用户名: 密码: 验证码:
四氰合金属基配位聚合物的合成、晶体结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综述了多孔配位聚合物储氢材料研究进展的基础上,以[M'(CN)4]2- (M' = Ni, Pd, Pt)为构筑基元组装了系列Hofmann类氰基桥联配位聚合物,并对其进行了晶体结构与性能研究。
     以[Ni(CN)4]2-为构筑基元,与过渡金属离子M2+ (M = Mn, Fe, Co, Ni, Cd)通过自组装得到了二维Hofmann类配位聚合物Mn(H2O)2[Ni(CN)4]·4H2O (1)的单晶和M(H2O)2[Ni(CN)4]·xH2O (M = Mn, Fe, Co, Ni, Cd)的粉末样品。配位聚合物1属正交晶系,空间群Cmcm,中心Mn和Ni通过氰桥连接构成无限二维波浪形层状结构,堆积方式为ABAB型。变温粉末X射线衍射和热重分析结果表明,配位聚合物失水后,均形成相对稳定的中间产物,可潜在作为三维Hofmann类配位聚合物的前驱体。
     以Mn(H2O)2[Ni(CN)4]为原料,通过插层法合成了三维Hofmann类配位聚合物Mn(L)[Ni(CN)4] (L = pyrazine),并与混合法得到的配位聚合物M(L)[Ni(CN)4] (M = Mn, Fe; L = pyrazine)进行了吸附性质的比较。结果表明,三者对N2和H2均有一定的吸附作用,合成方法和金属离子种类对配位聚合物的吸附性质有一定的影响。
     以DMF作溶剂,合成了系列二维Hofmann类配位聚合物M(DMF)2[M'(CN)4] (M = Mn, Fe, Co, Ni, Cu, Zn, Cd; M' = Ni, Pd, Pt)。DMF配位能力很强,与桥联有机配体共存时,会优先与金属配位,甚至取代已经与金属配位的大环配体。单晶X射线衍射结果表明:系列配位聚合物均属单斜晶系,空间群C2/m,中心M和M'通过氰基桥联形成了无限延伸的二维波浪形层状结构,堆积方式为ABAB型,每个M中心的两个轴向DMF配体反式排列。热重分析结果表明,系列配位聚合物失去DMF分子后可能形成了相对稳定的中间产物,变温粉末XRD和变温拉曼光谱表明,Zn(DMF)2[Ni(CN)4]失去DMF的同时骨架塌陷。原位单晶X射线衍射结果表明,Zn(DMF)2[Ni(CN)4]具有正热膨胀现象。
     以[M'(CN)4]2- (M' = Ni, Pd, Pt)为构筑基元和过渡金属离子Zn2+通过自组装得到了三个PtS型双重互穿同构配位聚合物ZnM'(CN)4,配位聚合物属四方晶系,空间群P4(2)/mcm,Zn和M'原子分别处于四面体和平面四方配位构型之中,两者通过氰基相连构成三维PtS型双重互穿拓扑结构。热重分析结果表明,配位聚合物ZnNi(CN)4具有较高的热稳定性。吸附/脱附实验结果表明,配位聚合物结构中由于存在互穿导致了对N2和H2低的吸附量。
This paper reviews the development in the field of porous coordination polymers as gas storage materials, then a series of Hofmann-type cyano-bridged coordination polymers have been synthesized by self-assembly using [M'(CN)4]2- (M' = Ni, Pd, Pt) as building blocks. The structures and properties of these coordination polymers have also been studied.
