用户名: 密码: 验证码:
新型量子点的制备及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点作为一种新型荧光材料具有优异的光谱特性,如激发波长范围宽、发射光谱窄、斯托克斯位移大、光学稳定性好等。近年来,新型的ZnS-CuInS2和ZnS-AgInS2量子点的合成在国内尚未见到过报道,在国外也尚未见到过其应用。本论文对其合成做了改进,提高了量子点的质量,并对其进行了修饰,可将其进一步应用于生物分析中。我们还首次探究了油溶性的量子点的化学发光性质和其在荧光分析的应用。
     本论文分为两章。第一章为综述,主要介绍了量子点的基本概念、性质及其在化学发光、荧光分析中的研究进展。第二章为研究报告,分为四部分,具体内容如下:
     一、探索改进合成高质量的新型量子点ZnS-CuInS2
     本文采用低价的硝酸铟替代文献中昂贵的不易保存的合成原料之一—碘化铟,应用有机金属法制备了粒径分布均一、稳定性好的高质量的ZnS-CuInS2荧光量子点。这种新型量子点不含有毒性大的重金属元素,可通过只控制原料中Zn/Cu的比例而不改变尺寸来调节ZnS-CuInS2量子点的荧光波长。制备的各种ZnS-CuInS2量子点的荧光量子产率最高为24%,与国外文献报道相比,其荧光量子产率较高。我们对其做了修饰,可以将其进一步应用在生命研究中。
     二、探索改进合成高质量的新型量子点ZnS-AgInS2
     本文改进了文献中的制备过程,通过热分解前驱体,合成了高质量的ZnS-AgInS2量子点。这种新型量子点不含有毒性大的重金属元素。可通过只控制前驱体的组成而不改变量子点的尺寸得到不同荧光波长的ZnS-AgInS2量子点。制备的各种ZnS-AgInS2量子点的荧光量子产率测定结果最高为31%,与国外文献报道相比,其荧光量子产率较高。我们对其做了修饰,可以将其进一步应用在生命研究中。
     三、探索新型量子点ZnS-AgInS2的化学发光性质
     量子点作为一种新型的化学发光试剂,已成为化学发光领域关注的研究热点。我们探究了油溶性的ZnS-AgInS2量子点在2,4,6-三氯苯基草酸酯(TCPO)-双氧水(H2O2)化学发光体系中的化学发光性质。
     四、探索新型量子点ZnS-AgInS2在新领域中的应用
     本文将量子产率最高的油溶性的ZnS-AgInS2量子点作为荧光探针,建立了一种简便、快速检测苏丹红Ⅰ的荧光分析新方法。对此体系的试验条件进行了详细的优化。在选定的最优试验条件下,苏丹红Ⅰ在1.0×10-8~1.0×10-6g/mL浓度范围内与量子点的荧光猝灭程度呈良好的线性关系,检出限为6.0×10-9g/mL。本方法的建立将有助于拓展量子点作为荧光探针在食品安全检测中的应用范围。
The novel quantum dots (QDs) exhibited many excellent optical properties, such as:broade excitation spectrum, narrow emission spectrum, broad stokes displacement, good photostability, and so on. Recently, the synthesis of new-type ZnS-CuInS2 QDs and ZnS-AgInS2 QDs have been no reported in China. There also have been no investigation of the application of ZnS-AgInS2 QDs in China and abroad. In this paper, ZnS-CuInS2 QDs and ZnS-AgInS2 QDs with better quality have been made. We prepared water-soluble fluorescent quantum dots by modification. This is very important and significative for life sciences research. We first report the chemiluminescence properties and the application of oil-soluble ZnS-AgInS2 QDs in fluorescence analysis.
     This thesis consists of two parts:review and research section. The basic conception and application of QDs are reviwed in the review section. The research section contains the following four parts:
     一、Research on the improvement preparation of a novel high-quality ZnS-CuInS2 QDs
     We substituted In(NO3)3 which is much cheaper for InI3 as raw material. High-quality ZnS-CuInS2 QDs were synthesized by metalorganic decomposition. The resultant particles were Mono-dispersedand colloidally stable. This new-type ZnS-CuInS2 QDs contain no highly toxic heavy elements. The photoluminescence wavelength of ZnS-CuInS2 QDs were adjusted by altering the ratio of content of Zn and Cu. The highest quantum yield for ZnS-CuInS2 QDs was calculated to be 24%. The yield was better than those reported in former references. Water-soluble ZnS-CuInS2 QDs were prepared by modification. This is very important and significative for life sciences research.
