用户名: 密码: 验证码:
锰毒对酸柚光合作用及抗氧化系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是亚热带常绿果树,种植于湿润、半湿润的热带、亚热带和温带地区,多为酸性或强酸性的红壤、黄壤或砖红壤,容易受到锰(Mn)毒的危害。目前,Mn毒对柑橘光合作用和抗氧化系统的研究甚少。
     每隔一天用含2μM(对照)和500μM(Mn毒)MnSO4的营养液浇盆栽(基质为砂)酸柚[Citrus grandis (L.) Osbeck]实生苗,17周后调查Mn毒对酸柚实生苗生长、叶片CO2同化、核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)、碳水化合物和光合电子传递,以及根系和叶片抗氧化系统的影响,旨在明确Mn毒所导致的叶片CO2同化下降的机制,证实Mn毒引起的活性氧代谢的变化在根系和叶片中不同的假说。
     锰毒显著增加根、茎和叶的Mn含量,但绝大部分Mn仍保留在根部。锰毒下酸柚实生幼苗根/冠比增大,因为Mn毒对地上部生长的影响比对根系生长的影响大。Mn毒减少酸柚叶片CO2同化和气孔导度,增加其胞间CO2浓度,但并不影响其叶绿素(Chl)含量;Mn毒叶片Rubisco初始活性和总活性下降的幅度均小于CO2同化下降的幅度。锰毒叶片果糖、葡萄糖、淀粉和总的非结构性碳水化合物含量与对照无显著差异,但其蔗糖含量则比对照高。Mn毒叶片OJIP曲线的O点上升,P点下降,并出现正的ΔL-和K-带。Mn毒降低暗适应叶片最大光量子产额(Fv/Fm)和总的性能指数(PItot, abs),增加其I点的相对可变荧光(VI)和热耗散能。当用单位蛋白质表示时,Mn毒叶片有较高的单脱氢抗坏血酸还原酶(MDAR)、谷胱甘肽还原酶(GR)、超氧物岐化酶(SOD)、过氧化氢酶(CAT)和愈创木酚过氧化物酶(GPX)活性,较高的抗氧化物质含量和较低的脱氢抗坏血酸还原酶(DHAR),而Mn毒根系有相似或较低的抗氧化酶活性和抗氧化物质含量。锰毒并不影响酸柚叶片和根系丙二醛(MDA)含量。
     总之,Mn毒损伤了从光系统II(PSII)供体侧到光系统I(PSI)末端电子受体还原的整个光合电子传递链,从而限制还原力的产生,最终导致CO2同化下降。锰毒叶片抗氧化系统和热耗散均被上调,而在Mn毒处理的根系中其抗氧化系统并没有被上调,但仍保持高的抗氧化能力。Mn毒叶片和根系抗氧化系统均可为它们提供足够的保护使其免遭氧化伤害。
Citrus belongs to evergreen subtropical fruit trees and is cultivated in humid and sub-humid of tropical, sub-tropical, and temperate regions of the world mainly on acidic or highly acidic soils such as red soil, yellow soil and latosol and is liable to suffer from manganese (Mn)-toxicity.
     Sour pummelo [Citrus grandis (L.) Osbeck] seedling grown in pots containing sands were fertigated for 17 weeks with nutrient solution containing 2μM (control) or 500μM (Mn-toxicity) MnSO4. Thereafter, the effects of Mn-toxicity on growth, CO2 assimilation, Ribulose-1,5- bisphosphate carboxylase/oxygenase (Rubisco), non-structural carbohydrates and photosynthetic electron transport in leaves, and antioxidant systems in roots and leaves of sour pummelo seedlings. The objective of this study were to understand the mechanisms by which Mn-toxicity leads to a decrease in CO2 assimilation and to test the hypothesis that Mn-toxicity-induced changes in antioxidant systems differr between roots and leaves.
