用户名: 密码: 验证码:
氮化硼物相与形貌控制的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硼作为一种重要的无机非金属材料,具有优异的物理化学性质,在很多方面有潜在的应用前景。常见的物相包括:立方相氮化硼,六方相氮化硼,菱形氮化硼(也称为三方相)和纤锌矿型氮化硼。其中,立方相氮化硼具有与金刚石相似的晶体结构,其硬度仅次于金刚石,而它的抗氧化温度(~1200℃)和“石墨化温度”(~1500℃)都高于金刚石(~600℃和~1400℃),立方相氮化硼对铁族元素在高温下仍具有很高的惰性,这些性质使其广泛应用于机械加工行业,成为高效、节能的切削和磨削的良好材料。同时,立方相氮化硼具有宽的带隙(Eg~6.0 eV)和良好的导热性,并且还可通过掺入特定的杂质使其具有独特的半导体性质,例如,添加铍(Be)可获得p型半导体材料,添加硫(S)、碳(C)、硅(Si)等则可以得到n型半导体材料,这些优良的特性使得立方相氮化硼在抗辐射电子学、光电子学、高温电子学和高频大功率器件领域具有良好的应用前景。此外,六方相氮化硼具有与石墨相似的层状晶体结构,二者具有相似的物理化学性质,如良好的润滑性、耐化学腐蚀性、高热导率等。与石墨不同的是,六方相氮化硼是一种宽带隙半导体或者绝缘材料,并且其抗氧化温度更高,具有更高的化学惰性。此外,它还能实现n型和p型掺杂,具有中子吸收能力,是很好的耐高温电子器件材料和很有前途的声光电材料。
     由于其优良的性质和广泛的应用价值,所以,目前对氮化硼纳米材料的制备、纳米结构的表征、纳米器件的组装以及光学性能、电学性能的测试成为当今氮化硼纳米材料研究领域的重要方向。目前,国内外已报道的制备氮化硼纳米材料的方法很多,主要有碳纳米管模板法、熔融盐法、激光熔融法、化学气相沉积法和电弧放电法等。在对氮化硼材料的合成、测试、表征和应用等方面的发展现状进行了充分调研的基础上,本论文采用高温退火法、金属还原法和热分解法,成功地制备了:(1)三方相氮化硼的三角片和六角片,(2)立方相氮化硼的纳米颗粒,(3)六方相氮化硼的纳米棒。通过对实验结果的分析和有关的文献调研,分别对它们的生长机理进行了探讨。论文中取得了一些创新性的成果,主要内容概括如下:
     1.发展了一种可实现三方相氮化硼由三角片转变为六角片的新方法。首先,通过NaBH4和NaNH2在550℃反应24小时的新路线,成功的制备了氮化硼的三角片,标注为样品1(Sample 1)。Χ-射线粉末衍射(XRD)显示制得的样品是三方相氮化硼,其晶格常数为:a=2.53 A和c=10.00 A,这与三方相氮化硼标准数据基本一致(JCPDS card no.45-1171:a=2.504 A and c=10.000 A)。场发射扫描电子显微镜(SEM)和透射电子显微镜(TEM)照片显示:样品1的主要形貌是三角片(直径大约分布在200~500 nm,平均粒径约为360 nm,平均厚度约为50 nm),还有一些碎片和团聚的颗粒。此外,我们通过粒径分析知道,极小的三角片(粒径小于150 nm)和极大的三角片(粒径大于700 nm)占的比例极小,分别约为~5%和~3%。为了进一步表征三方相氮化硼的微结构,我们在高分辨电镜下得到三角片的晶格条纹图。图中清晰显示的两个相邻条纹之间的平均距离为0.21 nm,这和三方相氮化硼(JCPDS card no.45-1171)的(101)晶面的晶格间距非常接近,这也与XRD的分析结果相吻合,说明产物主要有三方相氮化硼的纳米三角片组成。除此之外,我们还考虑了其它的硼源和氮源对形成三角片的影响。实验结果表明,在NaNH2过量的前提下,即便是NaBH4被其它硼源如B,KBH4,KBF4,H3B03,Na2B407,Mg(B02)2·H20所取代,同样能制备出氮化硼三角片。然后,将已经制备出的氮化硼三角片在氮气中煅烧8 h,三角片的顶点会逐渐脱落,转变为BN六角片,标注为样品2(Sample 2)。样品2的XRD数据分析显示制得的样品物相是r-BN,说明了在煅烧的过程中没有发生相转变。样品2的形貌主要是由约为70%的六角片(直径大约分布在200~500nm,平均粒径约为320 nm,平均厚度约为50 nm)和一些无规则的碎片所组成。由此可见,在三角片转化为六角片的过程中,二者的厚度几乎保持一致。此外,我们通过粒径分析知道,极小的六角片(粒径小于200 nm)和极大的六角片(粒径大于500 nm)占的比例极小。为了进——步表征三方相氮化硼的微结构,我们在高分辨电镜下得到六角片的晶格条纹图和电子衍射图。图中清晰显示两个相邻条纹之间的平均距离为0.20 nm,和三方相氮化硼(JCPDS card no.45-1171)的(101)晶面的晶格间距(0.211 nm)基本一致,这也说明在氮气中煅烧的过程中,只是样品的形貌发生了改变,物相没有发生改变。样品的区域电子衍射(SAED)花样进一步分析表明,样品具有单晶结构。通过分析不同煅烧时间下的SEM照片和相关的文献资料,提出了形貌转变的可能机理。最新文献报道显示,厚度为几个纳米的氮化硼薄片添加到聚合物内,由于氮化硼薄片具有较大的比表面积能与高分子化合物形成复合物,氮化硼片能有效控制高分子化合物分子链的运动和扩散,从而大大减低聚合物的弹性系数和热膨胀系数,增加聚合物的拉伸强度,因此,我们制备的的氮化硼纳米片为后期的氮化硼的剥离及性能研究提供了基础和依据。我们还研究了所制备的氮化硼三角片和六角片的光学性质,在200 nm的激发波长下,氮化硼的三角片和六角片分别在316 nm和297 nm处有强的发射带,说明片状结构的氮化硼有望成为一种优良的紫外发光材料。
     2.探索了一条温和条件下制备立方相氮化硼的新路线。我们选择金属Na为还原剂,BBr3和NH4Br作为反应物,一起装入20毫升的不锈钢反应釜中,置于高温炉内从室温开始,以每分钟10℃的升温速率升至450-600℃,然后在目标温度下恒温24 h。待冷却到室温,取出反应釜内的粗产品,将其用无水乙醇和水洗涤分别除去残余的金属钠和产生的溴化钠;然后分别用稀盐酸和高氯酸洗涤以除去氮化铬杂质;最后产物在蒸馏水和无水乙醇洗涤后经过离心分离,在60℃下真空干燥12 h,获得浅灰色的粉末样品。此外,探索研究了温度、时间及反应物用量等对产物结构和性能的影响及可能的反应机理。
     我们发现,如果设定的温度低于500℃(比如450℃),所得样品的XRD和FTIR显示,样品只有六方相氮化硼;在500℃时,样品主要还是六方相氮化硼,但是,已经获得少量的立方相氮化硼。如将反应温度升至650℃或者700℃,则观察到六方氮化硼逐渐减少,同时立方相氮化硼的含量也随之增加,但纯度降低。实验结果表明,在600℃时所获得的样品中立方相含量和样品纯度都相对较高,因此,我们选定600℃为最理想的合成立方相氮化硼的温度。反应原料BBr3和NH4Br的摩尔比也会影响立方相氮化硼在样品中的含量。当BBr3:NH4Br=2:1或者1.5:1时,产品中主要是六方相氮化硼和单质硼;当BBr3:NH4Br=1:1时,可以获得少量的立方相氮化硼;当BBr3:NH4Br=1:3时,立方相的含量明显增加。可能是因为当NH4Br的量较多时,其分解产生的气体使得釜内压力增加导致立方相的含量增加。为了研究不同的硼源和氮源对结果的影响,我们做了一系列的对比实验。当BBr3被B粉,B2O3,H3BO3,NaBF4,NaBH4,或者是NH4Br被NH4HCO3,(NH2)2CO所代替时,XRD检测显示没有立方相氮化硼的特征峰;当NH4X(X=F,Cl,I)取代NH4Br做氮源时,有极少量的立方相氮化硼。此外,为了避免Cr的引入,我们在釜体内添加铜或者铁的内衬管,实验结果表明,粗产品只有六方相氮化硼而没有立方相氮化硼。可见氮化铬或者铬的存在对于立方相氮化硼的形成有一定的催化作用。
     (3)成功合成了氮化硼一维纳米棒材料。BN一维材料是BN研究的重要方向,但相对于纳米线、纳米管、纳米带材料的研究,有关氮化硼纳米棒的制备与性质研究的报道却相对较少。本文中,我们用C24H20BNa,N2H4·H20,Zn和S粉在600℃,24 h下制备出BN纳米棒。在SEM图像中可以观测到产物由大量分散纳米棒组成,平均直径约为50-150 nm。最后研究了不同的合成条件对产物的影响及可能的形成机理。
Boron nitride (BN) is an important inorganic non-metallic material because of its excellent physical and chemical properties.It has several different phases:such as cubic (c-BN), hexagonal (h-BN), wurtzite (w-BN),and rhombohedral (r-BN),et al. Among them, cubic boron nitride is the second hardest material only inferior to diamond, while its thermal stability is superior to that of diamond. The oxidation (1200℃) and graphitization temperatures(1500℃) of c-BN are higher than those of diamond (600℃and 1400℃),respectively. Moreover, c-BN is chemically inert against molten ferrous material, which makes it as the good material of cutting and grinding in the machining industry. In addition, it can also be doped for both n-and p-type conductivity. Hexagonal boron nitride has similar layered crystal structure with graphite, so they have similar physical and chemical properties, such as good lubrication, chemical resistance, and high thermal conductivity. Moreover, h-BN has superior properties than graphite in some respects.For example, h-BN is inert against metal (such as aluminum, copper, zinc, iron, etc.)and non-metallic (silicon, boron, glass, etc.).It has also high resistance to oxidation temperature, which shows that h-BN is a good chemical inert material.