     二、Research on the improvement preparation of a novel high-quality ZnS-AgInS2 QDs
     High-quality ZnS-AgInS2 QDs were prepared by thermal decomposition of precursor power. This new-type ZnS-AgInS2 QDs contain no highly toxic heavy elements. The resulting particles exhibited broad excitation spectra and the emission color could be tuned from green to red, depending on their chemical composition. The highest quantum yield for ZnS-AgInS2 QDs was calculated to be 31%. The yield was better than those reported in former references. Water-soluble ZnS-AgInS2 QDs were prepared by modification.The modified ZnS-AgInS2 QDs have the great potential for use in life science research.
     三、Research on the chemiluminescence properties of ZnS-AgInS2 QDs
     QDs as a new type of chemiluminescence reagents is developed in recent years. In particular, it has become a hot topic in luminescence research. We study on the chemiluminescence properties of oil-soluble ZnS-AgInS2 QDs in TCPO-H2O2 chemiluminescence system.
     四、Research on the analytical application of ZnS-AgInS2 QDs in food safety testing
     With the highest quantum yield oil-soluble ZnS-AgInS2 QDs as fluorescence probe, we propose a very simple and fast method for detecting Sudan I. Under the optimum conditions, the relative fluorescence intensity decreases linearly with the Sudan I concentration in the range from 0.01 to 1.00μg/mL, and the detection limit is 0.006μg/mL. This extend the application of QDs in food safety detection
引文
[1]李民乾.纳米科学技术—面向21世纪的新科技[J].物理,1996,21(2):65-69.
    [2]A. P. Alivisatos. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals [J]. The Journal of Physical Chemistry,1996,100(31):13226-13239.
    [3]张立德,牟季美.纳米科学和纳米结构[M].北京.科学出版社:2001:15-17.
    [4]白春礼.纳米科技及发展前景[J].微纳电子技术.2002,1:2-5.
    [5]A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science,1996,271(5251):933-937.
    [6]姚鑫,刘晓宇.量子点荧光探针在食品安全检测中的应用[J].农产品加工·学刊.2009,172(31):76-79.
    [7]A. M. Smith, S. M. Nie. Chemical Analysis and Cellular Imaging with Quantum Dots[J]. The Analyst,2004,129(8):672-677.
    [8]X. X. He, K. M. Wang, W. H. Tan, D. Xiao, J. Li, X. H. Yang. A Novel Fluorescent Label Based on Biological Fluorescent Nanoparticles and Its Application in Cell Recognition[J]. Chinese Science Bulletin,2001,46 (23):1962-1965.
    [9]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science,2005,307(5709):538-544.
    [10]D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo[J]. Science,2003,300(5624):1434-1436.
    [11]C. J. Murphy. Optical Sensing with Quantum Dots[J]. Analytical Chemistry,2002, 74 (19):520-526.
    [12]A. M. Smith, X. Gao, S. Nie. Quantum Dot Nanocrystals for in Vivo Molecular and Cellular Imaging[J]. Photochemistry and Photobiology,2004,80(3):377-385.
    [13]J. M. Costa-Fernandez. Optical Sensors Based on Luminescent Quantum Dots[J]. Analytical and Bioanalytical Chemistry,2006,384(1):37-40.
    [14]W. C. Chan, S. M. Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281(5385):2016-2018.
    [15]J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel. The Use of Luminescent Quantum Dots for Optical Sensing[J]. Trends in Analytical Chemistry,2006,25(3): 207-218.
    [16]邹明强,杨蕊,李锦丰.量子点的光学特征及其在生命科学中的应用[J].分析测试学报,2005,24(6):133-137.
    [17]A. P. Alivisatos. The Use of Nanocrystals in Biological Detection[J]. Nature Biotechnology,2004,22(1):47-52.
    [18]A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, H. Mattoussi. Can Luminescent Quantum Dots Be Efficient Energy Acceptors with Organic Dye Donors[J]. Journal of the American Chemical Society,2005,127(4):1242-125.
    [19]赵承军,唐军民.量子点在生物医学中的应用[J].解剖学报,2006,37(4):484-486.
    [20]陈良冬,李雁,袁宏银.量子点在肿瘤研究中的应用[J].癌症,2006,25(5):651-656.
    [21]M. G. Bawendi, M. L. Steigerwald, L. E. Brus. The Quanum Mechanics of Larger Semiconductor Clusters [J]. Annual Review of Physical Chemistry,1990,41: 477-496.
