用户名: 密码: 验证码:
新疆西准噶尔地区蛇绿岩与豆荚型铬铁矿床的成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Genesis of Ophiolites and Podiform Chromite Deposits of the Western Zhungeer Area, Xinjiang
  • 作者:郝梓国
  • 论文级别:博士
  • 学科专业名称:岩石学
  • 学位年度:1988
  • 导师:王恒升
  • 学科代码:070901
  • 学位授予单位:中国地质科学院
  • 论文提交日期:1988-10-01
摘要
本文将西准噶尔地区蛇绿岩分为两类:一类是变质橄榄岩+橄长岩+辉长岩岩石组合(简称PTG系列);另一类则是变质橄榄岩+辉石岩+辉长岩岩石组合(简称PPG系列)。前者以达拉布特,和布克赛尔蛇绿岩带为代表;后者以唐巴勒,玛依勒山蛇绿岩(带)为代表。依据变质橄榄岩中铝饱和系数的大小可将变质橄榄岩分为高AL型(AL′>1)与低AL型(AL′<1)两类;PTG系列对应于高AL型,PPG系列对应于低AL型。PTG系列遵循富AL的演化趋势PPG系列则遵循富Ca的演化趋势。因此,两类蛇绿岩在岩石组合、矿物学、岩石化学、REE地球化学及所含矿床类型与种属上以及蛇绿岩形成时代与推覆时代上均有明显的差异。
     本文还证明西准噶尔的两类蛇绿岩中发育两类豆荚型铬铁矿床;PTG系列发育耐火型铬矿床,而PPG系列则发育冶金型铬矿床。前者以萨尔托海、鲸鱼、洪古勒楞为代表,后者则以唐巴勒、萨雷诺海为代表。耐火型矿床中造矿与副矿物铬尖晶石以高AL低Cr为特征,冶金型矿床中的造矿与副矿物铬尖晶石则以高Cr低AL为特征,两类矿床中造矿铬尖晶石成分有明显的区分范围。两类矿床中副矿物铬尖晶石的成分从二辉橄榄岩至纯橄岩均显示出富Cr贫AL的演化趋势。表明它们有相似的成矿作用。
     形成西准噶尔蛇绿岩及豆荚型铬铁矿的主要机制是原始上地幔岩的部分熔融及熔出物(玄武岩浆)上升侵位后的结晶分异作用。两类蛇绿岩之间的差异则与原始地幔岩的部分熔融程度、岩浆房的形成深度及氧化状态有关;而其中发育的两类铬铁矿床除受部分熔融程度、形成深度控制外,原岩成分和晚期地幔的交代作用亦是重要的因素。纯橄岩与豆荚型铬铁矿床的出现代表了原始地幔岩的高度熔融的残余,而冶金型铬铁矿床形成时的熔融程度稍高于耐火型铭铁矿床形成时的熔融程度。
     对西准噶尔地质条件的分析表明:西准噶尔的蛇绿岩与铬铁矿形成于弧后扩张盆地环境,洋壳形成阶段从晚寒武(唐巴勒)直至中泥盆统(达拉布特),而盆地沉积阶段则从中奥陶延续到中石炭;洋壳推覆时代不一致,在唐巴勒为早志留,玛依勒山为晚泥盆,达拉布特与和布克赛尔则晚于中石炭。显示出从南到北洋壳形成与推覆时代由老到新的差别。西准噶尔蛇绿岩中岩墙杂岩(包括堆积杂岩)的极不发育则与整个盆地的慢速扩张(<2厘米/年)有关。
Study on the Genesis of Ophiolites and Podiform
     Chromite Deposits of the Western Zhungeer Area, Xinjing
     Hao Ziguo
     (Chinese Acaemy of Geological Sciences)
     The author first diyides the ophiolites of the Western Zhungeer area into two types in this paper. The one is of the assemblage of metemorphic peridotite+ troctolite + gabbro( abbreviated to PTG lineage), the other is of the assemblage of metamorphic periaotite+pyroxenite+gabbro(abbreviated to PPG lineage), The former is represented by the Dalabute and Hebukesaier ophiolite belts; the latter is represented by the Tangbale and Mayileshan ophiolite belts. The metamorphic peridotite can be divided into two types of high AL(AL'>1) and low AL(AL'<1) on the basis of the aluminium saturation coefficient(AL' =AL/(2Ca+Na+K)). The PTG lineage corres- ponds to the high AL type, but the PPG lineage corresponds to the low AL type. The PTG lineage follows an AL-rich evolution trend, and the PPG lineage follows a Ca-rich evolution trend. Therefore, the two types of the ophiolite are very different in rock associa-tion, mineralogy, rock chemistry, RE,geochemistry, ore deposit type and the time of formation and napping.