     Based on excellent properties and wide applications,many researchers have engaged in the preparation and characterization of boron nitride. A number of preparation methods for BN nanomaterials have been reported at home and abroad, such as carbon nanotubes template method, molten salt method, laser melting method, chemical vapor deposition method and arc discharge method. In this paper, we have successfully synthesized the rhombohedral boron nitrde triangular nanoplates and hexagonal nanoplates,cubic boron nitride, and hexagonal boron nitride nanorods by the thermal-induced, metal reduction, thermal decomposition reaction, respectively. The main research contents of the dissertation are listed as follows:
     1.We developed a new method for r-BN from uniform triangular to hexagonal nanoplates.Firstly, triangular r-BN nanoplates have been prepared through the reaction of NaBH4 and NaNH2 at 550℃for 24 h, which were labeled as "Sample 1", all the diffraction peaks in the range of-25-80°in the typical XRD pattern of Sample 1 can be indexed as rhombohedral BN.The high diffraction intensity character of these peaks indicates the high crystallinity of Sample 1.The calculated lattice constant is a=2.53 (?) and c=10.00 (?),which is close to the reported value (JCPDS card no.45-1171:a=2.504 (?) and c=10.000 (?))of rhombohedral BN. The morphology and structure of the as-prepared samples were further analyzed by SEM and TEM. The images indicates that Sample 1 is composed of a large quantity of triangular nanoplates with an average thickness of about 50 nm and the rest are irregular shaped BN nanoparticles.These triangular nanoplates have widths mainly ranging from 200 to 500 nm and with the average edge lengths of about 360 nm, however, a little amount of small nanoplates (-5%) with a width of about 150 nm and few of large nanoplates (-3%,~700 nm) were also observed, which were further confirmed by the size distribution pattern.Through statistical SEM and TEM observations, the triangular nanoplates were estimated to be -90% among the product and the clear fringes with an average spacing of 0.21 nm correspond to the (101)lattice spacings of a r-BN crystal.The possible formation mechanism of these triangular BN nanoplates may be related to its anisotropic structure. Besides, under the excessive dosage of NaNH2, if NaBH4 was substituted by other boron sources (such as B,KBH4, KBF4, H3BO3,Na2B4O7, or Mg (BO2)2·H2O), triangular r-BN nanoplates could also be obtained. Therefore, it is obvious that the high content of NaNH2 was beneficial to the fabrication of triangular nanoplates because the synthetic environment is abundant in hydrogen and nitrogen. Then, these triangular BN nanoplates could transform into hexagonal ones in large quantities during calcination process with floating nitrogen, which were labeled as "Sample 2", the typical XRD pattern of Sample 2 shows the similar characteristics compared with that of Sample 1.These results reveal that no phase transformation occurred after the calcination process.The typical SEM and TEM images of Sample 2 show that these nanoplates are mainly hexagonal in shape with an average thickness of 50 nm. It is worth noting that the average thickness value of triangular and hexagonal r-BN nanoplates is similar(~50 nm), implying that the(111)basal plane is not change during the shape conversion process.The average edge width of the hexagonal nanoplates is 320 nm and mainly ranging from 200 to 500 nm, the size distribution histogram of these nanoplates exhibited that the proportion of small (less than 200 nm) and large (more than 500 nm) nanoplates is small.The observation results of the SEM and TEM images indicate that these hexagonal nanoplates have smooth surfaces and with uniform shapes.The HRTEM images performed on the single hexagonal r-BN nanoplate shows that the average distance between the neighboring fringes is about 0.20 nm, which is consistent with the interplanar distance of 0.211 nm in bulk r-BN. HRTEM and SAED(Selected Area Electron Diffraction) examinations of other nanoplates show similar results, which unambiguously imply their single crystalline nature. A series of experiments were further carried out by changing the synthetic conditions to study the process of this shape transition from triangular to hexagonal nanoplates.Their average edge sizes are 360 and 320 nm, and their intense emission bands are centered at 316 and 297 nm (λex=200 nm), respectively. Therefore, the samples possessing interesting varied optical properties and might be used as promising materials for deep-blue and UV applications.
