用户名: 密码: 验证码:
煤裂解制乙炔过程颗粒尺度传递和反应行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热等离子体裂解煤制乙炔过程为煤的直接化工利用提供了一条有前景的、清洁转化途径。该过程是高温毫秒级超短接触反应过程,但目前的检测手段还无法探测等离子体下毫秒级的条件下颗粒的反应行为,使得煤的毫秒级超高温裂解过程的基础研究极为匮乏。另一方面,由于该过程还未成功大规模工业化,对这一过程的经济性分析也比较欠缺。
     本文主要在煤常规物理及热解特性、煤高温裂解过程中颗粒尺度传递和反应行为模拟以及技术经济分析三个方面开展了工作。
     通过对原煤、常规热解后残渣和等离子体裂解后残渣的对比,发现煤粉在等离子体中裂解首先经历了与常规热解类似的脱挥发分过程,但这一过程持续时间非常短,在超过2000 K的环境流体作用下,煤中更多的有机物质参与了裂解反应,提高了气相产物中C、H元素的比例,有利于生成更多的目标产物乙炔。这说明煤粉经历的温度范围及脱挥发分过程直接决定了反应器的乙炔产率。
     结合该过程超高温、超短接触的特征,通过建立描述单颗粒煤粉高温快速裂解过程的机理模型,分别考察了在恒温环境流体和气固传热耦合条件下的颗粒尺度传递和反应行为,指出颗粒自身有限导热及挥发分逸出所产生的两种传热阻力对煤脱挥发分过程的模型和模拟中都是不可忽略的。研究表明,针对毫秒级煤裂解过程,大于100μm的煤粉,平均温度低于2000 K的等离子体气体,过高或过小的煤/氢进料比难于实现满意的脱挥发分行为。
     基于元素守恒原则,对中试系统进行物料和能量衡算,指出反应器性能主要取决于气固混合效率、煤/氢进料比及反应停留时间。若进一步实施能量综合利用方案,系统的能量利用效率会大幅提高。在此基础上,对煤制乙炔过程进行了乙炔生产成本核算,原料煤价格和电价是制约乙炔成本中最主要的部分,通过进一步改善反应器性能,提高气相产品总流量和乙炔浓度都将降低乙炔生产成本。
Coal pyrolysis to acetylene in thermal plasma provides a direct route to make chemicals from coal resources. This process is operated under high temperature and has contact time of milliseconds scale. Direct measurements inside the reactor are hardly implemented, which obstruct further studies of this kind of process. On the other hand, since the process has not been successfully industrialized in large scale, the economic analysis of it is also insufficient.
     In this work, the raw coal and residues after the decomposition and the plasma pyrolysis was analyzed. The results implied that ultrahigh temperature (>2000 K) broke more chemical bonds and formed more hydrocarbon than that of the decomposition process, and increased the ratio of C and H in the gas phase, which facilitated the generation of acetylene. The temperature of the coal and the depth of devolatilization would determine the yield of acetylene.
     A mechanism model incorporating the heat conduction in solid materials, diffusion of released volatile gases and reactions was proposed for a deep understanding of the heat transport inside a coal particle under the extreme environmental conditions, such as temperatures higher than 2,000 K and reaction time in milliseconds. Thermal balance between coal particles and the hot carrier gas was established. The predicted yield of volatiles considering the mechanism of the two resistances agreed reasonably with the experimental data under different operating conditions, and this effect became more evident for larger particles. It can be concluded that the proposed heat transport mechanism inside coal particles worked well in understanding the coal pyrolysis process at ultra-high temperatures. Limited by the milliseconds process of the coal pyrolysis, particles of size greater than 100μm or heating fluid of temperature lower than 2000 K is not recommended in the practical application due to the slow release of volatiles in coals.
     Furthermore, the materials balance and energy balance of the process was investigated systematically based on element balance. It is concluded that the overall plasma reactor performance was dominated by the gas-solid mixing efficiency, coal-hydrogen feeding rate and the residence time. Based on these constrains, the economic analysis of acetylene production indicated that the costs of raw coal and power were the main parts. The optimal utilization of energy and material-flows in the system can be of great significance to ensure the economic feasibility.
引文
[1]国际能源署.世界能源展望2009. Paris: IEA press, 2010: p73.
    [2] Bond R L, Galbraith I F, Ladner W R, McConnell G I T. Production of acetylene from coal, using a plasma jet. Nature, 1963, 200(4913): 1313-1314.