     Single crystals of a 2D (two-dimensional) Hofmann-type coordination polymer Mn(H2O)2[Ni(CN)4]·4H2O (1) and powder samples of M(H2O)2[Ni(CN)4]·xH2O (M = Mn, Fe, Co, Ni, Cd) have been obtained by self-assembly using [Ni(CN)4]2? as building block and transition metal ions M2+ (M = Mn, Fe, Co, Ni, Cd). 1 belongs to Orthorhombic system, space group Cmcm. M and Ni centers are connected by cyano-bridges alternately, forming infinite 2D corrugated sheets in an ABAB packing mode. VT-PXRD (Variable temperature X-ray diffraction) and TG (Thermogravimetry) analysis indicate that all these coordination polymers have a stable mediate phase after dehydration, which can be used as precursors for the construction of 3D Hofmann-type coordination polymers.
     A 3D Hofmann-type coordination polymer Mn(L)[Ni(CN)4] (L = pyrazine) has been synthesized by inserting ligand into 2D layers using Mn(H2O)2[Ni(CN)4] as precursor. The coordination polymers M(L)[Ni(CN)4] (M = Mn, Fe; L = pyrazine) have also been synthesized using quick mixing method for comparison. The results of adsorption experiments show that these coordination polymers all exhibit some adsorption property for N2 and H2, and synthetic methods and metal ions have influence on the adsorption properties.
     A series of 2D Hofmann-type coordination polymer M(DMF)2[M'(CN)4] (M = Mn, Fe, Co, Ni, Cu, Zn, Cd; M' = Ni, Pd, Pt) have been synthesized using DMF as solvent. DMF is a strong ligand which can coordinate to metals preferentially than other bridged organic ligands and can even substitute the macrocyclic ligands which have already connected with metals. SC-XRD (Single-crystal X-ray diffraction) analysis reveals that these coordination polymers belong to Monoclinic system, space group C2/m. M and Ni centers are connected by cyano-bridges alternately, forming infinite 2D corrugated sheets in an ABAB packing mode. The DMF molecules coordinated to M are in trans-form. TG analysis indicates that these coordination polymers may lose DMF molecules and form relatively stable mediate products. VT-XRD and VT-Raman (Vaiable temperature Raman) results show that the framework of Zn(DMF)2[Ni(CN)4] begins to collapse with the loss of DMF molecules. Temperature dependence of cell parameters for Zn(DMF)2[Ni(CN)4] has been studied by in situ SC-XRD method and the result shows that it has a positive thermal expansion coefficient.
     Three 3D porous coordination polymers with PtS-type topology ZnM'(CN)4 (M' = Ni, Pd, Pt) have been obtained unexpectedly by using [M'(CN)4]2-(M = Ni, Pd, Pt) and transition metal ion Zn2+ as“square-planar”building blocks. Three coordination polymers are isostructural and belong to tetragonal system, space group P4(2)/mcm. Zn and M' centers are in tetrahedral and square-planar geometry, respectively. Both centers are connected by cyano-bridges alternately, forming 3D PtS-type topology with two-fold interpenetration. VT-PXRD and TG analysis indicate that ZnNi(CN)4 has higher stability and no solvent molecules are involved in the structure. The result of adsorption/desorption experiments shows that ZnNi(CN)4 has low N2 and H2 adsorption properties due to the interpenetration in the structure.
引文
[1] Energy Information Administration, Official Energy Statistics from the U.S. Government, International Energy Annual 2005, available at: http://www.eia.doe.gov/emeu/iea/.
    [2] A. W. C. van den Berg and C. O. Areán. Materials for hydrogen storage: current research trends and perspectives[J]. Chem. Commun., 2008: 668-681.
    [3]杨勇,沈泓滢,邢航,等.微孔配位聚合物作为新型储氢材料的研究[J].化学进展, 2006, 18(5): 648-656.
    [4] M. U. Niemann, S. S. Srinivasan, A. R. Phani, et al. Nanomaterials for Hydrogen Storage Applications: A Review[J]. Journal of Nanomaterials, 2008: 1-9.
    [5] Hydrogen, Fuel Cells and Infrastructure Technologies Program: Multi-Year Research, Development, and Demonstration Plan: Planned Program Activities for 2005– 2015, website address (February 2008): http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/.