     2.Cubic boron nitride was successfully prepared by metal reduction method on the basis of preparing hexagonal boron nitride. In a typical process,NH4Br (0.03 mol), BBr3 (0.01 mol),and sodium (0.13 mol) were placed into a 20 ml stainless steel autoclave. The autoclave was sealed and heated from room temperature to 450-600℃at a rate of 10℃min-1,then maintained at the target temperatures for 24 h in an electrical furnace. After the autoclave was cooled to room temperature, the inner raw product was collected and washed with absolute ethanol, dilute hydrochloric acid, perchloric acid (HClO4), distilled water and absolute ethanol for several times to remove the impurities.Finally, the black powders were obtained after a drying process in a vacuum at 60℃for 12 h. In addition, the possible influence factors (the reaction temperature, the reaction time and dosage of the reactants) on the structure and properties of the product have also been discussed. First, the effects of reaction temperatures on the yield of the c-BN were studied. If the reaction temperature was set below 500℃(such as 450℃), only h-BN could be obtained;At 500℃,little amount of c-BN were observed besides the dominant h-BN. It is found that the higher reaction temperature usually lead to the higher yield of c-BN, and its yield was dramatically increased in the whole product if the target temperature was set at 600℃;If the reaction temperature was further raised, such as at 650℃or 700℃, the yield of cubic boron nitride increased slowly but impurity peaks were also appeared.Besides the reaction temperature, the molar ratio of BBr3 to NH4Br was found to play an important role on the formation of c-BN.For instance, amorphous boron would be produced along with h-BN when the molar ratio is larger than 1:1 (such as 1.5:1 or 2:1);Only little c-BN co-existed with h-BN when the ratio was approaching 1:1,and its yield increased along with the increased ratio.The optimal ratio for the highest yield production of c-BN was found to be 1:3.It is also observed that the longer reaction time usually led to the production of c-BN with higher crystallinity, but had no obvious influence on its yield augment. Finally, a series of contrast experiments were carried out to investigate whether the result was similar or not if the reagents were substituted by others.For example, the BBr3 was substituted by B powder, B2O3,H3BO3,NaBF4, NaBH4, or NH4HCO3,(NH2)2CO were used instead of NH4Br, almost no c-BN was obtained. However, a small quantity of c-BN could be gained using other ammonium salts NH4X (X=F, Cl,I) cover for NH4Br. However, in the contrast experiments, only h-BN could be generated if a Cu or Fe tube was put into the same autoclave and acted as a liner while keeping other conditions unchanged. Therefore, it is obvious that the production of CrN was favorable for the formation of c-BN.
     3.Preparation and characterization of rod-shaped BN crystal.The reports about the preparation and properties of BN nanorods are relatively fewer compared to the nanowires,nanotubes and nanobelts.In this paper, rod-shaped BN crystal were synthesized through the reaction of C24H2oBNa, N2H4·H2O, Zn powders and sulphur powders at 600℃for 24 h. From the SEM and TEM results, it could be seen that the BN nanorods have a length of 300-1700 nm and a diameter of 50-150 nm.The ratio of length to the diameter could reach more than 10:1.In the preparation process, the growth mechanism of the BN nanorods has also been investigated by varying the synthetic conditions.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [2]王世敏,许祖勋,傅晶,纳米材料制备技术[M],化学工业出版社,2002.
    [3]白春礼,纳米科技及其发展前景[J],科学通报,2001,46,89-90.
    [4]张立德,牟季美,纳米材料科学[M],辽宁科技出版社,1994.
    [5]巩雄,张桂兰,汤国庆,纳米晶体材料研究进展[J],化学进展,1997,9,349-357.
    [6]Z. W. Pan, Z. R. Zhong, Z. L. Wang,Nanobelts of semiconducting oxides [J], Science,2001,291,1947-1949.
    [7]X. Y. Kong, Z. L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings and nanorings of piezoelectric nanobelts [J],Nano. Lett.2003,3, 1625-1631.
    [8]洪广言,李红云,热分解法制备希土氧化物超微粉末[J],无机化学学报,1991,7,241-243.
    [9]于德才,洪广言,共沉淀法制备铝酸镧超微粉末的研究[J],中国稀土学报,1992,10,44-47.
    [10]傅英,徐文兰,陆卫,半导体量子电子和光电子器件[J],物理学进展,2001,21,255-277.
    [11]M. Anpo, T. Shima, S.Kodama, Photocatalytic hydrogenation of propyne with water on small-particle Titania:size quantization effects and reaction intermediates[J],J.Phys. Chem.1987,91,4305-4310.
    [12]P. Ball, L. Garwin,Science at the atomic scale[J],Nature,1992,355,761-766.
    [13]W. P. Halperin, Quantum size effects in metal particles [J],Rev. Moden. Phys., 1986,58,533-606.
    [14]H.Tabagi, H.Ogawa, Y.Yamazaki, A. Ishizaki, T. Nakagiri.Quantum size effects on photoluminescence in ultrafine Si particles [J],Appl. Phys. Lett.1990, 56,2379-2380.
    [15]Q.Li, G. Zeng, S.Xi [J],Chinese Chemical Bulletin,1985,6,129-134.
    [16]胡德昌,胡滨.新型材料特性及应用[M],广东科技出版社,1997.
    [17]J.Liang, J.Liu, Q.Xie, S.Bai,W. Yu, Y. Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J],J. Phys. Chem. B 2005,109,9463-9467.
    [18]T. Masui, H.Hirai,R. Hamada, N.Imanaka, G. Adachi, T. Sakata, H.Mori, Synthesis and Characterization of Cerium Oxide Nanoparticles Coated with Turbostratic Boron Nitride[J],J. Mater, Chem.,2003,13,622-627.
    [19]S.C.Tsang, Y.K. Chen, P.J.Harris, A simple chemical method of opening and filling carbon nanotubes [J],Nature 1994,372,159-162.
    [20]D.D.Awschalom, M.A. Mccord, G. Grinstein, Observation of macroscopic spin phenomenain nanometerscalem agnets [J],J. Phys. Rev. Lett.,1990,65,783-786.
    [21]C.Macilwain, Nanotech thinks big [J],Nature 2001,405,730-732.
    [22]Q.Yang, K. B.Tang, C.R. Wang, Y. T. Qian, S.Y. Zhang, PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires [J],J. Phys. Chem. B 2002,106,9227-9230.
    [23]J.Wu, F. Duan, Y. Zheng, Y. Xie, Synthesis of Bi2WO6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity [J],J. Phys. Chem. C,2007,111,12866-12871.
    [24]D.O.Sullivan, M.Porteman, P. Descamps, F. Cambier, A. Leriche, B.Thierry Optimisation of alumina-silicon carbide dispersions and the fabrication of nanocomposite ceramic materials.In Key Engineering Materials,99-100, ed. Trans.Tech. Publications,Switzerland,1995,247-256.
    [25]C.S.Ju, M.G.Lee, S.S.Honn, The Effect of Precipitation Conditions on the Shapes and Size Distribution of Zinc Oxide Particles [J],Hwahak Konahak, 1997,35,655-659.
    [26]黄德欢.纳米技术与应用[M].中国纺织大学出版社,2001.
    [27]T. Nakanishi, B.Ohtani, K. Uosaki, Fabrication and Characterization of CdS-Nanoparticle Mono-and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold[J],J. Phys. Chem. B 1998,102,1571-1577.
    [28]G. A. Slack, Nonmetallic crystals with high thermal conductivity [J],J. Phys. Chem. Solid,1973,34,321-335.
    [29]D.L. Feldheim, C.D.Keating, Self-assembly of single electron transistors and related devices[J],Chem. Soc. Rev.1998,27,1-13.
    [30]T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J],Phys. Rev. B 1993,47,4569-4584.