    [3] Nicholson R, Littlewood K. Plasma pyrolysis of coal. Nature, 1972, 236(5347): 397-400.
    [4]许根慧,姜恩永,盛京.等离子体技术与应用.北京:化学工业出版社, 2006.
    [5]过增元,赵文华.电弧和热等离子体.北京:科学出版社, 1986. pp3-4.
    [6] Boulos M I, Fauchais P, Pfender E. Thermal plasmas: fundamentals and applications (Vol. 1). New York: Plenum Press, 1994.
    [7]数据来源: Encyclopedia Britannica Online.
    [8] Fu Y C, Blaustei B D. Reactions of coal and related materials in microwave discharges in hydrogen water vapour and argon. Fuel, 1968, 47: 463.
    [9] Djebabra D. Coal-gasification by microwave plasma in water-vapor. Fuel, 1991, 70: 1473-1475.
    [10] Bystrzejewski M, Huczko A, Lange H, Potczyk W W, Stankiewicz R, Pichler T, Gemming T, Rümmeli M H. A continuous synthesis of carbon nanotubes by DC thermal plasma jet. Applied Physics A, 2008, 91: 223-228.
    [11] Georgiev I B, Mihailov B I. Some general conclusion from the results of studies on solid fuel steam plasma gasification. Fuel, 1992, 71: 895-901.
    [12] Kawamura K, Hirasawa A. Pilot plant experiment of NOx and SO2 removal from exhaust gases by electronbeam irradiation. Radiate. Phys. Chem. 1979, 13: 5-12.
    [13] Tokunaga O, Suzuki N. Radiation chemical reactions in NOx and SO2 removals from flue gas. Radiate. Phys. Chem. , 1990, 24: 145-165.
    [14]邰德荣,韩宾兵.电子束烟气脱硫示范工程.华东电力, 1999, 3: 5-8.
    [15] Ohkubo T, Kanazawa S, Nomoto Y, Chang J, Adachi T. NOx removal by a pipe with nozzle - plate electrode corona discharge system. IEEE trans. on Indus. App., 1994, 30: 856-860.
    [16] Chang J S. Lawless P A, Yamamoto T. Corona discharge processes. IEEE Trans. on Plasma Science, 1991, 19: 1152-1165.
    [17]顾璠,叶丹.低温等离子体吸附催化烟气脱硫装置及其脱硫方法:中国: 1597057[P], 2005-03-23.
    [18]顾璠,余刚,徐益谦.表面吸附低能态等离子体一氧化氮脱除方法.中国专利, 1486775, 2004-04-07.
    [19] Huang, A. M., Xia, G. G.,Wang, J. Y., et al. CO2 reforming of CH4 by atmospheric pressure as discharge plasmas. Journal of Catalysis, 2000, 189: 349-359.
    [20] Jiang T, Zhang K, Liu C J. Co-generation of syngas and hydrocarbons from methane and carbon dioxide using dielectric barrier discharges. Journal of Fuel Chemistry and Technology, 2001, 29: 6-11.
    [21] Wang Q, Yan B H, Jin Y, Cheng Y. Investigation of Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor. Plasma chemistry and plasma processing. 2009, 29: 217-228.
    [22] Wang Q, Yan B H, Jin Y,Cheng Y. Dry Reforming of Methane in a Dielectric Barrier Discharge Reactor with Ni/Al2O3 Catalyst: Interaction of Catalyst and Plasma. Energy and fuels, 2009, 23: 4196-4201.
    [23] Wang Q, Cheng Y, Jin Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst . Catalysis today, 2009, 148: 275-282.
    [24] Yan B H, Wang Q, Jin Y, Cheng Y. Dry Reforming of Methane with Carbon Dioxide Using Pulsed DC Arc Plasma at Atmospheric Pressure. Plasma chemistry and plasma processing, 2010, 30: 257-266.
    [25] Wu C N, Chen J Q, Cheng Y. Thermodynamic analysis of coal pyroysis to acetylene in hydrogen plasma reactor. Fuel processing technology, Fuel Process. Technol., 2009, doi: 10.1016/j.fuproc.2009.09.013.v
    [26] Fauchais P, Bourdin E, Aubreton J, Amouroux J. Plasma chemistry and its applications to the synthesis of acetylene from hydrocarbons and coal. International Chemical Engineering, 1980, 20(2): 289-305.