    [6] A. M. Seayad and D. M. Antonelli. Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials[J]. Adv. Mater., 2004, 16(9-10): 765–777.
    [7] L. Schlapbach. Hydrogen as a fuel and its storage for mobility and transport[J]. MRS Bull., 2002, 27(9): 675-679.
    [8] D. K. Ross. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars[J]. Vacuum, 2006, 80(10): 1084-1089.
    [9] C. Liu, Y. Y. Fan, M. Liu, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science, 1999, 286(5442): 1127-1129.
    [10] W. Q. Deng, X. Xu and W. A. Goddard. New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation[J]. Phys. Rev. Lett., 2004, 92(16): 166103.
    [11] S. S. Han, H. S. Kim, K. S. Han, et al. Nanopores of carbon nanotubes as practical hydrogen storage media[J]. Appl. Phys. Lett., 2005, 87, 213113.
    [12] C. C. Tang, Y. Bando, X. X. Ding, et al. Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes[J]. J. Am. Chem. Soc., 2002, 124(49): 14550-14551.
    [13] J. Chen, N. Kuriyama, H. T. Yuan, et al. Electrochemical Hydrogen Storage in MoS2 Nanotubes[J]. J. Am. Chem. Soc., 2001, 123 (47): 11813-11814.
    [14] J. Chen, S. L. Li, Z. L. Tao, et al. Titanium Disulfide Nanotubes as Hydrogen-Storage Materials[J]. J. Am. Chem. Soc., 2003, 125 (18): 5284-5285.
    [15] L. J. Murray, M. Dinca and J. R. Long. Hydrogen storage in metal–organic frameworks[J]. Chem.Soc. Rev., 2009, 38: 1294-1314.
    [16] M. Dinca and J. R. Long. Hydrogen Storage in Microporous Metal–Organic Frameworks with Exposed Metal Sites[J]. Angew. Chem. Int. Ed., 2008, 47: 6766-6779.
    [17] R. E. Morris and P. S. Wheatley. Gas Storage in Nanoporous Materials[J]. Angew. Chem. Int. Ed., 2008, 47: 4966-4981.
    [18] S. S. Han, W. Q. Deng and W. A. Goddard. Improved Designs of Metal–Organic Frameworks for Hydrogen Storage[J]. Angew. Chem. Int. Ed., 2007, 46: 6289-6292.
    [19] J. L. C. Rowsell and O. M. Yaghi. Strategies for Hydrogen Storage in Metal–Organic Frameworks[J]. Angew. Chem. Int. Ed., 2005, 44: 4670-4679.
    [20] S. S. Kaye and J. R. Long. The role of vacancies in the hydrogen storage properties of Prussian blue analogues[J]. Catalysis Today, 2007, 120: 311-316.
    [21] H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316: 268-272.
    [22] Y. J. Choi, J. W. Lee, J. H. Choi, et al. Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage[J]. Appl. Phys. Lett., 2008, 92: 173102.
    [23] S. L. James. Metal-organic frameworks[J]. Chem. Soc. Rev., 2003, 32: 276-288.
    [24] N. L. Rosi, J. Eckert, M. Eddaoudi, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks[J]. Science, 2003, 300: 1127-1129.
    [25] S. S. Kaye, A. Dailly, O. M. Yaghi, et al. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)[J]. J. Am. Chem. Soc., 2007, 129(46): 14176-14177.
    [26] D. Zhao, D. Q. Yuan and H. C. Zhou, The current status of hydrogen storage in metal–organic frameworks[J]. Energy Environ. Sci., 2008, 1: 222-235.
    [27] A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi. Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2006, 128(11): 3494-3495.
    [28] H. Furukawa, M. A. Miller and O. M. Yaghi. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks[J]. J. Mater. Chem., 2007, 17: 3197-3204.
    [29] X. Lin, J. H. Jia, X. B. Zhao, et al. High H2 Adsorption by Coordination-Framework Materials[J]. Angew. Chem Int. Ed., 2006, 45: 7358-7364.