    [31]杨柏,黄金满,郝恩才,沈家骢,半导体纳米微粒在聚合物基体中的复合与组装[J],高等学校化学学报,1997,7,1219-1226.
    [32]张立德,纳米材料与纳米体系物理——面向21世纪的新领域[J],中国科学基金,1994,7,198-201.
    [33]裘式纶,瞿庆洲,肖丰收,张宗涛,纳米材料研究进展Ⅱ:纳米材料的制备,表征与应用[J],化学研究与应用,1998,10,331-341.
    [34]J. Y. Shen, Z. Y. Li, Q.J. Yan, Y. Chen. Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles[J],J. Phys. Chem.,1993,97,8504-8511.
    [35]F. Fffievet, J.P. Lagier, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles [J],Solid. State. Ionics,1989,32,198-205.
    [36]夏长泰,施尔畏,仲维卓等.水热法制备BaTiO3粉体[J],无机材料学报,1995,10,293-300.
    [37]M.Fievet, J.P. Lagier, Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process [J],MRS. Bull.,1989,14,29-40.
    [38]G. Schmid, M. Harms, Ligand-stabilized giant palladium clusters:promising candidates in heterogeneous catalsis [J],J. Am. Chem. Soc.,1993,115, 2046-2048.
    [39]B.Parkinson. The Emerging Art of Solid-State Synthesis [J],Science,1995,270, 1157-1158.
    [40]G. W. Chow, L. K. Kurihara, K. M. Kemner, P. E. Schoen, W. T. Elam, A.Ervin, Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process [J],J. Mater. Res.,1995,10, 1546-1554.
    [41]王笃金,吴瑾光,徐光宪.微乳液法制备超细颗粒的研究进展[J],化学通报,1995,9,1-5.
    [42]刘辉,魏雨.纳米级铁酸盐粉体材料合成的进展[J],功能材料,2000,31,124-126.
    [43]W. Chang, G. Skandan, Chemical vapor processing and applications for nanostructures ceramic powders and whiskers [J],Nano. Mater.1994,4, 507-520.
    [44]K. R. Venkatachari,D.Huang, S.P. Ostrander, et al.A combustion synthesis process for synthesizing nanocrystalline zirconia powders [J],J. Mater. Res., 1995,10,748-755.
    [45]N.Malikova, I. P. Santos, Layer-by-Layer Assembled Mixed Spherical and Plannar Gold Nanoparticles:Control of Interparticle Interactions [J],Langmuir 2002,18,3694-3697.
    [46]Q.M.Zhang, Y. N.Huang, H.M. Shen, F. Yan, Y. W. Du, Y. N. Wang, The phase transition and transport properties [J],Appl. Phys. Lett.1995,67, 3417-3419.
    [47]J.Q.Xiao,J.S.Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems [J],Phys. Rev. Lett.1992,68,3749-3752.
    [48]朱宏杰,李春忠,陈江.化学气相沉积制备Si3N4超细微粉[J],无机材料学报,1995,10,43-48.
    [49]T. Kotani, L. Tsai,A. Tomita, Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film [J],Chem. Mater.,1996,8, 2109-2113.
    [50]沈卫,刘昌胜,顾燕芳.磷酸钙骨水泥的水化反应凝结时间及抗压强度[J],硅酸盐学报,1998,26,129-135.
    [51]V. L. Kuznetsov, M.N.Aleksandrov, I. V. Zagoruiko,A.L. Chuvilin, Study of ultradispersed diamond powders obtained using explosion energy [J],Carbon, 1991,29,665-668.
    [52]李阳兴,姜长印,万春荣.喷雾干燥法制备LiCoO2超细粉[J],无机材料学报,1999,14,657-660.
    [53]D.M. Eigler, E. K. Schweizer. Positioning single atoms with a scanning tunnelling microscope [J],Nature,1990,344,524-526.
    [54]M. S.El-Eskandarany, K. Sumiyama, K. Aoki, K. Suzuki, Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling [J],J. Mater. Res.,1992,7,888-893.
    [55]Z. A. Peng, X. G. Peng, Mechanisms of the shape evolution of CdSe nanocrystals [J],J.Am. Chem. Soc.2001,123,1389-1395.
    [56]H.Yang, Machanochemical gransformation of pyrolusifc via manganese reduction[J],J. Mater. Sci. Lett.,1993,12,314-317.
    [57]徐如人,庞文琴主编,无机合成与制备化学[M],高等教育出版社,2001.
    [58]Y.J.Zhu, Y. T. Qian, Radiation-hydrothermal synthesis and characterization of nanocrystalline copper powders [J], Mater. Sci. Eng. B,1994,23,16-119.
    [59]G. L. Zhang, W. H.Liu, F. Xu, W. X. Hu, Preparation of Fe nanocrystalline in SiO2 by ion implantation [J], Appl. Phys. Lett.1992,61,2527-2529.
    [60]P. D.Ramesh, B.Vaidhyanathan, M.Ganguli, K. J.Rao,Synthesis of SiC powder by use of microwave radiation [J],J. Mater. Res.,1994,9,3025-3027.
    [61]K. Shimizu, Production of uhrafine powder of zinc oxide [P],JP,62260716, 1987,63-72.
    [62]D.Dong, Preparation of uniform FeO(OH) colloidal particles by hydrolysis of ferric salts under microwave irradiation [J], Mater. Res. Bull.,1995,30,537-541.
    [63]李泉等,曾广赋,席时权,纳米粒子[J],化学通报,1995,6,29-34.
    [64]Z. L. Cui, L. F. Dong, Z. K. Zhang. Oxidation behavior of Nano-Fe prepared by hydrogen arc plasma method [J],Nano.struct. Mater,1995,5,829-833.
    [65]R. A. Webb,Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings [J],Phys. Rev. Lett.1985,54,2696-2699.
    [66]R. Birringer, H. Gleiter, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder [J],Phys. Lett. A,1984,102,365-369.
    [67]王月平,杨中民,信文瑜,纳米粒子及纳米化学研究进展[J],云南化工2000,1,22-25.
    [68]Y. Jiang, X. M. Meng, J.Liu, Hydrogen-Assisted Thermal Evaporation Synthesis of ZnS nanoribbons on a Large Scale [J],Adv. Mater.2003,15, 323-327.
    [69]K. Inomata, Giant Magneto resistance and Its Sensor Applications [J].J. Electroceramics,1998,2,283-293.
    [70]S.T. Taiis,A. R. M.Verschueren,C.Dekker,Room-temperature Transistor Based on a Single Carbon Nanotube [J],Nature,2000,393,49-52.
    [71]彭龙,徐光亮,刘莉,水热法制备磁性材料粉体的研究进展[J],磁性材料及器件,2005,6,13-15.
    [72]张卫民,张玉,董光明,水热-热解法制备具有一维结构的Co3O4多晶[J],高等学校化学学报,2006,10,1791-1794.
    [73]J. B.Kycia, J.Chen, R. Therrien, Effects of Diddipation on a Superconducting Single Electron Transistor [J],Phys. Rev. Lett.,2001,87,017002,1-4.
    [74]R. W. Siegles,Synthesis characterization and properties of nanophase TiO2 [J], J. Mater. Res.1998,3,1367-1370.
    [75]J.J.Pietron, R. M.Stroud, D.R. Rolison, Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures [J],Nano. Lett.2002,2,545-549.