    [22]T. W. Fan, H. Tehst, et al. Selenium Biotransformations into Protein Aceous Forms by Food Web Organisms of Selenium 21ad Endrainage Waters in California[J]. Aquat Toxicol,2002,57(122):65284.
    [23]季雷华,高素莲,张斌.量子点的合成、毒理学及其应用[J].环境化学,2008,27(5):679-683.
    [24]尹芳蕊,高愈希,陈春英,吴刚.量子点的毒理学研究进展[J].卫生研究,2008,37(6):760-763.
    [25]M. D. Austin, C. W. C. Warren, N. B. Sangeeta. Probing the Cytotoxicity of Semiconductor Quantum Dots[J]. Nano Letter,2004,4(1):11-18.
    [26]B. Dubertret, P. Skourides, D. J. Norris. In Vivo Imaging of Quantum Dots Encap Sulated in Phospholipid Micelles[J]. Science,2002,298:1759-1762.
    [27]B. Ballou, B. C. lagerholm, L. A. Ernst, et al. Noninvasive Imaging of Quantum Dots in Micell[J]. Bioconjugation Chemistry,2004,15:79-86.
    [28]A. Hoshino, K. Hanaki, K. Suzuki. Applications of Tlympoma Labeled with Fluorescent Quantum Dots to Cell Tracing Markers in Mouse Body[J]. Biochem Biophy Res Commum,2004,314(1):46-53.
    [29]J. K. Jaiswal, H. Mattoussi, J. M.Mauro. Long-Term Multiple Colorimaging of Live Cells Using Quantum Dot Bioconjugates[J]. Nature Biotechnology,2003,21(1): 47-51.
    [30]J. Aldana, Y. A. Wang, X. G. Peng. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilicthiols[J]. Journal of the American Chemistry Society,2001, 123(36):8844-8850.
    [31]B. I. Ipe, M. Lehnig, C. M. Niemeyer. On the Generation of Free Radical Species from Quantum Dots[J]. Small,2005,1(7):706-709.
    [32]R. Bakalova, H. Ohba, Z. Zhelev. Quantum Dot Anti-CD Conjugates:Are They Potential Photo Sensitizers or Potentiators of Classical Photosensitizing Agents in Photoynamic Therapy of Cancer[J].Nano letter,2004,4(9):1567-1573.
    [33]C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE(E=S, Se, Te) Semiconductor Nanocrystallites[J]. Journal of the American Chemistry Society,1993,115(19):8706-8715.
    [34]Z. A. Peng, X. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J]. Journal of the American Chemistry Society,2001, 123(1):183-184.
    [35]D. V. Talapin, S. Hauboldc, L. Andrey. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals [J]. The Journal of Physical Chemistry B,2001,105: 2260-2263.
    [36]M. A. Hines, P. GuyotSionnest. Synthesis and Charaterization of Strongly Luminescing ZnS Capped CdSe Nanocrystals[J]. The Journal of Physical Chemistry, 1996,100:468-471.
    [37]D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture[J]. Nano Letters,2001,1(4):207-211.
    [38]T. Pons, N. Lequeux, B. Mahler. Synthesis of Near-Infrared-Emitting, Water-Soluble CdTeSe/CdZn Core/Shell Quantum Dots. Chemistry of Materials.2009, 21(8):1418-1424.
    [39]X. H. Gao, C. W. C. Warren, S. Nie. Quantum-Dot Nanocrystals for Ultrasensitive Biological Labeling and Multicolor Optical Encoding[J]. Journal of Biomedical Optics,2002,7:532-537.
    [40]N. Marcotte, A. M. Brouwer. Carboxy SNARF-4F as a Fluorescent pH Probe for Ensemble and Fluorescence Correlation Spectroscopies[J]. The Journal of Physical Chemistry B,2005,109:11819-11828.
    [41]S. Wang, N. Mamedova, N. A. Kotov, W. Chen, J. Studer. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates[J]. Nano Letters,2002, 2(8):817-822.
    [42]李军,袁航,白玉白.CdTe纳米晶与蛋白相互作用研究[J].高等学校化学学报,2003,24:1293-1295.
    [43]T. Rajh,O. I. Micic, A. J. Nozik. Synthesis and Characterization of Surface-Modified Colloidal CdTe Quantum Dots[J]. The Journal of Physical Chemistry,1993,97(46):11999-12003.
    [44]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, H. Weller. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes [J]. The Journal of Physical Chemistry B,2002,106(29):7177-7185.
    [45]H. Zhang, Z. Zhou, B. Yang, M. Gao. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J]. The Journal of Physical Chemistry B,2003,107(1):8-13.