    [30] B. Panella, M. Hirscher, H. Pütter, et al. Hydrogen Adsorption in Metal–Organic Frameworks: Cu-MOFs and Zn-MOFs Compared[J]. Adv. Funct. Mater., 2006, 16: 520-524.
    [31] K. Schlichte, T. Kratzke and S. Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous Mesoporous Mater., 2004,73: 81-88.
    [32] B. L. Chen, M. Eddaoudi, T. M. Reineke,et al. Cu2(ATC)·6H2O: Design of Open Metal Sites in Porous Metal?Organic Crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate)[J]. J. Am. Chem. Soc., 2000, 122(46): 11559-11560.
    [33] M. Dinca, A. F. Yu and J. R. Long. Microporous Metal-Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties[J]. J. Am. Chem. Soc., 2006, 128 (27): 8904-8913.
    [34] M. Eddaoudi, H. L. Li and O. M. Yaghi. Highly Porous and Stable Metal?Organic Frameworks: Structure Design and Sorption Properties[J]. J. Am. Chem. Soc., 2000, 122 (7): 1391-1397.
    [35] M. Dinca and J. R. Long. High-Enthalpy Hydrogen Adsorption in Cation-Exchanged Variants of the Microporous Metal-Organic Framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2[J]. J. Am. Chem. Soc., 2007, 129 (36): 11172-11176.
    [36] H. J. Choi, M. Dinca and J. R. Long. Broadly Hysteretic H2 Adsorption in the Microporous Metal-Organic Framework Co(1,4-benzenedipyrazolate)[J]. J. Am. Chem. Soc., 2008, 130 (25): 7848-7850.
    [37] O. Sato, T. Iyoda, A. Fujishima, et al. Photoinduced Magnetization of a Cobalt-Iron Cyanide[J]. Science, 1996, 272(5262): 704-705.
    [38] P. J. Kulesza, M. A. Malik, M. Berrettoni, et al. Electrochemical Charging, Countercation Accommodation, and Spectrochemical Identity of Microcrystalline Solid Cobalt Hexacyanoferrate[J]. J. Phys. Chem. B, 1998, 102 (11): 1870-1876.
    [39] V. Balzani, A. Juris and M. Venturi. Luminescent and Redox-Active Polynuclear Transition Metal Complexes[J]. Chem. Rev., 1996, 96 (2): 759-834.
    [40] A. L. Goodwin, M. Calleja, M. J. Conterio, et al. Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6][J]. Science, 2008, 319(5864): 794-797.
    [41] S. S. Kaye and J. R. Long. Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn)[J]. J. Am. Chem. Soc., 2005, 127 (18): 6506-6507.
    [42] H. J. Buser, D. Schwarzenbach, W. Petter, et al. The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O[J]. Inorg. Chem., 1977, 16: 2704-2710.
    [43] F. Herren, P. Fischer, A. Ludi, et al. Neutron Diffraction Study of Prussian Blue, Fe4[Fe(CN)6]3·xH2O. Location of Water Molecules and Long-Range Magnetic Order[J]. Inorg. Chem., 1980, 19: 956-959.
    [44] K. W. Chapman, P. D. Southon, C. L. Weeks, et al. Reversible hydrogen gas uptake in nanoporous Prussian Blue analogues[J]. Chem. Commun., 2005: 3322-3324.
    [45] M. R. Hartman, V. K. Peterson and Y. Liu. Neutron Diffraction and Neutron Vibrational Spectroscopy Studies of Hydrogen Adsorption in the Prussian Blue Analogue Cu3[Co(CN)6]2[J]. Chem. Mater., 2006, 18(14): 3221-3224.
    [46] S. S. Kaye, J. R. Long. The role of vacancies in the hydrogen storage properties of Prussian blue analogues[J]. Catalysis Today, 2007, 120: 311-316.