     The author first points out that there are two t chromite deposit in the two ophiolite types of the Western Zhungeer area. The one is refrcatory type chromite deposit which occurs in PTG lineage ophiolite, the other is metallurgical type chromite deposit which occurs in PTG lineage optic!ire. The former is examplified by the Saertuohai, Jingyu and Hongguleleng blocks, the latter is exemplified by the Tangbale and Saleinuohai blocks. The chrome spinels(Cr-sp) of ore-forming and accessory mineral in the chromite deposit of refractory type are high AL and low Cr, and in the chromite deposit of metallurgical type are high Cr and low AL. The composition range of Cr-sp in the two types of chromite deposit are distictly different. The compositions of accessory Cr-sp exhibit a same evolution trend of Cr-rich and Al-poor fromlherzolite to dunite in the two types of chromite deposit. The compositions of ore-forming Cr-sp corresponds to the composition range of accessory Cr-sp of the dunite in the metallurgical type's chromite deposit, and these of dunite + harzburgite in the refractory type,s chromitedeposit. They are all residues of the primary pyrolite at itshigh degree's partial melting. So, they show a consistency in thediagenetic and metallogenetic process.
     The major mechanism of formation of the ophiolites and the podi-form chromite diposits in the Western Zhungeer area includes partialmelting of the primary pyrolite and differentiation of the melt-outmaterials( basaltic magmas) after they intruded. The differencesbetween the two ophiolite types are related to the degree of partialmelting of the pyrolite and depth of formation of magma chambers aswell as oxidation state of the mammas. Two type's chromite deposits in the ophiolites are also controlled by the composition of primary rock and late metasomatism in the mantle, in addition to the above mentioned factors. The degree of partial melting and the depth of formation of chromite deposit of metallurgical type are higher than that of chromite deposit of refractory type.
     Analysis of geotectonic conditions for the Western Zhungeer area shows that the ophiolites and chromite deposits formed in back-are spreading environment. The time of formation of the oceanic crust is about from the late Cambrian epoch(508+20 M.Y.) to the Middle Devo - ninon epoch. The sedimentory stage of the basin is from the Ordovic-ian period to the Middle Carboniferous epoch。The napping time of the crust is different. It is The Early Ordovician epoch in the Tangbale, and the Late Devonian epoch in the Mayileshan, as well as the Middle Carboniferous epoch in the Dalabute and Hebukesaier。Obxionsly, the forming and nappling time of the ophiolites get gra- dually younger from South to Morth in the Western Znungeerarea. The undevelopment of the sheeted sill complexs( included cumulate comp-lexes) in the Western Zhungeer ophiolites is concerned with the slow spreading of the back-arc basin.