    [46]Y. W. Cao, U. Banin. Growth and Properties of Semiconductor Core/Shell Nanocrystals with in as Cores[J]. Journal of the American Chemical Society,2000, 122(40):9692-9702.
    [47]A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, H. Weller. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J]. The Journal of Physical Chemistry B,1999,103(16):3065-3069.
    [48]M. Parhizkara, N. P. Kumara, B. Shukla, et al. ZnS Nanoclusters in LB Multilayers [J]. Colloidsand SurfacesA:Physicochem. Eng. Aspects,2005,257:177-182.
    [49]T. Tsukasa, K. Hironori, S. Yoshihiro. Characterization of Ultrasmall CdS Nanoparticlesprepared by the Size-Selective Photoetching Technique [J]. The Journal of Physical Chemistry B,2001,105:6838-6845.
    [50]L. Spanhel, M. Haase, H. Weller. Photochemistry of Colloidal Semiconductors Surface Modification and Stability of Strong Luminescing CdS Particles[J]. Journal of the American Chemical Society,1987,109:5649-5655.
    [51]B. O. Dabbousi, F. V. Mikulec. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size of Highly Luminescent Nanocrystallities[J]. The Journal of Physical Chemistry,1997,101:9463-9475.
    [52]M. Bruchez, M. Moronne, P. Gin. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science,1998,281(5385):2013-2016.
    [53]W. C. W. Chan, S. M. Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281(5385):2016-2018.
    [54]谭翠燕,梁汝强,阮康成.量子点在生命科学中的应用[J].生物化学与生物物理学报.2002,34(1):1-5.
    [55]L. Matthew, F. C. Sean, D. E. Andrew. Quantun-Dot Aptamer Beacons for the Detection of Proteins[J]. ChemBioChem,2005,6:2163-2166.
    [56]A. Arezou, Ghazani, A. L. Jeonjin. High Throughput Quantification of Protein Expression of Cancer Antigens in Tissue Microarray Using Quantum Dot Nanocrystals [J].2006,6(12):2881-2886.
    [57]B. Q. Sun, W. Z. Xie, G. S. Yi. Microminiaturized Immunoassays Using Quantum Dots as Fluorescent Label by Laser Confocal Scanning Fluorescence Detection[J]. Journal of Immunological Methods,2001,24(1):85-89.
    [58]L. O. Richard, F. H. Theresa, J. L. Hong. Western Blot Analysis with Quantum Dot Fluorescence Technogy:a Sensitive and Quantitative Method for Multiplexed Proteomics[J]. Nature Methods,2005,2(1):79-81.
    [59]C. Y. Zhang, H. C. Yeh. Single-Quantum-Dot-Based DNA Nanosensor[J]. Nat Mater, 2005,5(4):826-831.
    [60]A. L. Crut, B. G. Landre. Detection of Single DNA Molecules by Multicolor Quantum-Dot End-Labeling[J]. Nucleic Acids Research,2005,33(11):198.
    [61]H. C. Yeh, Y. P. Ho. Homogeneous Point Mulation Detection by Quantum Dot-Mediated Two-Color Fluorescence Coincidence Analysis[J]. Nucleic Acids Research,2006,34(5):135.
    [62]M. Han, X. Gao, J. Z. Su, S. Nie. Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules [J]. Nature Biotechnology,2001,19(7):631~635.
    [63]C. Zhang, H. Ma, S. Nie. Quantum Dot-Labeled Trichosanthin[J]. The Analyst,2000, 125(6):1029~1031.
    [64]X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez. Immunofluorescent Labeling of Cancer Marker Her2 and other Cellular Targets with Semiconductor Quantum Dots[J]. Nature Biotechnology,2003,21(1): 41-46.
    [65]F. Q. Chen, D. Gerion. Fluorescent CdSe/ZnS Nanocry-Peptide Conjugates for Long-Term, Nontoxic Imaging and Nuclear Targeting in Living Cells[J]. Nano Letters,2004,4(10):1827-1832.
    [66]H. J. Tanke, R. W. Dirks, T. Raap. FISH and Immunocytochemistry:towards Visualing Single Target Molecules in Living Cells[J]. Current Opinion Biotechnology,2005,16(1):49-54.
    [67]Dahan M. L. Levis, et al. Diffusion Dynamics of Glycine Receptors Revealed by Single Quantum Dot Tracking[J]. Science,2003,302(5644):442-451.