    [47] L. Reguera, C. P. Krap, J. Balmaseda, et al. Hydrogen Storage in Copper Prussian Blue Analogues: Evidence of H2 Coordination to the Copper Atom[J]. J. Phys. Chem. C, 2008, 112: 15893-15899.
    [48] J. N. Behera, D. M. D’Alessandro, N. Soheilnia, et al. Synthesis and Characterization of Ruthenium and Iron-Ruthenium Prussian Blue Analogues[J]. Chem. Mater., 2009, 21: 1922-1926.
    [49]楚超霞,袁爱华,刘文艳,等.普鲁士蓝类配位聚合物KCd[Cr(CN)6]·H2O的合成、结构及多孔性能研究[J].化学学报, 2008, 66(24): 2700-2704.
    [50] S. S. Kaye and J. R. Long. Hydrogen adsorption in dehydrated variants of the cyano-bridged framework compounds A2Zn3[Fe(CN)6]2·nH2O (A = H, Li, Na, K, Rb, Cs)[J]. Chem. Commun., 2007: 4486-4488.
    [51] L. Reguera, J. Balmaseda, L. F. d. Castillo, et al. Hydrogen Storage in Porous Cyanometalates: Role of the Exchangeable Alkali Metal[J]. J. Phys. Chem. C, 2008, 112(14): 5589-5597.
    [52] J. T. Culp, C. Matranga, M. Smith, et al. Hydrogen Storage Properties of Metal Nitroprussides M[Fe(CN)5NO], (M = Co, Ni)[J]. J. Phys. Chem. B, 2006, 110(16): 8325-8328.
    [53] K. A. Hofmann, F. Kuspert. Verbindungen von Kohlenwasserstoffen mit Metallsalzen[J]. Z. Anorg. Allg. Chem., 1897, 15: 204-207.
    [54] V. Niel, J. M. Martinez-Agudo, M. C. Munoz, et al. Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt) [J]. Inorg. Chem., 2001, 40: 3838-3839.
    [55] G. Molnar, V. Nie, J. A. Real, et al. Raman Spectroscopic Study of Pressure Effects on the Spin-Crossover Coordination Polymers Fe(Pyrazine)[M(CN)4]·2H2O (M = Ni, Pd, Pt). First Observation of a Piezo-Hysteresis Loop at Room Temperature[J]. J. Phys. Chem. B, 2003, 107: 3149-3155.
    [56] S. Bonhommeau, G. Molnar, A. Galet, et al. One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature[J]. Angew. Chem. Int. Ed., 2005, 44: 4069-4073.
    [57] S. Cobo, D. Ostrovskii, S. Bonhommeau, et al. Single-Laser-Shot-Induced Complete Bidirectional Spin Transition at Room Temperature in Single Crystals of (FeⅡ(pyrazine)(Pt(CN)4))[J]. J. Am. Chem. Soc., 2008, 130: 9019-9024.
    [58] G. Agusti, S. Cobo, A. B. Gaspar, et al. Thermal and Light-Induced Spin Crossover Phenomena inNew 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films[J].Chem. Mater., 2008, 20: 6721-6732.
    [59] M. Senyel, T. R. Sertbakan, G. Kurkcuoglu, et al. An Infrared Spectroscopic Study on the Hofmann-diam-type 1,12-Diaminododecanemetal(II) Tetracyanonickelate(II)-aromatic Guest Clathrates: M(H2N(CH2)12NH2)Ni(CN)4·G(M=Co, Ni or Cd; G = Benzene, Naphthalene, Anthracene, Phenanthrene or Biphenyl)[J]. J. Incl. Phenom. Macrocycl. Chem., 2001, 39: 175-180.