     Mn-toxicity decreased CO2 assimilation and stomatal conductance, increased intercellular CO2 concentration, but did not affect chlorophyll (Chl) content. Both initial and total Rubisco activity in Mn-toxicity leaves decreased to a lesser extent than CO2 assimilation. Contents of glucose, fructose, starch and total nonstructural carbohydrates did not differ between Mn-toxicity leaves and controls, while sucrose content was higher in the former. Chl a fluorescence (OJIP) transients from Mn-toxicity leaves showed increased O-step and decreased P-step, accompanied by postivieΔL- and K-bands. Mn-toxicity decreased maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot, abs), but increased relative variable fluorescence at I-steps (VI) and energy dissipation. On a protein basis, Mn-toxicity leaves displayed higher activities of monodehydroascorbate reductase (MDAR), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) and contents of antioxidants, similar ascorbate peroxidase (APX) activities and lower dehydroascorbate reductase (DHAR) activities; while Mn-toxicity roots had similar or lower activities of antioxidant enzymes and contents of antioxidants. Mn-toxicity did not affect malondialdehyde (MDA) content of roots and leaves.
     In conclusion, Mn-toxicity impaired the whole photosynthetic electron transport chain from the donor side of photosystem II (PSII) up to the reduction of end acceptors of PSI, thus limiting the production of reducing equivalents, and hence the rate of CO2 assimilation. Both the energy dissipation and the antioxidant systems were enhanced in Mn-toxicity leaves, while the antioxidant systems in Mn-toxicity roots were not enhanced, but still remained high activity. Antioxidant systems in Mn-toxicity roots and leaves provided sufficient protection to them against oxidative damage.
引文
1.陈立松,刘星辉. 2003.果树逆境生理.北京:中国农业出版社
    2.陈桂芬. 2001.广西植物的锰毒与矫正对策.广西农业科学, 4:187-188
    3.陈诒竹,李晓萍,夏丽. 1995.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报, 3(4): 79-86
    4.何勇强,莫良玉,梁和. 1999.柑桔锰中毒症的诊断与防治.广西热作科技, 1:1-2
    5.林海涛,史衍玺. 2005.铅、镉胁迫对茶树根系分泌有机酸的影响.山东农业科学, 2: 32-34
    6.倪穗,俞惠娜,刘鹏,徐根娣. 2007.大豆幼苗光合特性对锰营养的响应.植物营养与肥料学报, 13(6): 1135-1142
    7.任立民,刘鹏. 2007.锰毒及植物耐性机理研究进展.生态学报, 27(1): 357-367
    8.施益华,刘鹏. 2003.锰在植物体内生理功能研究进展.江西林业科技, (2): 26-31.
    9.沈仁芳主编. 2008.铝在土壤-植物中的行为及植物的适应机制.北京:科学出版社
    10.史庆华,朱祝军,应泉盛,钱琼秋. 2005a.不同光强下高锰对黄瓜光合作用特性的影响.应用生态学报, 16(6): 1047-1050.
    11.史庆华,朱祝军,李娟,钱琼秋. 2005b.高锰胁迫与低PH对黄瓜根系氧化胁迫和抗氧化酶得复合效应.中国农业科学, 38(5): 999-1004.
    12.史庆华,朱祝军,王永传,王萍,王秀峰. 2006.不同辐照度下高浓度锰对黄瓜叶片活性氧产生和抗氧化酶活性得影响.植物生理与分子生物学学报, 32(3): 325-329.
    13.孙玉珍,赵运林,杨小琴. 2008.锰胁迫对3种花卉植物生理抗性的影响.安徽农业科学, 36(7): 2644-2648
    14.俞惠娜,徐根娣,杨卫韵,张晓燕,刘鹏. 2005.锰处理对大豆生理特性的影响.河南农业可学, 7: 35-38.
    15.臧小平. 1999.土壤锰毒与植物锰的毒害.土壤通报, 30(3): 139-141
    16.曾琦,耿明建,张志江,周文兵,朱端卫. 2004.锰毒害对油菜苗期Mn、Ca、Fe含量及POD、CAT活性的影响.华中农业大学学报, 23(3): 300-303.