    [27] Chakravartty S C, Dutta D, Lahiri A. Reaction of coals under plasma conditions: direct production of acetylene from coal. Fuel, 1976, 55, 43–46.
    [28] Chakravartty S C, Dixit L P, Srivastava S K. Hydrogen enriched plasma for direct production of acetylene from coal. Indian Journal of Technology, 1984, 22: 146-150.
    [29] Bond R L, Ladner W R, McConnell G I T. Reactions of coal in plasma jet, Fuel, 1966, 45: 381-395.
    [30] Amourox J. Production de l'acetylene a partir des hydrocarbures lourds et du charbon dans un reacteur pilote a plasma. Revue Generale de l'Electricite. 1980, 89: 647–653.
    [31] Fauchais P. Plasma chemistry and its applications to the synthesis of acetylene from hydrocarbons and coal. Int. Chem. Eng. 1980, 20, 289-305.
    [32] Plotczyk W W, Resztak A, Szymanski A. Plasma processing of brown coal. Int. J. Mater. Prod. Tec. 1995, 10, 530–540.
    [33] Mitsuo M, Nobuyuki K, Tatsuo K, Michio H, Hiroyuki M, Yoshio K. Formation of acetylene and reduction of titanium compounds. Report of the National Research Institute forPollution and Resource, 1984, n32 (in Japanese).
    [34] Nobuyuki K, Mitsuo M, Takeshi F, Katsuhisa M, Michio H, Hideo K. Production of acetylene from coal using a new plasma gasifier. Energy Developments in Japan (Chicago), 1984, 6: 339-378
    [35] Mueller R, Kaske G. Use of plasma chemical processes for chemical reactions. Erdoel und Kohle, 1984, 37: 149-155.
    [36] Wilming H, Peuckert C, Mueller R. Acetylene production from coal by the Huels H2 plasma process. New York: McGraw-Hill Publ. Co., 1982.
    [37] Bittner D, Wanzl W. Significance of coal properties for acetylene formation in a hydrogen plasma, Fuel Processing Technology, 1990, 24: 311-316.
    [38] Beiers H G, Baumann H, Bittner D, Klein J, Juentgen H. Pyrolysis of some gaseous and liquid hydrocarbons in hydrogen plasma, Fuel, 1988, 67: 1012-1016.
    [39] Baumann H, Bittner D, Beiers H G, Klein J, Juentgen H. Pyrolysis of coal in hydrogen and helium plasmas. Fuel, 1988, 67: 1120-1123.
    [40] van Heek Karl-Heinrich. Pyrolysis as a key process in coal conversion. Glueckauf & Translation, 1988, 124: 154-160.
    [41] AVCO Systems Division. Arc-coal acetylene process development program. Phase 1B. Final technical progress report; Wilmington, MA, USA, 1980.
    [42] Patrick A J Jr, Gannon R E. A 1MW prototype arc reactor for processing coal to chemicals. Radio Frequency/Radiation and Plasma Processing: Industrial Applications & Advances. Lancaster: Technomic, 1985.
    [43] Kushner L M. Plasma technology in acetylene production in the U.S., Radio Frequency/Radiation and Plasma Processing: Industrial Applications & Advances. Lancaster: Technomic, 1985.
    [44] Cheng Y, Chen J Q, Ding Y L, Xiong X Y, Jin Y. Inlet effect on the coal pyrolysis to acetylene in a hydrogen plasma downer reactor. Can. J. Chem. Eng., 2008, 86: 413-420.
    [45] Chen J Q, Cheng Y. Process development and reactor analysis of coal pyrolysis to acetylene in hydrogen plasma reactor. J. Chem. Eng. Japan, 2009, 42: s103-s110.
    [46] Peters W, Bertling H. Kinetics of rapid degasification of coals. Fuel, 1965, 44: 317-331.
    [47] Kalendt A S, Nettleton M A. Burning of the volatile matter from single coal particle, Erd?l und Kohle, 1966, 19: 354-356.
    [48] Suuberg E M. Significance of Heat Transport Effects in Determining Coal Pyrolysis Rates, Energy & Fuels, 1988, 2: 593-595.
    [49] Wutti R, Petek J, Staudinger G. Transport limitations in pyrolysing coal particles. Fuel, 1996, 75: 843-850.
    [50] Fletcher T H, Kerstein A R, Pugmire R J, Grant D M. Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy and Fuel, 1990, V4: pp54-60.
    [51]郭崇涛主编,煤化学.北京:化学工业出版社, 1992, pp8-18.