    [60] T. R. Sertbakan, S. Saglam, A. Ozbay, et al. Investigation of Host–Guest Interactions in the Hofmann-daddn-type Clathrates: M(1,12-diaminododecane)Ni(CN)4·G (M = Co, Ni or Cd; G = toluene, m-xylene, o-xylene or p-xylene)[J]. J. Incl. Phenom. Macrocycl. Chem., 2004, 49: 235-240.
    [61] Y. Li, Y. Liu, Y. T. Wang, et al. Hydrogen storage properties of [M(Py){Ni(CN)4}] (M=Fe, Co, Ni)[J]. Int. J. Hydrogen Energy, 2007, 32: 3411-3415.
    [62] P. D. Southon, L. Liu, E. A. Fellows, et al. Dynamic Interplay between Spin-Crossover and Host-Guest Function in a Nanoporous Metal-Organic Framework Material[J]. J. Am. Chem. Soc., 2009, 131: 10998-11009.
    [63] J. T. Culp, S. Natesakhawat, M. R. Smith, et al. Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size[J]. J. Phys. Chem. C, 2008, 112: 7079-7083.
    [64] J. T. Culp, M. R. Smith, E. Bittner, et al. Hysteresis in the Physisorption of CO2 and N2 in a Flexible Pillared Layer Nickel Cyanide[J]. J. Am. Chem. Soc., 2008, 130: 12427-12434.
    [65] L. Reguera, J. Balmaseda, C. P. Krap, et al. Hydrogen Storage in Zeolite-Like Hexacyanometallates: Role of the Building Block[J]. J. Phys. Chem. C, 2008, 112(44): 17443-17449.
    [66] J. R.Nicholas, Q.Zengquan, G. C. Dallinger, et al. Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide[J]. Dalton Trans., 2006: 5390-5395.
    [67] W. K. Ham, T. J. R. Weakley, C. J. Page. Synthesis and Crystal Structure of Cd(H2O)2Ni(CN)4·4H2O[J]. J. Solid State Chem., 1993, 107: 101-107.
    [68] T. Kitazawa, M. Fukunaga, M. Takahashi, et al. Study by X-ray Crystallography and Mossbauer-spectroscopy of the Layered Compounds with 2-dimensional Metal-complex Iron(II) Tetracyanonickelate(II)[J]. Mol. Cryst. Liq. Cryst., 1994, 244: 331-336.
    [69] H. Yuge, C. Kim, T. Iwamoto, et al. Hofmann-H2O-type and Hofmann-H2O-Td-type host structures accommodating 1,4-dioxane: crystal structures of trans-bis(morpholine-N)cadmium(II) tetracyanonickelate(II), trans-diaquacadmium(II) tetracyanonickelate(II)-(1,4-dioxane) (1/2) and trans-diaquacadmium(II) tetracyanocadmate(II) (1,4-dioxane) (l/2)[J]. Inorg. Chim. Acta, 1997, 257: 217-224.
    [70] T. Y. Niu, G. Crisci, J. Lu, et al. Diaquacobalt Tetracyanonickelate Tetrahydrate[J]. Acta Cryst., 1998, C54: 565-567.
    [71] SMART, SAINT and XPREP. Area detector and data integration and reduction software; Bruker Analytical Instruments Inc., Madison, WI, 1995.
    [72] Sheldrick G. M. SADABS. Empirical adsorption correction program for area detector data; University of G?ttingen, G?ttingen, Germany, 1996.
    [73] Sheldrick G. M. SHELXS-97 and SHELXL-97. Program for crystal structural solution and refinement; Bruker Analytical Instruments Inc., Madison, WI, 1997.
    [74] E. V. Brown, G. R. Granneman. Cis-trans isomerism in the pyridyl analogs of azobenzene. Kinetic and molecular orbital analysis[J]. J. Am. Chem. Soc., 1975, 97: 621.
    [75] N. Campbell, A. W. Henderson, D. Taylor. Geometrical isomerism of azo compounds[J]. J. Chem. Soc., 1953, 1281.
    [76] J. Toth, State equations of the solid?gas interface layers[J]. Acta Chim. Acad. Sci. Hung., 1971, 69: 311-328.