    [68]V. Sukhanova, J. Devy, L.Venteo, H. Kaplan, M. Artemyev. Biocompatible Fluorescent Nanocrystels for Immunolabeling of Membrane Protein and Cell[J]. Analytical Biochemistry,2004,324 (1):60-67.
    [69]S. Li-Shishido, T. M. Watanabe, H. Tada. Reduction in Nonfluorescence State of Quantum Dots on an Immunofluorescence Staining[J]. Biochemical and Biophysical Research Communications,2006,351(1):7-13.
    [70]李朝辉,王柯敏,谭蔚泓,李军,付志英,王益林,刘剑波,羊小海.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J].科学通报,2005,50(3):8-1322.
    [71]M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, E. Ruoslahti. Nanocrystal Targeting in Vivo[J]. Proceeding of the National Academy of Science of the United States of America,2002,99(20):12617-12621.
    [72]S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee. Near-Infrared Fluorescent Type Ⅱ. Quantum Dots for Sentinel Lymph Node Mapping[J]. Nature Biotechnology, 2004,22(1):93-97.
    [73]G. J. Kim, S. M. Nie. Targeted Cancer Nanotherapy[J]. Nanotoday,2005,8 (Suppl): 28-33.
    [74]E. G. Soltesz, S. Kim, R. G. Laurence. Intraoperative Sentinel Lymph Node Mapping of the Lung Using Near-Infrared Fluorescent Quantum Dots[J]. Annals of Thoracic Surgery,2005,79:269-277.
    [75]C. P. Parungo, Y. L. Colson, S. W. Kim, S. Kim, L. H. Cohn, M. G. Bawendi, J. V. Frangioni. Sentinel Lymph Node Mapping of The Pleural Space[J]. Chest,2005,127: 1799-1804.
    [76]A. Hoshino, K. Hanaki, K. Suzuki. Applications of Tlymphoma Labeled with Fluorescent Quantum Dots to Cell Tracing Markers in Mouse Body[J]. Biochemical and Biophysical Research Communications,2004,314(1):46-53.
    [77]X. Gao, Y. Cui, R. M. Levenson, L. W. K Chung, S. Nie. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots[J]. Nature Biotechnology,2004, 22(8):969-976.
    [78]陈良冬,刘佳,喻学锋.量子点探针对人肝癌裸鼠模型的体内靶向成像研究[J].中华病理学杂志,2007,36(6):394-399.
    [79]X. F. Yu, L. D. Chen, Y. L Deng. Fluorescence Analysis with Quantum Dot Pobes for Hepatoma under One-and Two-Photon Excitation[J]. Journal of Fluorescence, 2007,17(2):243-247.
    [80]K. J. Rakesh, M. Stoh. Zooming in and out with Quantum Dots[J]. Nature Biotechnology,2004,22(8):959-960.
    [81]S. Ohnishi, S. J. Lomnes, R. G. Laurence, A. Gogbashian, G. Mariani, J. V. Frangioni. Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Sentinel Lymph Node Mapping[J]. Molecular Imaging,2005,4: 172-181.
    [82]C. P. Parungo, S. Ohnishi, S. W. Kim, S. Kim, R. G. Laurence, E. G. Soltesz, F. Y. Chen, Y. L. Colson, L. H. Cohn, M. G. Bawendi, J. V Frangioni. Intraoperative Identification of Esophageal Sentinel Lymph Nodes with Near-Infrared Fluorescence Imaging[J]. European Journal of Cardiac and Thoracic Sugery,2005,129(4): 844-850.
    [83]J. Lin, H. Ju. Electrochemical and Chemiluminescent Immunosensors for Tumor Markers[J]. Biosensors and Bioelectronics,2005,20(8):1461-1470.
    [84]林金明.化学发光基础理论与应用[M].北京:化学工业出版社,2004:3.
    [85]K. Robards, P. J. Worsfold. Analytical Applications of Liquid-Phase Chemiluminescence[J].Analytica Chimica Acta,1992,266(2):147-173.
    [86]A. M. Powe, K. A. Fletcher, N. N. S. Luce, M. Lowry, S. Neal, M. E. McCarroll, P. B. Oldham, L. B. McGown, I. M. Warner. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry[J]. Analytical Chemistry,2004,76(16): 4614-4634.
    [87]J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, J. Emnus. Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection[J]. Analytical Chemistry, 2002,74(13):2994-3004.
    [88]F. Li, C. Zhang, X. Guo, W. Feng. Chemiluminescence Detection in HPLC and CE for Pharmaceutical and Biomedical Analysis[J]. Biomedical Chromatography,2003, 17(2-3):96-105.