    [76]R. F.Service, Materials Science:Small Clusters Hit the Big Time [J],Science 1996,271,920-922.
    [77]H.W. Postma, T. Teepen, Z. Yao,Carbon Nanotube Single-electron Transistors at Room Temperature [J],Science,2001,293,76-79.
    [78]A.P.Davis, Nanotechnology:Synthetic molecular motors [J],Nature 1999,401, 120-121.
    [79]A. Achtold, P. Hadley, T. Nakanishi,Logic Circuits with Carbon Nanotube Transistors[J],Science,2001,294,1317-1320.
    [80]S.E.Saddow, A. Agarwal, Advances in Silicon Carbide Processing and Applications, Artech House, Inc. Boston·London,2004.
    [81]J.Rupp, R. Birringer, Enhanced Specific-heat-capacity (Cp) Measurements of Nanometer-sized Crystalline Materials [J],Phys. Rev. B,1987,36,7888-7890.
    [82]宋登元,GaN薄膜异质外延制备技术的进展[J],半导体光电,1994,4,303-309.
    [83]T. Turi,U.Erb,Thermal Expansion and Heat Capacity of Porosity-free Nanocrystalline Materials [J].Mater. Sci. Eng. A,1995,204,34-38.
    [84]曹传宝,彭定坤,孟广耀,微波等离子体低温制备金刚石薄膜[J],1994,25,570-574.
    [85]A.Echenik, G. J.Piermarini, S.C.Danforth, Fabrication of Transparent Silicon Nitride From Nanosize Particles[J],J. Am. Cera. Soc.,1992,75,3283-3288.
    [86]梁静秋,姚劲松,王飞,LIGA技术中的X射线掩膜[J],仪表技术和传感器,1997,3,23-26.
    [87]周天翔,用硅晶体管芯替代光敏电阻和光电池[J],教学仪器与实验,1994,6,13-15.
    [88]N.Koshida, A. Kojima, T. Migita, Multifunctional Properties of N anocrystalline Porous Silicon as a Quantum-confined Material[J],Mater. Sci. Eng. C,2002,19,285-289.
    [89]张光照,微系统技术[J],传感器技术,1996,2,61-65.
    [90]C.Suryanarayana, C.C.Koch, Nanocrystalline Materials-current Research and Duture Directions[J],Hyperfine Interactions,2000,130,5-44.
    [91]F. Robert, Tiny Transistors Scout for Cancer [J],Science,2003,300,242-243.
    [92]W. J. Li, E. W. Shi, W.Z. Zhong, Z. Yin, Growth mechanism and growth habit of oxide crystals [J],J. Cryst. Growth 1999,203,186-196.
    [93]王红晖,曹献英,王友法.HAP纳米粒子与传统抗癌药物的抗癌效果比较[J],武汉理工大学学报,2003,25,31-33.
    [94]S.Larach, R. E.Shrader, Electroluminescence from Boron Nitride [J],Phys. Rev.,1956,102,582-585.
    [95]S.Larach, R. E.Shrader, Multiband Luminescence in Boron Nitride [J],Phys. Rev.,1956,104,68-73.
    [96]L. Kleinman, J.C.Phillips, Self-Consistent Calculations for Cubic Boron Nitride[J],Phys. Rev.,1960,117,460-464.
    [97]P. J.Giellisse, S.S.Mitra, J.N.Plerdl,R. D.Griffis, Lattice Infrared Spectra of Boron Nitride and Boron Monophosphide [J], Phys. Rev.,1967,155,1039-1046.
    [98]Y. F. Tsay, A. Vaidyanathan, S.S.Mitra, Electronic structure and optical properties of cubic BN [J],Phys. Rev. B,1979,19,5422-5428.
    [99]F. C.Brown, R. Z. Bachrach, M. Skibowski, Effect of x-ray polarization at the boron edge in hexagonal BN [J],Phys. Rev. B,1976,13,2633-2635.
    [100]A. Zunger, A. Katzir, Point defects in hexagonal boron nitride. Ⅱ.Theoretical studies [J],Phys. Rev. B,1975,11,2378-2390.
    [101]Q. Johnson, A. C.Mitchell, First X-Ray Diffraction Evidence for a Phase Transition during Shock-Wave Compression [J],Phys. Rev. Lett.,1972,29, 1369-1371.
    [102]J.L. P. Castineira,J.R. Leite,J.L. F. da Silva,L. M. R. Scolfaro,Electronic Structure and Stability of Be Impurities in Cubic Boron Nitride [J],Phys. Status Solid. B,1998,210,401-405.
    [103]P. B.Mirkarimi, K. F. McCarty, D.L.Medlin. Review of advances in cubic boron nitride films synthesis [J],Mater. Sci. Eng. R,1997,21,47-100.
    [104]R. Haubner, M. Wilhelm, R. Weissenbacher, B. Lux, Boron nitrides-Properties, Synthesis and Applications, Struct. Bond.2002,102,1.
    [105]H.Edgar, Prospects for device implementation of wide band gap semiconductors[J],J. Mater. Res.,1992,7,235-238.
    [106]T. Ishii,T. Sato,Growth of single crystals of hexagonal boron nitride [J],J. Cryst. Growth,1983,61,689-690.
    [107]G. Satta, G. Cappellini,M. Palummo,Ab initio optical properties of BN in the cubic and in the layered hexagonal phase [J],Com. Mater. Sci.,2001,22,78-80.
    [108]S.P. S.Aray, A.D'amico, Preparation, properties and applications of boron nitride thin films[J],Thin Solid Films,1998,157,267-282.
    [109]J.H. Edgar, the Properties of III Group Nitrides [M].Inspec, London,1994.
    [110]谭华,韩钧万,冲击波合成氮化硼的形貌及热稳定性[J],高压物理学报,1995,9,53-58.
    [111]R. H.Wenterf,Jr. Cubic form of boron nitride[J],J. Chem.Phys.,1957,26, 956-958.
    [112]V. L. Solozhenko, V. Z. Turkevich, W. B.Holzapfel,On Nucleation of Cubic Boron Nitride in the BN-MgB2 System [J],J. Phys. Chem. B,1999,103, 8137-8140.
    [113]T. Sato,T. Endo,S.Kashima, Formation mechanism of c-BN crystals under isothermal conditions in the system BN-Ca3B2N4 [J],J. Mater. Sci.,1983,15, 3054-3062.
    [114]T. Endo, O.Fukunaga, M. Iwata, Growth pressure-temperature region of cubic BN in the system BN-Mg [J],J. Mater.Sci.,1979,14,1375-1380.
    [115]R. C.D.Vries,J. F. Fliescher, Phase Equilibria Pertinent to the Growth of Cubic Boron Nitride[J],J. Cryst. Growth,1972,13,88-92.
    [116]T. Sato,H.Hiraoka, T. Endo, Effect of oxygen on the growth of cubic boron nitride using Mg3N2 as catalyst [J],J. Mater. Sci.,1981,16,1829-1834.
    [117]M.Kagamida, H.Kanda, M. Akaishi,Crystal growth of cubic boron nitride using Li3BN2 solvent under high temperature and pressure [J],J. Cryst. Growth, 1989,94,261-269.
    [118]R. C.Devries, J.F. Fleischer. The system Li3BN2 at high pressures and temperatures [J],Mater. Res. Bull.,1969,4,433-441.