    [77] V. Martínez, A. B. Gaspar, M. C. Mu?oz, et al. Spin-Crossover 2D Metal–Organic Frameworks with a Redox-Active Ligand: [Fe(ttf-adpy)2M(CN)4]·nH2O (ttf-adpy = 4-Tetrathiafulvalenylcarboxamidopyridine; MII = Ni, Pd, Pt)[J]. Eur. J. Inorg. Chem., 2009: 303-310.
    [78] K. W. Chapman, P. J. Chupas, C. J. Kepert. Direct Observation of a Transverse Vibrational Mechanism for Negative Thermal Expansion in Zn(CN)2: An Atomic Pair Distribution Function Analysis[J]. J. Am. Chem. Soc., 2005, 127: 15630-15636.
    [79] A. L. Goodwin, K. W. Chapman, C. J. Kepert. Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues MIIPtIV(CN)6·x{H2O}(0≤x≤2; M= Zn, Cd) [J]. J. Am. Chem. Soc., 2005, 127: 17980-17981.
    [80] J. Y. Sun, L. H. Weng, Y. M. Zhou, et al. QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology[J]. Angew. Chem. Int. Ed., 2002, 41(23): 4471-4473.
    [81] L. Carlucci, G. Ciani, D. M. Proserpio, et al. Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer-Like Structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of [Ag(pyz)3](SbF6)[J]. Angew. Chem. Int. Ed., 1995, 34(17): 1895-1898.
    [82] S. R. Batten, B. F. Hoskins, B. Moubaraki, et al. Crystal structures and magnetic properties of the interpenetrating rutile-related compounds M(tcm)2 [M = octahedral, divalent metal; tcm– = tricyanomethanide, C(CN)3–] and the sheet structures of [M(tcm)2(EtOH)2] (M = Co or Ni)[J]. J. Chem. Soc., Dalton Trans., 1999: 2977-2986.
    [83] S. W. Keller. An Acentric, Three-Dimensional Coordination Polymer: Synthesis and Structure of [Cu(pyrimidine)2]BF4 [J]. Angew. Chem. Int. Ed., 1997, 36(3): 247-248.
    [84] H. Chun, D. Kim, D. N. Dybtsev, et al. Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand[J]. Angew. Chem. Int. Ed., 2004, 43(8): 971-974.
    [85] M. Eddaoudi, J. Kim, M. O'Keeffe, et al. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type[J]. J. Am. Chem. Soc., 2002, 124 (3): 376-377.
    [86] H. Zhou, Y. Y. Chen, A. H. Yuan, et al. Synthesis, crystal structure and magnetic properties of a new three-dimensional cyano-bridged Ni(II)–Mo(IV) complex[J]. Inorg. Chem. Commun., 2008, 11(4): 363-366.
    [87] B. F. Hoskins, R. Robson and V. Y. Scarlett. Six Interpenetrating Quartz-Like Nets in the Structure of ZnAu2(CN)4 [J]. Angew. Chem. Int. Ed., 1995, 34(11): 1203-1204.
    [88] W. Dong, L. N. Zhu, Y. Q. Sun, et al. 3D porous and 3D interpenetrating triple framework structures constructed by aurophilicity-coordination interplay in {Mn[Au(CN)2]2(H2O)2}n and {KFe[Au(CN)2]3}n[J]. Chem. Commun., 2003: 2544-2545.
    [89] A. L. Spek, Single-crystal structure validation with the program PLATON[J]. J. Appl. Cryst., 2003, 36, 7-13.
    [90] P. Losier and M. J. Zaworotko. A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities[J]. Angew. Chem., Int. Ed., 1996, 35: 2779-2782.
    [91] J. L. C. Rowsell, A. R. Millward, K. S. Park, et al. Hydrogen Sorption in Functionalized Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2004, 126(18): 5666-5667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700