    [89]J. Lv, Z. Zhang, J. Li, L. Luo. A Micro Chemiluminescence Determination of Cyanide in Whole Blood[J]. Forensic Science International,2005,148(1):15-19.
    [90]C. Dodeigne, L. Thunus, R. Lejeune. Chemiluminescence as Diagnostic Tool. A Review[J]. Talanta,2000,51(3):415-439.
    [91]J. Lin, H. Ju. Electrochemical and Chemiluminescent Immunosensors for Tumor Markers[J]. Biosensors and Bioelectronics,2005,20(8):1461-1470.
    [92]V. Pavlov, Y. Xiao, R. Gill, A. Dishon, M. Kotler, I. Willner. Amplified Chemiluminescence Surface Detection of DNA and Telomerase Activity Using Catalytic Nucleic Acid Labels[J]. Analytical Chemistry,2004,76(7):2152-2156.
    [93]Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard. Electrochemistry and Elcetrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots[J]. Science,2002,296(5571):1293-1297.
    [94]N. Myung, Z. Ding, A. J. Bard. Electrogenerated Chemiluminescence of CdSe Nanocrystals[J]. Nano Letters,2002,2(11):1315-131.
    [95]H. Han, Z. You, J. Liang, Z. Sheng. Electrogenerated Chemiluminescence of CdSe Quantum Dots Dispersed in Aqueous Solution[J]. Frontiers in Bioscience,2007,12: 2352-2357.
    [96]G. Zou, H. Ju, W. Ding, H. Chen. Electrogenerated Chemiluminescence of CdSe Hollow Spherical Assemblies in Aqueous System by Immobilization in Carbon Paste [J]. Journal of Electroanalytical Chemistry,2005,579(1):175-180.
    [97]G. Zou, H. Ju. Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution[J]. Analytical Chemistry,2004, 76(23):6871-6876.
    [98]H. Jiang, H. Ju. Electrochemiluminescence Sensors for Scavengers of Hydroxyl Radical Based on Its Annihilation in CdSe Quantum Dots Film/Peroxide System[J]. Analytical Chemistry,2007,79(17):6690-6696.
    [99]G. Jie, H. Huang, X. Sun, J. J. Zhu. Electrochemiluminescence of CdSe Quantum Dots for Immunosensing of Human Prealbumin[J]. Biosensors and Bioelectronics, 2008,23(12):1896-1899.
    [100]N. Myung, Y. Bae, A. J. Bard. Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals[J]. Nano Letters,2003,3(8): 1053-1055.
    [101]N. Myung, X. Lu, K. P. Johnston, A. J. Bard. Electrogenerated Chemiluminescence of Ge Nanocrystals[J]. Nano Letters,2004,4(1):183-185.
    [102]M. Chen, L. Pan, Z. Huang, J. Cao, Y. Zheng, H. Zhang. A Novel Route to CdS Nanocrystals with Strong Electrogenerated Chemiluminescence [J]. Materials Chemistry and Physics,2007,101(2-3):317-321.
    [103]L. Shen, X. Cui, H. Qi, C. Zhang. Electrogenerated Chemiluminescence of ZnS Nanoparticles in Alkaline Aqueous Solution[J]. The Journal of Physical Chemistry C, 2007,111(23):8172-8175.
    [104]L. Zhang, X. Zou, E. Ying, S. Dong. Quantum Dot Electrochemiluminescence in Aqueous Solution at Lower Potential and Its Sensing Application[J]. The Journal of Physical Chemistry C,2008,112(12):4451-4454.
    [105]H. Han, Z. Sheng, J. Liang. Electrogenerated Chemiluminescence from Thiol-Capped CdTe Quantum Dots and Its Sensing Application in Aqueous Solution [J]. Analytica Chimica Acta,2007,596(1):73-78.
    [106]Y. Bae, N. Myung, A. J. Bard. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles [J]. Nano Letters,2004,4(6):1153-1161.
    [107]L. Sun, L. Bao, B. R. Hyun, A. C. Bartnik, Y. W. Zhong, J. C. Reed, D. W. Pang, H. D. Abrun, G. G. Malliaras, F. W. Wise. Electrogenerated Chemiluminescence from PbS Quantum Dots[J]. Nano Letters,2009,9(2):789-793.
    [108]S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, H. Wellerl. Quantum Dot Chemiluminescence[J]. Nano Letters,2004,4(4):693-698.