    17.张守仁. 1999.叶绿素荧光动力学参数的意义及讨论.植物学通报, 16(4): 444-448
    18.张晓燕,刘鹏,徐根娣,朱佳,徐冬青,何文彬. 2006.锰对荞麦根系形态及生理的影响.浙江农业科学, (4): 419-422
    19.周泽义. 1999.中国蔬菜重金属污染及控制.资源生态环境网络研究动态, 10(3): 21-27
    20. Alam S, Kamei S, Kawai S. 2003. Amelioration of manganese toxicity in young rice seedlings with potassium. J Plant Nutr, 26: 1301-1314
    21. Ali NA, Dewez D, Didur O, Popovic R. 2006. Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynth Res, 89: 81-87
    22. Appenroth KJ, Stockel J, Srivastava A, Strasser RJ. 2001. Multiple effects of chromate on the photosynthetic apparatus Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut, 115: 49-64
    23. Aro E-M, McCaffery S, Anderson JM. 1993. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol, 103: 835-843
    24. Baker NR, Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J Exp Bot, 55: 1607-1621
    25. Boojar MMA, Goodarzi F. 2008. Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine. Ecotox Environ Safe, 71: 692-699
    26. Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-254
    27. Bukhov NG, Sabat SC, Mohanty P. 1990. Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amarenthus chloroplasts. Photosynth Res, 23: 81-87
    28. Cao J, Govindjee. 1990. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakiod membranes. Biochim Biophys Acta, 1015: 180-188
    29. Champman HD. 1968. The mineral nutrition of citrus. In: W Reuther, HJ Weber, LD Batchelor, eds, The Citrus Industry, vol. 2. Berkeley, CA, USA: University of California, Division of Agricultural Sciences, pp: 127-189
    30. Chatterjee C, Nautiyal N, Agarwala SC. 1994. Influence of changes in manganese and magnesium supply on some aspects of wheat physiology. Soil Sci Plant Nutr, 40: 191-197
    31. Chen L-S, Cheng L. 2003a. Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves inresponse to N limitation. J Exp Bot, 54: 2165-2175
    32. Chen L-S, Cheng L. 2003b. Carbon assimilation and carbohydrate metabolism of‘Concord’grape leaves in responses to nitrogen supply. J Amer Soc Hort Sci 2003, 128: 754-760
    33. Chen L-S, Cheng L. 2004. CO2 assimilation, carbohydrate metabolism, xanthophyll cycle and the antioxidant system of‘Honeycrisp’apple (Malus domestica Borkh.) leaves with zonal chlorosis. J Amer Soc Hort Sci, 129: 729-737
    34. Chen L-S, Qi Y-P, Nose A. 2001. Diurnal changes in metabolite levels in the chlorenchyma and the water storage parenchyma of Ananas comosus leaves. Acta Phytophysiol Sin, 27: 253-260
    35. Chen L-S, Lin Q, Nose A. 2002. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalancho? daigremontiana and K.pinnata. J Exp Bot, 53: 341-350
    36. Chen L-S, Qi Y-P, Liu X-H. 2005a. Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot, 96:35-41
    37. Chen L-S, Qi Y-P, Smith BR. 2005b. Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol, 25: 317-324
    38. Chen L-S, Li P, Cheng L. 2008. Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta, 228: 745-756
    39. Cheng L, Fuchigami L H. 2000. Rubisco activation state decreases with increasing nitrogen content in apple leaves. J Exp Bot, 51: 1687-1694
    40. Chylla R, Whitmarsh J. 1989. Inactive photosystem II complexes in leaves. Plant Physiol, 90:765-772
    41. Cuypers A, Vangronsveld J, Clijsters H. 2001. The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem, 39: 657-664
    42. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U. 2004. Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot, 52:253-266.
