chem. Phys.1971,55,2061.
    [15]R. Rurali.X. Cartoixa, Theory of Defects in One-Dimensional Systems:Application to Al-Catalyzed Si Nanowires. Nano. Letters 2009,9.975-979.
    [16]S. B. Zhang,J. E. Northrup, Chemical potential dependence of defect formation energies in GaAs:Application to Ga self-diffusion. Phys. Rev. Lett 1991,67, 2339-2342.
    [17]C. W. Zhang,S. S. Yan,P. J. Wang,P. Li.F. B. Zheng, First-principles study on the electronic and magnetic properties of hydrogenated CdS nanosheets. J. Appl. Phys. 2011,709,094304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700