    [109]Z. Wang, J. Li, B. Liu, J. Hu, X. Yao, J. Li. Chemiluminescence of CdTe Nanocrystals Induced by Direct Chemical Oxidation and Its Size-Dependent and Surfactant-Sensitized Effect[J]. The Journal of Physical Chemistry B,2005,109(49): 23304-23311.
    [110]X. Li, J. Li, J. Tang, J. Kang, Y. Zhang. Study of Influence of Metal Ions on CdTe/H2O2 Chemiluminescence[J]. Journal of Luminescence,2008,128(7): 1229-1234.
    [111]Y. Li, P. Yang, P. Wang, X. Huang, L. Wang. CdS Nanocrystal Induced Chemiluminescence:Reaction Mechanism and Applications [J]. Nanotechnology, 2007,18(22):225602.1-225602.8.
    [112]C. Sun, B. Liu, J. Li. Sensitized Chemiluminescence of CdTe Quantum-Dots on Ce(Ⅳ)-Sulfite and Its Analytical Applications [J]. Talanta,2008,75(2):447-454.
    [113]X. Huang, L. Li, H. Qian, C. Dong, J. Ren. A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET)[J]. Angewandte Chemie International Editon,2006,45(31):5140-5143.
    [114]S. F. Li, X. M. Zhang, W. X. Du, Y. H. Ni, X. W. Wei. Chemiluminescence Reactions of a Luminol System Catalyzed by ZnO Nanoparticles[J]. The Journal of Physical Chemistry C,2009,113(3):1046-1051.
    [115]Z. Wang, J. Li, B. Liu, J. Li. CdTe Nanocrystals Sensitized Chemiluminescence and the Analytical Application[J]. Talanta,2009,77(3):1050-1056.
    [116]G. Liu, Y. Zhu, X. Zhang, B. Xu. Chemiluminescence Determination of Chlorinated Volatile Organic Compounds by Conversion on Nanometer TiO2[J]. Analytical Chemistry,2002,74(24):6279-6284.
    [117]Z. Zhang, C. Zhang, X. Zhang. Development of a Chemiluminescence Ethanol Sensor Based on Nanosized ZrO2[J]. The Analyst,2002,127(6):792-796.
    [118]Y. Zhu, J. Shi, Z. Zhang, C. Zhang, X. Zhang. Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide[J]. Analytical Chemistry,2002,74(1):120-124.
    [119]Z. Y. Zhang, K. Xu, Z. Xing, X. R. Zhang. A Nanosized Y2O3-Based Catalytic Chemiluminescent Sensor for Timethylamine[J]. Talanta,2005,65(4):913-917.
    [120]Y. Y. Wu, S. C. Zhang, N. Na, X. Wang, X. R. Zhang. A Novel Gaseous Ester Sensor Utilizing Chemiluminescence on Nano-Sized SiO2 [J]. Sensors and Actuators B,2007,126(2):461-466.
    [121]X. Liu, L. Guo, L. Cheng, H. Ju. Determination of Nitrite Based on Its Quenching Effect on Anodic Electrochemiluminescence of CdSe Quantum Dots[J]. Talanta, 2009,78(3):691-694.
    [122]田佩瑶,盛欣,刘丽萍.电感耦合等离子体质谱法测定生活饮用水输配水设备中24种金属元素的方法研究[J].卫生研究,2006,35(6):801-803.
    [123]粱细荣,李献华,刘颖.激光熔蚀微探针—电感耦合等离子体质谱法[J].分析测试学报,2000,19(1):33-36.
    [124]J. L. Chen, Y. C. Gao, Z. B. Xu, et al. A Novel Fluorescentarray for Mercury(I)Iion in Aqueous Solution with Functionalized Cadmium Selenide Nanoclusters[J]. Analytica Chimica Acta,2006,577:77-84.
    [125]赖艳,钟萍,俞英.新型量子点的合成及荧光法测定痕量Cu[J].化学试剂,2006, 28(3):135-138.
    [126]H. Wu, J. Liang, H. Han. A Novel Method for the Determination of Pb2+ Based on the Quenching of the Fluorescence of CdTe Quantum Dots[J]. Microchimica Acta, 2008,161(1-2):81-86.
    [127]H. Y. Xie, J. G. Liang, Z. L. Zhang. Luminescent CdSe-ZnS Quantum Dots as Selective Cu2+ Probe[J]. Spectrochim Acta PartA,2004,60:2527-2530.
    [128]严拯宇,庞代文,邵秀芬.量子点荧光猝灭法测定中药饮片中的微量铜[J].中国药科大学学报,2005,36(3):230-233.