引文
1、新疆区测大队,1974,中华人民共和国地质图Ⅰ,-44-Ⅹ Ⅹ Ⅸ幅,L-44-Ⅹ Ⅹ Ⅹ幅。
    2、新疆第三地质大队,1965,新疆托里县夏坦河-拉巴河一带1965年铬矿普 查找矿工作报告。
    3、新疆第三地质大队,1966,托里县唐巴勒超基性岩体铬铁矿详查报告。
    4、新疆第三地质大队,1966,托里县萨雷诺海地区超基性岩铬铁矿床普查详查报告。
    5、新疆第三地质大队,1966,托里县玛依勒山那伦索-科热克超基性岩体普查找矿报告。
    6、新疆区测大队,1966,中华人民共和国地质图克拉玛依幅(L-45-XⅨ)及说明书。
    7、新疆第三地质大队,1967,萨尔托海铬铁矿区第4-14,13,8-18矿群矿石储量计算说明书。
    8、新疆第七地质大队,1977,萨尔托海铬铁矿区22矿群总结报告
    9、新疆第七地质大队,1974,萨尔托海铬矿区21矿群总结报告
    10、新疆第三区测大队,1960,边境准噶尔塔尔巴嘎台山-萨吾尔山地区一比二十万区域地质测量及普查找矿工作报告
    11、新疆第三地质大队,1965,和布克赛尔县洪古勒楞地区1965年铬铁矿详查报告
    12、新疆地矿局科研所,1979,新疆维吾尔自治区超基性岩及铬铁矿资料汇编
    13、新疆地矿局科研所,1979,新疆超基性岩与铬铁矿
    14、邓明先,1983,新疆唐巴勒蛇绿岩(本所硕士论文)
    15、地矿部西安地矿所,1985,10,新疆萨尔托海铬铁矿床的地质特征及成矿部位研究报告
    16、地矿部西安地矿所,1985,10,新疆西准噶尔西南地区古生代蛇绿岩及其地质意义研究报告。
    17、地矿部西安地矿所,1985,1,西准噶尔古板块构造特征研究报告。
    18、贠培基等,1984,新疆维吾尔自治区托里县萨尔托海研究报告
    19、甘启高,1984,新疆洪古勒楞堆积杂岩的岩石学研究。(本所硕土论文)
    20、杨武亮,1986,新疆萨尔托海蛇绿岩中超镁铁岩和铬铁矿(本所硕士论文)
    21、周美福,1986,新疆托里县安齐-萨尔托海蛇绿岩及金矿的研究(本所硕士论文)
    22、彭根永,1988,新疆洪古勒楞蛇绿岩中变质橄榄岩及铬铁矿的成因探讨(本所硕士论文)
    23、金远新,1988,新疆洪古勒楞蛇绿岩中堆积岩地球化学及成因研究(本所硕士论文)
    24、周长青,1988,新疆萨雷诺海蛇绿岩岩石学特征及成因分析(中科院地质所硕士论文)
    25、冯益民、肖序常等,1988,中国新疆西准噶尔山系构造演化(中国地质科学院研究报告)。
    26、赵海玲,1988,中国东南沿海地区新生代火山岩和上地幔包体的研究(中国地质大学博士论文详细摘要)
    1、白文吉等,1986,中国内蒙古贺根山地区蛇绿岩的岩石学研究。《国际交流地质学术论文集》为27届国际地质大学撰写P 41-46。
    2、白文吉等,1988,新疆托里地区金矿床地质特征及成因讨论,地质论评,Vol.34,第1期,P 80-87。
    3、冯益民,1985,西准噶尔优地槽褶皱带沉积建造特征及其多旋回发展,西安地矿所所刊第10期,P 29-24。
    4、冯益民,1986,西准噶尔蛇绿岩生成环境及其成因类型,西安地矿所所刊,第13期,P 37-45。
    5、高纪璞,1987,我国西北某些阿尔卑斯型超基性岩体的岩浆结晶演化特征初探。西安所所刊,第15期,P 69-86。
    6、李春昱等,1982,亚洲大地构造图(1∶800万)及说明书。地图出版社。
    7、李行等,1987,新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征。西安地矿所所刊,第18期,P 1-140。
    8、彭礼贵,1985,新疆玛依勒山地区铁镁质超基性岩特征及硅酸盐熔体包裹体。西安地矿所所刊,第11期。
    9、王恒升等,1983,中国铬铁矿床及成因。科学出版社。
    10、王希斌等,1987,豆荚状铬铁矿床的成因,地质学报,第二期
    11、王希斌等,1987,西藏蛇绿岩。地质出版社
    12、叶良和等,1987,西准噶尔地区蛇绿岩地质——数学特征及超基性岩含铬性统计预测。西安所所刊,第17期。P 117-193。
    13、张驰,1981,新疆蛇绿岩某些地质特征。地质论评,Vol.27,第4期。
    14、周良仁等,1987,西准噶尔地区地质构造发展及岩浆演化特征。西安地矿所所刊,第16期,P 1-56。
    15、朱宝清等,1987,西准噶尔西南地区古生代蛇绿岩。西安地矿所所刊,第17期,P 3-64。
    16、(?)ecnaloB,B.Φ.1982,苏联哈萨克斯坦的蛇绿岩,西北地质,1985,6,赵玉丁译。
    17、Hawkesworth et al,1979,蛇绿岩中的Nd和Sr系统,同位素地质学,李桂如译,1981。
    [16] Allegre, C. J. et al, 1980, Trace element geochemistry and the origin of ophiolite complexes. Colloq. Int. C. N. R. S. Vol. 272, P125-133.