    43. Doncheva S, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M, BarcelóJ. 2009. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exp Bot, 65: 189-197
    44. El-Jaoual T, Cox DA. 1998. Manganese toxicity in plants. J Plant Nutr, 21(2): 353-386.
    45. Fecht-Christoffers MM, Braum H-P, Lemaitre-Guillier C, Van Dorsselaer A, Horst WJ. 2003. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol, 133: 1935-1946
    46. Feng J-P, Shi Q-H, Wang X-F. 2009. Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agri Sci China, 8:40-50.
    47. Fowler JL, Morgan PW. 1972. The relationship of the peroxidative indoleaceti acid oxidase system to in vivo ethlenc synthesis in cotton. Plant Physiol, 49: 555-559.
    48. Foy CD. 1984. Physiological efects of hydrogen,aluminium and manganese toxicities in acid soils. In: Soil Acidity and Liming, Agronomy Monograph No. 12, American Society of Agronomy, Madison, WI, pp: 57-97
    49. Führs H, Hartwig M, Molina LE, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ. 2008. Early manganese-toxicity response in Vigna unguiculata L.– a proteomic and transcriptomic study. Proteomics, 8: 149-159
    50. Gherardi MJ, Rengel Z. 2003. Genotypes of lucerne (Medicago sativa L.) show differential tolerance to manganese deficiency and toxicity when grown in bauxite residue sand. Plant Soil, 249: 287-296
    51. Giannopolitis CN, Rice SK. 1977. Superoxide dimutase: occurrence in higher plants. Plant Physiol, 59: 309-314
    52. Gilmore AM, Hazlett TL, Debrunner PG, Govindjee. 1996. Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycledependent energy dissipation. Photochem Photobiol, 64: 552-563
    53. González A, Lynch JP. 1997. Effects of manganese toxicity on leaf CO2 assimilation of contrasting common bean genotypes. Physiol Plant, 101: 872-880
    54. Gonzalez A, Steffen KL, Lynch JP. 1998. Light and excess manganese: implications foroxidative stress in common bean. Plant Physiol, 118: 493-504
    55. Gossett DR, Millhollon EP, Lucas MC. 1994. Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci, 34: 706-714
    56. Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem, 106: 207-212
    57. Han S, Tang N, Jiang H-X, Yang L-T, Li Y, Chen L-S. 2009. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci, 176: 143-153
    58. Heenan DP, Carter OG. 1977. Influence of temperature on the expression of manganese toxicity by two soybean varieties. Plant Soil, 47: 219-227
    59. Henriques FS. 2003. Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci, 165: 239-244
    60. Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611
    61. Horst WJ. 1988. The physiology of Mn toxicity. In: MJ Webb, RO Nable, RD Graham, RJ Hannam, eds, Manganese in Soil and Plants. Kluwer Academic Publishers, Dodrecht, The Netherlands, pp: 175-188
    62. Horst WJ, Maier P, Fecht M. 1999. The physiology of manganese toxicity and tolerance in Vigna unguiculata.Plant Nutr Soil Sci, 162(3): 263-274
    63. Houtz R, Nable RO, Cheniae GM. 1988. Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/cxygenase during development of Mn toxicity in tobacco. Plant Physiol, 86: 1143-1149
    64. Houtz RL, Nable RO, Cheniae GM. 1988. Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. Plant Physiol 86, 1143-1149.
    65. Jiang H-X, Chen L-S, Zheng J-G, Han S, Tang N, Smith BR. 2008. Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol, 28:1863-1871
    66. Jones Mgk, Outlaw WJ, Lowery OH. 1977. Enzymic assay of 10-7 to 10-14 moles of sucrosein plant tissues. Plant Physiol, 60: 379-383.