    [129]G. Richard. Modifying an Enzyme Immunoassay of Immunoreactive Trysinogen to Use Time-Resoloves Fluorescence[J].Clin Chen,1993,39:224.
    [130]B. M. Lingerfelt, H. Mattoussi, E. R. Goldman. Preparation of Quantum Dots Biotin Conjugates and Their Use in Immunochromatography Assays[J]. Analytical Chemistry,2003,75(16):4043-4049.
    [131]E. R. Goldman, A. R. Clapp, G. P. Anderson. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents[J]. Analytical Chemistry,2004,76(15): 684-688.
    [132]M. A. Hahn, J. S. Tabb, T. D. Krauss. Detection of Single Bacterial Pathogens with Semiconductor Quantum Dots[J]. Analytical Chemistry,2005,77(15):4861-4869.
    [133]Y. Nosaka, H. Tanaka, Effect of Phenyl-Capping and Dimer Formation on the Electronic States of CdS Nanoparticles by Means of Semiempirical Molecular Orbital Calculations[J]. The Journal of Physical Chemistry B,2002,106,3389-3393.
    [134]L. H. Qu, X. G. Peng. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth[J]. Journal of the American Chemical Society,2002,124, 2049-2055.
    [135]P. R. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, A. J. Nozik. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots[J]. The Journal of Physical Chemistry B,2006,110,25451-25454.
    [136]L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, G. A. Ozin. Size-Dependent Extinction Coefficients of PbS Quantum Dots[J]. Journal of the American Chemical Society,2006,128,10337-10346.
    [137]J. Jasieniak, P. Mulvaney. From Cd-Rich to Se-Rich the Manipulation of CdSe Nanocrystal Surface Stoichiometry[J]. Journal of the American Chemical Society, 2007,129,2841-2848.
    [138]S. L. Castro, S. G. Bailey, R. P. Raffaelle. Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor[J]. The Journal of Physical Chemistry B,2004,108,12429.
    [139]H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata. Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System[J]. Chemistry of Materials,2006,18,3330.
    [140]杨洗,潘祖亭,马勇.用罗丹明B作标准物测定二氯荧光素的荧光量子产率[J].分析科学学报,2003,19(6):588-589.
    [141]李隆弟,张满.溶液荧光量子产率的相对测量[J].分析化学,1988,16(8):732.
    [142]I. Tsuji, H. Kato, H. Kobayashi, A. Kudo. Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures[J]. Journal of the American Chemical Society,2004,126,13406-13413.
    [143]T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama. Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore[J]. Journal of the American Chemical Society,2007,129:12388.
    [144]王喆,刘广文,张宏伟.苏丹红Ⅰ号及其检测方法[J].肉品卫生,2005,6:24-26.
    [145]李平,陈澍,付松.二极管阵列检测器在液相色谱测定苏丹红Ⅰ中的应用[J].预防医学情杂志,2005,21:132-134.
    [146]G. D. Hussein, and A. B. Peter. Simultaneous Determination of Sudan Dyes and Carotenoids in Red Pepper and Tomato Products by HPLC[J]. Journal of Chromato-grographic, Science,2005,43:462-465.
    [147]F. Calbiani, M. Careri, Elviri. Development and in-House Validation of a Liquid Chromatography Electrospray Electrospray-Tandem Mass Spectrometry Method for the Simultaneous Determination of Sudan Ⅰ, Sudan Ⅱ, Sudan Ⅲ and Sudan IV in Hot Chilli Products[J]. Journal of Chromatogrography A,2004,1042:123-130.
    [148]张玉黔,栾燕,王新丽.反相高效液相色谱法测定食品中苏丹红1,2,3,4的方法研究[J].中国卫生检验杂志,2005,15:807-808.
    [149]王洋,彭琨,王胜.食品中苏丹红一号的检测方法[J].粮油食品科技,2005,4:43-44.
    [150]喻凌寒,杨运云,闫世平.LC-ESI/MS分析食品中微量苏丹红Ⅰ-Ⅳ[J].分析测试报,2005,24:28-31.
    [151]吴惠勤,黄晓兰,黄方.GC-MS/SIM法同时测定食品汇总的苏丹红-Ⅳ[J].析测 试学报,2005,24:1-5.
    [152]彭科怀,向仕学,汤晓勤.辣椒制品中苏丹红Ⅰ的极谱法快速测定[J].预防医学情报杂志,2005,21:286-288.
    [153]F. Puoci, C. Carreffa, F. lemma. Molecularly Imprinted Solidphase Extraction for Detection of Sudan I in Food Matrices[J]. Food Chemistry,2005,93:349-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700