    [52]陈文敏,张自劭.煤化学基础.北京:煤炭工业出版社, 1992.
    [53]虞继舜.煤化学.北京:冶金工业出版社, 2000: pp24-46.
    [54] Wiser W H. Proceedings of EPRI Conferenceon Coal Catalysis, Santa Monica CA,1973.
    [55]陈家琦.氢等离子体裂解煤制乙炔过程研究[硕士学位论文].北京:清华大学, 2008.
    [56] Merrick D. Mathematical-models of the thermal-decomposition of coal 2. Fuel, 1983, 62: 540-546.
    [57] Gaschnitz R, Krooss B, Gerling P, Faber E, Littke R. On-line pyrolysis-GC-IRMS: isotope fractionation of thermally generated gases from coals. Fuel, 2001, 80: 2139-2153.
    [58] Hertzberg M, Zlochower I A. Devolatilization wave structures and temperatures for the pyrolysis of polymethylmethacrylate, ammonium-perchlorate, and coal at combustion level heat fluxes. Combust. Flame, 1991, 84: 15-37.
    [59] Boulos M I, Fauchais P, Pfender E. Thermal plasma. Plenum Press: New York, USA, 1994; Vol. 1.
    [60] Spalding D B. Some Fundamentals of Combustion. Butterworths Scientific Publications: London, England, 1955.
    [61] Versteeg H K, Malalaserkera W. An Introduction to Computational Fluid Dynamics - The Finite Volume Method; Prentice Hall: New Jersey, 1995: pp168-190.
    [62] Badzioch S, Hawksley P G W, Peter C W. Kinetics of thermal decomposition of pulverized coal particles Ind. Eng. Chem. Proc. Des. Dev. 1970, 9: 521-528.
    [63] Kobayashi H, Howard J B, Sarofim A F. Coal devolatilization at high temperatures. Sixteenth Symp. (Int.) on Combustion/Combustion Inst. 1976, 22, 625-656.
    [64] Anthony D B, Howard J B. Coal Devolatilization and Hydrogasification. AIChE J 1976, 22: 625-656.
    [65] Solomon P R, Hamblen D G, Carangelo R M, Serio M A, Deshpande G V. General Model of Coal Devolatilization. Energy Fuels, 1988, 2: 405–422.
    [66] Niksa S, Kerstein A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels, 1991, 5: 647-665.
    [67] Grant D M, Pugmire R J, Fletcher T H, Kerstein A R. Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuels, 1989, 3: 175-186.
    [68] Jupudi R S, Zamansky V, Fletcher T H. Prediction of Light Gas Composition in Coal Devolatilization. Energy Fuels, 2009, 23: 3063-3067.
    [69]岑可法,姚强,高翔,骆仲泱,编著.燃烧理论与污染控制,机械工业出版社, 2004: pp275.
    [70] Merrick D. Mathematical models of the thermal decomposition of coal 1, Fuel, 1983, 62: 534-539.
    [71] Kimber G M, Gray M D. Repid devolatilization of small coal particles, Combust. Flame., 1967, 11: 360-362.
    [72] Badzioch S, Hawksley P G. Investigation of temperature variation of thermal conductivity and thermal diffusivity of coal. Ind. Eng. Chem. Proc. Des. Dev., 1970, 9: 521 - 528.
    [73] Tomeczek J, Kowol J. Temperature field within a devolatilizing coal particle. Can. J. Chem. Eng. 1991, 69: 286-293.
    [74] Freihaut J D. Ph. D. thesis, Pennsylvania State University, 1980.
    [75] Sampath R, Maloney D J, Zondlo J W. Thermophysical and thermochemical requirements for coals. 27th Symp. (Int.) on Combustion/Combustion Inst. 1998, 2915-2923.
    [76]傅维镳,煤燃烧理论及其宏观通用规律,北京:清华大学出版社, 2003.
    [77]章莉,颜彬航,吴昌宁,程易.超短接触反应器气固快分装置的数值模拟.化工学报, 2010, 61: 623-628.
    [78]傅家骥,仝允桓.工业技术经济学.北京:清华大学出版社, 2002, p19.
    [79]数据来源:http://baike.baidu.com/view/968292.htm
    [80]数据来源:http://www.safe.gov.cn/model_safe/tjsj/rmb_list.jsp?ct_name=人民币汇率中间价&id=5&ID=110200000000000000
    [81]数据来源:http://www.chemcp.com/news/price/meitan/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700