    [17] Barnes, I., Et al 1969, The relationship between fluids in some fresh Alpine-type ultramafics and possible modern serpentinization, Western United States. Geol. Soc. am. Bull. Vol. 8, P1947-1960.
    [18] Bischoff, J. L., et al, 1975, Sea-water basalt interaction at 200℃ and 500 bars: Implications for origin of sea-floor heavy-metal deposits and regulations of sea-water chemistry. Earth Plaetary Sci. Lett. Vol. 27, P387-397.
    [19] Boyd, F. R. et al, 1964, The system MgO-FeO-SiO_2. Amer. J. Sci. Vol. 229.
    [20] Boyd, F. R. et al, 1979, The mantle sample: Inclusions in kimberlite and other volcanics. Amer. Geophy. Union.
    [21] Coleman, R. G. 1977, Ophiolites, Springer-Veriag Heidelberg New York.
    [22] Coleman, R. G. 1986, Ophiolites and accretion of the north American
    [23] Cohen, L. H. et al, 1967, Helting and phase relationship in an anhydrous basalt to 40 kilobars. Am. J. Sci. Vol. 265, P475-513.
    [24] Church, U. R. et al, 1971, Early Paleozoic ophiolite complexes of the Hewfoundland Appalacchians as mantle-oceanic crust sequences, J. Geophy. Res. Vol. 76, P1460-1466.
    [25] Carssard, D. et al, 1981, Stractural classification of chronite pods in the Southern New Caledonia. Econ. Gecl. Vol. 76, P805-831.
    [26] Davies, H. L. et al, 1971, Geology of Eastern Papua. Geol. Soc. Am. Bull. Vol. 82, P3299-3312.
    [27] Dick. H. J. B., 1977, Partial melting in the Josephine peridotite. Am. J. Sci. 227, P801-832.
    [28] Dick, H. J. B., 1982, The petrology of two back-arc basins of the northern Philippine sea. Am. J Sci. Vol. 282, P644-700.
    [29] Eales, H. V., et al, 1979, Chromiferous soinels of the Elephant's Head dick. Mineral. Deposita. Vol. 14, P227-242.
    [30] Eales, H. V., et al, 1980, The spinel-group minerals of the central Karoo tholeiitic province. Trans. Geol. Soc. S. Afr. Vol. 83, P243-253.
    [31] Eales, H. V. et al, 1083, Al/Cr rations of coexisting pyroxenes and spinellids in some ultramafie rocks. Chem. Geol. Vol. 38, P57-74.
    [32] Frey, F. A. et al, 1978, Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis Earth Plant. Sci. Lett. Vol, 38, P129-176.
    [33] Frey, F. A. et al, 1978, Integrated models of basalt petrogenesis. J. Petrol. Vol. 19, P463-513.
    [34] Green, D. H. 1964, The petrogenesis of the high-temperature peridotite intrusion in the Lizard area. Cornwall. J. Petrol. Vol, 5, P134.
    [35] Groves. D. I. et al 1977, Spinel phases associated with metamorphosed volcanic-type iron-nickel sulfide ores from Western Australia. Econ. Geol. Vol. 72, P1224-1244.
    [36] Haggerty, S. E. 1979, Spinels in high pressure regimes: The Mantle Sample, Incusions in Kimberlites and Other Volcanics. Editor: Boyd, F. A. et al, 1979, P183-196.