    67. Kitao M, Lei TT, Koike T. 1997a. Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiol Plant, 101: 249-256
    68. Kitao M, Lei TT, Koike T. 1997b. Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. Environ Pollut, 97: 113-118
    69. Kochian LV, Pi?eros MA, Hoekenga OA. 2005. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil, 274: 175-195
    70. Kushizaki M. 1968. An extraction procedure of plant materials for the rapid determination of Mn, Cu, Zn and Mg by the atomic absorption analysis. J Sci Soil Manure Jpn, 39: 489-490
    71. Law MY, Charles SA, Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts: the effect of hydrogen peroxide and of paraquat. Biochem J, 210: 899-903
    72. Lei Y, Korpelainen H, Li C. 2007. Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere, 68: 686-694
    73. Lichtenthaler HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 148: 350-382
    74. Lidon FC. 2002. Lipid, carbohydrate, and protein accumulation in Mn-treated rice. J Plant Nutr, 25: 769-780
    75. Lidon FC, Teixeira MG. 2000. Oxy radicals production and control in the chloroplast of Mn-treated rice. Plant Sci, 152: 7-15
    76. Lidon FC, Barreiro MG, Ramalho JC. 2004. Manganese accumulation in rice : implications for photosynthetic functioning. J Plant Physiol, 161: 1235-1244
    77. Lin Z-H, Chen L-S, Chen R-B, Zhang F-Z, Jiang H-X, Tang N. 2009. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol, 9: 43
    78. Macfie SM, Taylor GJ. 1992. The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiol Plant, 85: 467-475
    79. Macfie SM, Cossins EA. 1994. Effects of excess manganese on production of organic acidsin Mn-tolerant and Mn-sensitive cultivars of Triticum aestivum L. (wheat). J Plant Physiol, 143(2): 135-144
    80. Marschner H. 1995. Mineral Nutrition of Higher Plants. San Diego: Academic Press
    81. Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence ?a practical guide. J Exp Bot, 51: 659-668
    82. Mora ML, Rosas A, Ribera A, Rengel Z. 2009. Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil, 320: 79-89
    83. Morgan PW, Joman HE, Amin JV. 1966. Effect of manganese toxicity on the indole acetic acid oxidase system of cotton. Plant Physiol, 41: 718-724
    84. Mukhopadhyay MJ, Sharma A. 1991. Manganese in cell metabolism of higher plants. Bot Rev, 57: 117-149
    85. Nable RO, Houtz RL, Cheniae GM. 1988. Early inhibition of photosynthesis during development Mn toxicity in tobacco. Plant Physiol, 86: 1136-1142
    86. Ohki K. 1985. Manganese deficiency and toxicity effects on photosynthesis, chlorophyll, and transpiration in wheat. Crop Sci, 25: 187-191
    87. Panda S, Mishra AK, Biswal UC. 1989. Manganese induced peroxidation of thylakoid lipids and changes in chlorophyll a fluorescence during aging of cell free chloroplasts in light. Phytochemistry, 26: 3217-3219
    88. Papadakis IE, Giannakoula A, Therios IN, Bosabalidis AM, Moustakas M, Nastou A. 2007. Mn-induced changes in leaf structure and chloroplast ultrastructure of Citrus volkameriana (L.) plants. J Plant Physiol, 164: 100-103
    89. Quartin V, Ramelho JC, Nunes MA. 1998. Responses of biomass and several photosynthetic indicators to manganese excess in triticale. J Plant Nutr, 21: 1615-1629
    90. Rohbek K. 2002. Chlorophyoll a fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40(1): 13-29
    91. Rucińska R, Waplak S, Gwó?d? EA. 1999. Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem, 37: 187-194
    92. Rufty TW, Miner GS, Raper CD Jr. 1979. Temperature effects on growth and manganese tolerance in tobacco. Agron J, 71: 638-644
    93. Schansker G, T?th SZ, Strasser RJ. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta, 1706: 250-261
    94. Setlik I, Allakhverdiev SI, Nedbal L, Setlikova E, Klimov VV. 1990. Three types of photosystem II photoinactivation. 1. Damaging processes on the acceptor side. Photosynth Res, 23: 39-48
    95. Sheen J. 1994. Feedback control of gene expression. Photosynth Res, 39: 427-438