    [119]J. Q. Hu, Q. Y. Lu, K. B.Tang, Synthesis and Characterization of Nanocrystalline Boron Nitride [J],J. Solid. State. Chem.,1999,148,325-328.
    [120]X. P. Hao, D.L. Cui, G. X. Shi, Synthesis of Cubic Boron Nitride at Low-Temperature and Low-Pressure Conditions [J],Chem. Mater.2001,13, 2457-2459.
    [121]L. Q.Xu, J.H.Zhan, J.Q.Hu, Y.Bando, X. L. Yuan, T. Sekiguchi, M.Mitome, D.Golberg, High-Yield Synthesis of Rhombohedral BN Triangular Nanoplates[J],Adv. Mater.,2007,19,2141-2144.
    [122]K. Y. Bao, F. Y. Yu, L. Shi,S.Z. Liu, X. B.Hu, J.Cao,Y. T. Qian, Synthesis of highly crystalline rhombohedral BN triangular nanoplates Via a convenient solid state reaction[J],J. Solid. State. Chem.,2009,182,925-931.
    [123]C.Y. Zhi, Y. Bando,C.C.Tang, H.Kuwahara and D.Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties [J],Adv. Mater., 2009,21,2889-2893.
    [124]王运峰,林静春,氮化硼的生产方法[J],河南科技,1994,6,19-20.
    [125]A. Faussemagne, N.Moncoffre, A. Benyagoub, G. Marest, P. Delichere, Study of BN formation by dual implantation of boron and nitrogen in a bearing steel [J],Surf.Coat. Tech.,1996,83,70-73.
    [126]F. A.Kuznetsov, A. N.Golubenko,M. L. Kosinova, A thermodynamic approach to chemical vapor deposition of boron nitride thin films from borazine [J],Appl. Surf. Sci,1997,113,638-641.
    [127]A. Aydogdu, N. Seving. Carbothermic formation of boron nitride [J], J. Euro. Ceram. Soc.,2003,23,3153-3161.
    [128]R. T. Paine,C.K. Narula,Synthetic routes to boron nitride[J],Chem. Rev.,1990,90,73-91.
    [129]J.B.Condon, C.E. Holcombe, the kinetics of the boron plus nitrogen reaction [J],Inorg. Chem.1976,15,2173-2179.
    [130]H.Z.Zhang, J.Yu, Y. Chen, Conical Boron Nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method [J],J. Am. Ceram. Soc.,2006,89, 675-679.
    [131]H.Z. Zhang, J.D.FitzGerald, Y. Chen, Growth and structure of prismatic boron nitride nanorods [J],Phy. Rev. B 2006,74,045407,1-9.
    [132]H.Z. Zhang, M.R. Phillips, J.D.FitzGerald, Patterned Growth and cathodoluminescence of conical boron nitride nanorods [J], Appl. Phy. Lett. 2006,88,093117.
    [133]H. Z. Zhang, J.Yu, Y. Chen, Field-emission characteristics of conical boron nitride nanorods [J],J. Phy. D-Appl. Phy.2007,40,144-147.
    [134]K.F. Huo, Z. Hu, F. Chen, J. J.Fu, Y. Chen, Synthesis of boron nitride nanowires [J],Appl. Phy. Lett.2002,80,3611-3613.
    [135]Y.J.Chen, H.Z. Zhang, Y Chen, Pure boron nitride nanowires produced From boron triiodide[J],Nanotechnology,2006,17,786-789.
    1.M. Topsakal, E. Akturk and S.Ciraci, Phys. Rev. B,2007,79,115442.
    2.C.X. Kan, X. G. Zhu and G. H.Wang, J. Phys. Chem. B,2006,110,4651.
    3.K. S.Novoselov, A.K. Geim, S.V. Morosov, D.Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva and A. A.Firsov, Science,2004,306,666.
    4. L. C. Wang, L. Q. Xu, C. H.Sun and Y. T. Qian, J. Mater. Chem.,2009,19,1989.
    5.M.Corso, W. Auwarter, M. Muntwiler, A.Tamai,T. Greber and J.Osterwalder, Science,2004,303,217.
    6.H. C.Chu, C.H.Kuo and M. Huang, Inorg. Chem.,2006,45,808.
    7.J.An, B.Tang, X. H. Ning, J. Zhou, S.P. Xu, B.Zhao, W. Q. Xu, C. Corredor and J. Lombard.J.Phys. Chem. C,2007,111,18055.
    8. Y.J.Xiong, J.M.McLellan, J.Y. Chen, Y. D.Yin, Z. Y. Li and Y. N.Xia, J. Am. Chem. Soc.,2005,127,17118.
    9. Y. H. Leng, Y. Li, X.G. Li and S. K.Takahashi, J. Phys. Chem. C,2007,111,6630.
    10.P. Mohanty, T. Kang and B.Kim, J. Phys. Chem. B,2006,110,791.
    11.W. S.Seo,J.H.Shim, S.J.Oh, E. K. Lee, N. H.Hur and J.T. Park, J. Am. Chem. Soc.,2005,127,6188.
    12.Z. Fang and J. Y. Kang, J. Phys. Chem. C,2007,111,7889.
    13.A.Ghezelbash, M. B.Sigman and B.A.Korgel, Nano. Lett.,2004,4,537.
    14.J.H.Warner and R. D.Tilley, Adv. Mater.,2005,17,2997.
    15.S.Michael B,G. Ali, H.Tobias, S.Aaron E,L. Frank and K. Brian A, J. Am. Chem. Soc.,2003,125,16050.
    16.H.T. Zhang, G. Wu and X. H.Chen, Langmuir,2005,21,4281.
    17. W. G.Lu, Y. Ding, Y. X. Chen, Z. L. Wang and J.Y. Fang, J. Am. Chem. Soc., 2005,127,10112.
    18.W. Z.Wang, B.Poudel, J.Yang, D.Z. Wang and Z.F. Ren,J. Am. Chem. Soc., 2005,127,13792.
    19.M. S.Si and D. S.Xue,Phys.Rev. B,2007,75,193409.
    20. C.C. Tang, Y. Bando and D.Golberg, Chem. Commun.,2002,23,2826.
    21.C.Y. Zhi, Y.Bando, C.C. Tang, S.Honda, K. Sato,H.Kuwahara and D.Golberg, Angew. Chem. Int. Ed.,2005,44,7929.
    22.D.Golberg, Y. Bando,K. Kurashima and T. Sato,Scr. Mater,2001,44,1561.
    23. W. Q.Han, L. J.Wu, Y. M. Zhu, K. J.Watanabe and T. Taniguchi, Appl. Phys. Lett.,2008,93,223103.
    24.C.Y. Zhi,Y. Bando, C.C.Tang, H.Kuwahara and D.Golberg, Adv. Mater,2009, 21,2889.
    25.L. Q.Xu, J.H.Zhan, J.Q. Hu, Y. Bando,X. L. Yuan, T. Sekiguchi,M. Mitome and D.Golberg, Adv. Mater,2007,19,2141.
    26.K. Y. Bao, F. Y Yu, L. Shi,S.Z. Liu, X. B.Hu, J.Cao and Y. T. Qian, J. Solid. State. Chem.,2009,182,925.
    27.S.A. Shevlin and Z. X. Guo,Phys. Rev. B,2009,76,024104.
    28.R. Haubner, M. Wilhelm, R. Weissenbacher and B.Lux, Structure and Bonding, 2002,102,1.