    [37] Hasin L. A. 1984, Petrogenetic modelling, Use of REE. REE Geochemistry. Edited by p. Henderson. P115-152.
    [38] Henderson, P. et al, 1971, The nature and origin of chrome-spinel of the Rhum Layered complex. Contrib. Mineral. Petrol. Vol. 33, P21-31.
    [39] Hock, M. et al, 1986, Refractory-and metallurgical-type chromite ores, Zambales ophiolite, (?)uzon, Philippines. Mineral. Deposita. Vol. 21, P190-199.
    [40] Honnores, J. et al, 1984, Occurrence and significance of genissic amphibolites in the Vema fracture zone. equatoral Mid-Atlantic Ridge. Ophiolite and Lithosphere. Edited by I. G. Gass. Blackwell Scientific Publications.
    [41] Irvine, I. N. 1967, Chromian spinel spinel as a petrogenetic indicator, part 2, Petrologic applications. Can, J. Earth Sci. Vol. 4, P71-103.
    [42] Jackson, E. D. 1969, Chemical variation in coexisting chromite and olivine in the chromitite zones of the Stillweter complex. Edtted by H. D. B. Wilson, Magmatic Ore Deposits. Econ. Geol. Monoger. Vol. 4.
    [43] Jaques, A. L. 1981, Petrology and petrogenesis of cumulate peridotite and gabbros from the Maron ophiolite complex, northern Papua New and gabbros from the Maron ophiolite complex, northern Papua New Guinea. J. Petrol. Vol.22, P1-40.
    [44] Jagouta, E. 1979, The abundences of major, miner and trace elemennts in the earth is mantle as dirive form primitive ultramafic nodules. Proc. Lunar. Planet. Sci. Conf. 10th(1979) P2031-2050.
    [45] Lago, B. L. et al, 1982, Podiform chromite ore deposit; A genetic model. J. Petrol. Vol.23, P103-125.
    [46] Haalφe, S. et al, 1979, Natural melting of spinel lherzolite. J. Petrol. Vol. 20, P727-741.
    [47] Mecier, J. C. C. 1976, Single-pyroxene geothermometry and geobarometry. Am. Mineralogist. Vol. 61, P603-615.
    [48] Mysen, B. O. et al, 1977, Compositional variations of coexisting phase with degree of melting of peridotite in the upper mantle. Am. Miner. Vol. 62, P834-865.
    [49] Muir, J. E. et al, 1975, A nature occurrence of two-phase chromiumbearing spinels. Can. Mineral. Vol. 11, P930-939.
    [50] Neilson, R. L. et al, 1978, Distribution of Mg~(2+) between olivine and silicate melt and its implications regarding melt structure Geochim. Cosmochim. Acta. Vol. 6A, P789-800.
    [51] Nicolas, A. et al, 1983, Cumulative and risidual origin for the transition zone in ophiolites: structural evidence. J. Petrol. Vol. 24, P188-206.
    [52] O'Hara, M. J. 1981, Are ocean floor basaltic primary magma? Nature (london) Vol. 220, P683-686.
    [53] Ottonello, G. et al, 1984, Rare earth and 3d transition element geochemistry of peridotite, I. peridotites from the western Alps. J. Fetrol. Vol. 25, P343-372.
    [54] Oxburgh, E. R. et al, 1974, Thermal gradients snd regional metamorphism in overthrust terriers with special refrence to tne eastern Alps, Schweiz, Miner. Petrol. Mitt. Vol. 54, P641-716.
    [55] Panayiotau, A. 1978, The mineralogy and chemistry of the podiform chromite deposits in the serpentinites of the Limassol Forest, Cyprus. Mineral. Deposita. Vol. 13, P259-274,.
    [56] Pankhurst, R, J. 1977, Open system crystal fractionation and incompatible element variation in basalts. Nature(London). Vol. 268, P36-38.
    [57] Pearce, J. A. 1975, Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics. Vol. 25, P41-67.