    96. Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J. 2005. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to the activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry, l 66: 1551-1559
    97. Shi Q-H, Zhu Z-J, Li J, Qian Q-Q. 2006. Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agr Sci China, 5: 767-772
    98. Shi Q, Zhu Z. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot, 63: 317-326
    99. Sinha S, Mukherji S, Dutta J. 2002. Effect of manganese toxicity on pigment content, Hill activity and photosynthetic rate of Vigna radiata L. Wilczek seedlings. J Environ Biol, 23: 253-257
    100. Sirkar S, Amin JV. 1974. The manganese toxicity of cotton. Plant Physiol, 54: 539-543
    101. Smit MF, van Heerden PDR, Pienaar JJ, Weissflog L, Strasser RJ, Krüger GHJ. 2009. Effect of trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, on Phaseolus vulgaris and Zea mays. Plant Physiol Biochem, 47: 623-634
    102. Srivastava A, Guisse B, Greppin H, Strasser RJ. 1997. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta, 1320: 95-106
    103. St. Clair SB, Lynch JP. 2004. Photosynthetic and antioxidant enzyme responses of sugar maple and red maple seedlings to excess manganese in contrasting light environments. Funct Plant Biol, 31:1005-1014
    104. Strasser BJ. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 52: 147-155
    105. Strasser RJ. 1978. The grouping model of plant photosynthesis. In: G Akoyunoglou, ed, Chloroplast Development. Dordrecht: Elsevier, pp: 513-524
    106. Strasser RJ, Srivastava A, Govindjee. 1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 61: 32-42
    107. Strasser RJ, Srivastava A, Tsimilli-Michael M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, Probing Photosynthesis: Mechanisms, Regulation and Adaptation[C], London: Taylor and Francis, 445~483.
    108. Strasser RJ, Tsimilli-Micheal M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: GC Papageorgiou, Govindjee, eds, Chlorophyll a Fluorescence: A Signature of Photosynthesis. Dordrecht: Springer, pp. 321-362
    109. Subrahmanyam D, Rathore VS. 2000. Influence of manganese toxicity on photosynthesis in rice bean seedlings. Photosynthetica, 38: 425-429.
    110. Suresh R, Foy CD, Weidner JR. 1987. Effects of excess soil manganese on stomatal function in two soybean cultivars. J Plant Nutr, 10: 749-760
    111. Susplugas S, Srivastava A, Strasser RJ. 2000. Changes in the photosynthetic activities during several stages of vegetative growth of Spirodela polyrhiza: chromate. J Plant Physiol, 157: 503-512
    112. Syvertsen JP, Bausher MG, Albrigo LG. 1980. Water relations and related characteristics of healthy and blight affected citrus trees. J Amer Soc Hort Sci, 105: 431-434
    113. Tsimilli-Michael M, Strasser RJ. 2008. In vivo assessment of stress impact on plant’s vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants. In: A Varma ed, Mycorrhiza: Genetics and Molecular Biology, Eco-function, Biotechnology, Eco-physiology, and Structure and Systematics. Berlin: Springer, pp. 679-703
    114. von Uexkull HR, Mutert E. 1995. Global extent, development and economic impact of acid soils. In: RA Date, NJ Grundon, GE Raymet, ME Probert, eds, Plant-Soil Interactions at Low pH: Principles and Management. Dordrecht, The Netherlands: Kluwer Academic Publisher, pp. 5-19
    115. Vose PB, Randall PJ. 1962. Resistance to aluminum and manganese toxicities in plants related to variety and cation exchange capacity. Nature, 196: 85-86.
    116. Wilkinson RE, Ohki K. 1988. Influence of manganese deficiency and toxicity on isoprenoid syntheses. Plant Physiol, 87: 841-846
    117. Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML. 2007. Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry, 68: 505-512
    118. Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D. 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67: 44-50
    119. Zhong YW, Liang F, Hong B, Young JC, Sussman MR, Harper JF, Sze H. 2002. An endoplasmic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress. Plant Physiol, 130: 128-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700