    29.T. H.Benny, S.Banerjee, S.Sambasivan, M.Balasubramanian, D.A. Fischer, G. Eres, A. A. Puretzky, D. B.Geohegan, D. H. Lowndes, W. Q. Han, J. A. Misewichp and S.S.Wong, Small,2006,2,26.
    30.R. Geick, C.H.Perry and G. Rupprecht, Phys. Rev.,1966,146,543.
    31.P. Dibandjo,L. Bois, F. Chassagneux, D.Cornu, J. M.Letoffe, B.Toury, F. Babonneau and P. Miele, Adv. Mater,2005,17,571.
    32.Q.X. Guo,Y. Xie, C.Q.Yi,L. Zhu and P. Gao, J. Solid. State. Chem.,2005,178, 1925.
    33.X. Chen, X. Wang, J.liu, Z. Wang and Y. T. Qian, Appl.Phys. A,2004,81,1035.
    34.Q.Huang, Y. Bando,C.Y. Zhi, D.Golberg, K. J.Kurashima, F. F. Xu, L. Gao, Angew. Chem. Int. Ed.2006,45,2044.
    35.V. V. Khvostov, I. Yu. Konyashin, E. N.Shouleshov, V. G Babaev and M. B. Guseva, Appl. Surf. Sci.,2000,157,178.
    36.J.Olander and K. Larsson, Phys. Rev. B,2003,68,075411.
    37.W. Auwarter, H.U.Suter, H.Sachdev and T. Gerber, Chem. Mater.,2004,16,343.
    38.J. Meyer, A. Chuvilin, G. A. Siller, J.Biskupek and U. Kaiser, Nano. Lett.,2009,9,
    2683.
    39.A. Zunger, A. Katzir and A.Halperin, Phys. Rev. B,1976,13,5560.
    40.H.Chen, Y. Chen, Y.Liu, C.N.Xu and J.S.Williams, Opt. Mater.,2007,29, 1295.
    41.Y.C.Zhu, Y. Bando,D.F. Xue, T. Sekiguchi, D.Golberg, F. F. Xu and Q.L. Liu, J. Phys. Chem. B,2004,108,6193.
    42.G.C.Xi,Y. K. Liu, X. Y.Liu, X. Q.Wang and Y. T. Qian, J. Phys. Chem. B,2006, 110,14172.
    43.K. Watanabe, T. Taniguchi and H.Kanda, Nat.Mater,2004,3,404.
    44.M. G. Silly, P. Jaffrennou, J.Barjon, J. S.Lauret, F. Ducastelle, A.Loiseau, E. Obraztsova, B.A. Tretour and E.Rosencher, Phys. Rev. B,2007,75,085205.
    45.L. Museur, D.Anglos, J.P. Petitet, J.P. Michel and A. V. Kanaev, J. Lumin.,2007, 127,595.
    46.C.H. Jin, F. Lin, K. Suenaga and S.Iijima, Phys. Rev. Lett.,2009,102,195505.
    47.M.Fanciulli and T. D.Moustakas, Phys. B,1993,185,228.
    48.A. Katzir, J.T. Suss, A. Zunger and A. Halperin, Phys. Rev. B,1975,11,2370.
    49.P. Jaffrennou, F. Donatini,J.Barjon, J.S.Lauret, A. Maguer, B.A. Tretout, F. Ducastelle and A. Loiseau, Chem. Phys. Lett.,2007,442,372.
    [1]A.V. Kurdyumov, V.L. Solozhenko,W.B.Zelyavski,J.Appl.Cryst.28(1995) 540.
    [2]R. F. Liu, C.Cheng, Phys.Rev. B 76(2007) 014405.
    [3]V.L. Solozhenko, D.Hausermann, M. Mezouar, M. Kunz, Appl.Phys.Lett.72 (1998) 1691.
    [4]V. L. Solozhenko,V. Z. Turkevich, W. B.Holzapfel, J.Phys.Chem. B.103 (1999)2903.
    [5]C.C.Tang, Y. Bando, Y. Huang, Sh. L. Yue, Ch. Zh. Gu, F. F. Xu, D.Golb,J. Am.Chem.Soc.127 (2005)6552.
    [6]Y. M. Chong, K. L. Ma, K. M. Leung, C.Y. Chan, Q.Ye, I. Bello,W. J.Zhang, S.T. Lee, Chem. Vap.Deposition 12 (2006) 33.
    [7]S.Enouz, O. Stephan, J.L. Cochon, C.Colliex, A. Loiseau, Nano.Lett.7 (2007) 1856.
    [8]R. Haubner, M.Wilhelm, R. Weissenbacher, B.Lux, Structure. Bonding,102 (2002) 1.
    [9]P. T. Robert, N. K. Chaitanya, Chem. Rev.90(1990) 73.
    [10]O.Mishima, J.Tanaka, S.Yamaoka, O.Fukumaga, Science 238(1987) 181.
    [11]R.H.Jr. Wentorf, J.Chem. Phys.26(1957) 956.
    [12]R. H.Jr. Wentorf, J.Chem. Phys.34(1961)809.
    [13]S.Hirano, T. Yogo,S.Asada, S.Naka, J.Am. Ceram. Soc.72(1989) 66.
    [14]V. L. Solozhenko, Diam. Relat. Mater.4(1994) 1.
    [15]T. Ichiki, T. Yoshida, Appl.Phys.Lett.64(1994) 851.
    [16]P. B.Mirkarimi,K. F. McCarty, D.L. Medlin, Mater. Sci.Eng.21(1997) 47.
    [17]J.Q.Hu, Q.Y. Lu, K. B.Tang, S.H.Yu, Y. T. Qian, G. E. Zhou, J.Solid State Chem.148(1999) 325.
    [18]X. P. Hao,D.L. Cui, G. X. Shi, Y. Q.Yin, X. G. Xu,J.Y. Wang, M. H.Jiang, X. W. Xu, Y. P. Li, B.Q.Sun, Chem.Mater.13 (2001)2457.
    [19]M. Y. Yu, K. Li, Z. F. Lai, D. L. Cui, X. P. Hao, M. H. Jiang, Q.L. Wang, J. Cryst. Growth.269 (2004) 570.
    [20]M. Y. Yu, D.L. Cui, K. Li,Y.S.Yin, Q. L. Wang, C.Lei, Mater. Sci.Eng. B 121 (2005) 166.
    [21]K. Li, H. H. Jiang, G Lian, Q. L. Wang, X. Zhao, D.L. Cui,Y.S.Yin, C.Lei, Chin.Sci.Bull.52 (2007) 1785.
    [22]G. Lian, X. Zhang, L.L. Zhu, D.L. Cui,Q.L. Wang, X. T. Tao,J.Cryst. Growth. 311 (2009) 1600.
    [23]G. Lian, X. Zhang, L.L. Zhu, D.L. Cui, Q.L. Wang, X. T. Tao, J.Solid. State. Chem. In Press.Doi:10.1016/j.jssc.2009.02.021.
    [24]Y. Kubota, K. Watanabe, O.Tsuda, T. Taniguchi, Chem.Mater.20 (2008)1661.
    [25]W. J.Zhang, Y. M.Chong, I.Bello, S.T. Lee, J.Phys.D:Appl.Phys.40 (2007) 6159.
    [26]P. B.Mirkarimi, K. F. McCarty, D.L. Medlin, Mater. Sci.Eng. R21(1997) 47.