    [58] Prinzhofer, A. et al, 1583, Geochemical costraints on the physics of partial melting: the example of the New Celedonica Ophiolite. EOS. Vol. 64, P327.
    [59] Prinzhofer. A. et al, 1985, Residual peridotite and the mechanisms of partial melting. Earth Plant. Sci. Lett. Vol. 74, P251-265.
    [60] Richard, P. et al, 1976, ~(143)Nd/~(144)Nd, a nature tracer: an application to oceanic basalts. Earth Plant. Sci. Lett. Vol. 31, P269.
    [61] Ridley, W. I. 1977, The crystallization trends of spinels in Tertiary basalts from Rhum and Muck and their petrogenetic significance. Contrib. Mineral. Petrol. Vol. 64, P243-255.
    [62] Roder, P. L. et al, 1966, Experimental data for the system MgO-FeO~*-CaAl_2Si_2O_8 and their petrologic implications. Am. J. Sci. Vol. 264. P428-480.
    [63] Roder, P. L. et al, 1979, A re-evaluation of the olivine-spinel geothermometer. Contrib. Petrol. Vol. 68, P325-334.
    [64] Ringwood, A. E. 1975, composition and petrology of the earth's mantle. McGaw-Hill Inc. U. S. A.
    [65] Schilling, J. G. 1975, REE variations across normal segments of the Reykjanes Ridge 60-53°N; Mid-Atlantic Ridge 29°s; and East Pacific Rise 2-19°s, and evidence of the composition of the underlying lowvelocity layer. J. Geopysi. Res. Vol. 80, P1459-1473.
    [66] Scarte, C. M. et al 1979, Invariant melting behavior of mantle material: partial melting of two lherzolite nodules. Carnegie Insti. Wash. Yerb. Vol. 78, P498-501.
    [67] Sato, H. 1977, Nickel content of basaltic magma: identification of primary magmas and measure of the degree of olivine fractionation. Lithos. Vol. 10, P113-120.
    [68] Saunders, A. D. 1980, Ophiolites-proceedings international ophiolite symposium., 1979.
    [69] Sinton, J, M. 1977, Equilibration history on the bssal Alpine-type peridotite, Red Mountain, New Zealand. J. Petrol. Vol. 18 P216-246.
    [70] Sugiski, R. 1976, Chemical characteristics of volcanic rocks with relationship of plate tectonics, lithos Vol. 9, P18-27.
    [71] Suzuki, K. et al, 1980, chromite-bearing spessartites from Kasugamura, Japan and their bearing on possible mantle origin andesite. Contrib. Mineral. Petrol. Vol. 71, P313-322.
    [72] Spooner, E. T. C. et al ,1973, Sub-sea-floor metamorphism, heat and mass transfer. Contrib. Mineral. Petrol. Vol. 42, P287-304.
    [73] Tilton, G. R. et al, 1986, Isotopic studies from the West Junggar Nts. NW China. Geol. Soc. Am. Abst. With program.
    [74] Thayer, T. P. 1946, Preliminary chemical correlation of chromite with the containing rocks. Econ. Geol. Vol. 41, P202-217.
    [75] Thompson, R. N. 1972, The oxygen fugacity within graphite capsules in piston-cylinder apparatus at high pressures. Carnegie Institu. Wash. Year Book. Vol. 71, P615-616.
    [76] Turnock, A. C. et al, 1962, Fe-Al oxides: Phase relationships below 1000 C. J. Petrol. Vol. 3, P533-565.
    [77] Ulmer, G. C. 1974, Alteration of chromite during serpentinization in the Pennsylvania Maryland district. Am. Mineral. Vol. 59, P1236-1241.
    [78] Wenner, D. B. et al, 1969, δD and δO~(18) studies in serpentinition of ultramafic rocks. Geol. Soc. Am. Atlantic City. P234-235.
    [79] Weertman, J. 1972, Coalesence of magma pockets into large pool in the upper mantle. Geol. Soc. Am. Bull. Vol. 83, P3531-3532.
    [80] Yoder, H. S. Jr, 1967, Spilites and serpentinites. Carnegie Inst. Wash. Year Book. Vol. 65, P269-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700