    [27]P. B.Mirkarimi, K. F. MeCarty, D.L. Medlin, W. G. Wolf, T. A. Friedmann, E.J. Klaus, G. F. Cardinale, D.G Howitt, J.Mater. Res.9(1994) 2925.
    [28]R. Geick, C.H. Perry, G Rupprecht, Phys.Rev.146(1966) 543.
    [29]J.H Ma, J. Li,G. X. Li, Y.G. Tian, J. Zhang, J.F. Wu,J.Y. Zheng, H.M. Zhuang, T. H. Pan, Mater. Res.Bull.42 (2007) 982.
    [30]S.Y. Dong, M.Y Yu, X. P. Hao, D.L. Cui,Q. L. Wang, K. Li, M. H. Jiang, J. Cryst. Growth.254 (2003)229.
    [31]D.Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Adv. Mater.19 (2007) 2413.
    [32]J. G. Speight, Lange's Handbook of Chemistry,16th ed. McGraw-Hill, New York,2004.
    [33]J. Olander, K. Larsson, Diam. Relat. Mater.11 (2002) 1286.
    [34]V. Z. Turkevich. J.Phys.:Condens.Matter 14 (2002) 10963
    [35]A. Denis, G. Goglio, G. Demazeau, Mater. Sci.Eng R 50 (2006) 167.
    [36]S.Prouhet, F.Langlais, A. Guette, R. Naslain, J.Rey, Inorg. Chem.30(1993) 953.
    [I]T. Ishii, T. Sato.Growth of single crystals of hexagonal boron nitride [J],J.Cryst. Growth,1983,61(3):689-690.
    [2]L. E.Brus, Electronic wave functions in semiconductor clusters:experiment and theory [J],J. Phys. Chem.1986,90,2555-2560.
    [3]G.Satta, G.Cappellini, M.Palummo.Ab initio optical properties of BN in the cubic and in the layered hexagonal phase [J],Computational Materials Science, 2001,22:78-80.
    [4]H.Edgar. Prospects for device implementation of wide band gap semiconductors [J],J. Mater. Res.,1992,7(1):235-238.
    [5]J. H. Edgar, The Properties of III Group Nitrides [M]. Inspec, London,1994.
    [6]A. Hagfeidt, M. Gratzel,Light-Induced Redox Reactions in Nanocrystalline Systems [J],Chem. Rev.1995,95,49-53.
    [7]S.P.S.Aray, A. D'amico.Preparation, properties and applications of boron nitride thin films[J],Thin Solid Films,1998,157(2):267-282.
    [8]S.Takashi,T. Kazuhiko.Electron emission from namocrystalline boron nitride films synthesized by plasma-assisted chemical vapor deposition. [J] Diam. Relat. Mater.,1998,7:632-635.
    [9]M. Kuhr, S.Reinke, W. Kulisch. Nucleation of cubic boron nitride(c-BN) with ion-induced plasma-enhanced CVD [J],Diam. Relat. Mater.,1995,4(4):375-380.
    [10]R.H.Wenterf, Jr. Cubic form of boron nitride [J],J. Chem. Phys.,1957,26:956.
    [11]G. M. Ingo,G. Padeletti.X-ray photoelectron spectroscopy and secondary-ion mass spectrometry of boron nitride thin films on austenitic stainless steel [J],Thin Solid Films,1993,228(1-2):276-279.
    [12]A.Faussemagne, N. Moncoffre, A. Benyagoub, G. Marest and P. Delichere. Study of BN formation by dual implantation of boron and nitrogen in a bearing steel [J],Surface and Coatings Technology.1996,83(1-3):70-73.
    [13]P.E.Cavicchi, R. H.Silsbee, Coulomb Suppression of Tunneling Rate from Small Metal Particles[J],Phys. Rev. Let.1984,52,1453-1456.
    [14]P. Mohanty. Y. loon. T. Kang. et.al.Simple Vapor-Phase Synthesis of Single-Crystalline Ag Nanowires and Single-Nanowire Surface-Enhanced Raman Scattering[J],J.Am.Chem.Soc.2007,129,9576-9577.
    [15]D. B.Zhang, Qi. L. M, Yang, J. H, et.al.Wet Chemical Synthesis of Silver Nanowire Thin Films at Ambient Temperature [J],Chem.Mater.2004,16, 872-876.
    [16]R. L. Zong, J.Zhou, Q.Li,et.al.Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane [J],J.Phys.Chem.B 2004,108,16713-16716.
    [17]N.Chtanko,M.E.T. Molares,T. Cornelius,et.al.Etched Single-Ion-Track Templates for Single Nanowire Synthesis [J],J.Phys.Chem.B 2004,108, 9950-9954.
    [18]S.H.Sun, D.Q.Yang, G. X. Zhang, et.al.Synthesis and Characterization of Platinum Nanowire-Carbon Nanotube Heterostructure[J],Chem. Mater.2007, 19,6376-6378。
    [19]I. Lombardi, A. I.Hochbaum, P. D.Yang, et.al.Synthesis of High Density Size-Controlled Si Nanowire Arrays via Porous Anodic Alumina Mask [J], Chem. Mater.2006,18,988-991.
    [20]Z. C.Ju, X. C.Ma,N. Fan, et.al.High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route [J],Mater. Lett.2007,61(18), 3913-3915.
    [21]Z. J.Li, J.L. Zhang, A. Meng, et.al.Large-Area Highly-Oriented SiC Nanowire Arrays:Synthesis, Raman and Photoluminescence Properties [J],J.Phys.Chem.B 2006,110,22382-22386
    [22]G. F. Zou, B.Hu, K. Xiong, et.al.Single-crystalline alpha silicon-nitride nanowires:Large-scale synthesis, characterization, and optic properties [J],Appl. Phys.Lett.,2005,86,181901-181906.
    [23]H. T. Wang, W. Y.Yang, Z.P. Xie, et.al.Morphology Instability of Silicon Nitride Nanowires[J],2009,113,5902-5905.
    [24]C.Z. Wu, Q.Yang, C.Huang, et.al.,Facile solvent-free synthesis of pure-phased AlN nanowhiskers at a low temperature [J],J.Solid. State. Chem.,2004,177 3522-3528.
    [25]C.Ye, Z. M. Lin, J. X. Yan,Preparation and characterization of rod-shaped MnO2 crystal [J],Solid State Commun.2005,133,121-123.
    [26]X. Y. Liu, R. Z. Hu, S.L. Xiong, et.al.Well-aligned Cu2O nanowire arrays prepared by anethylene glycol-reduced process[J],Mater. Chem. Phy.2009,114, 213-216.
    [27]H.Z. Zhang, J.Yu, Y. Chen, Conical Boron Nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method [J],J. Am.Ceram. Soc.,2006,89(2), 675-679.
    [28]H.Z. Zhang, J.D.FitzGerald, Y.Chen, Growth and structure of prismatic boron nitride nanorods [J],Phy. Rev. B 2006,74,045407,1-9.
    [29]H.Z. Zhang, M.R.Phillips, J.D.FitzGerald, Patterned Growth and cathodoluminescence of conical boron nitride nanorods[J],Appli.Phy. Lett.2006, 88,093117.
    [30]H.Z. Zhang, J.Yu, Y. Chen, Field-emission characteristics of conical boron nitride nanorods [J],Jour. Phy. D-Appl. Phy.2007,40(1),144-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700