用户名: 密码: 验证码:
镍基合金中非金属夹杂物及其去除技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航天、导弹和电子工业技术的飞速发展,对镍基合金的质量要求日益严格,尤其是对镍基合金中的线材,不仅要求其具有合格的化学成分和使用性能,而且还要求其具有合格的内在质量和表面质量。本文对某合金厂生产的4J43合金和Cr20Ni80合金线材出现的表面缺陷等质量问题进行了研究,发现与国内外同类产品相比,其合金成分较好,但合金中含有大量的脆性非金属夹杂物,这是导致产品出现表面裂纹、凹坑等质量问题的主要原因。针对目前镍基合金中非金属夹杂物的研究滞后,没有统一的鉴定和检测标准等问题,研究开发了新型的电解液,并采用金相检验与电解检验相结合的方法,对镍基合金线材中的非金属夹杂物进行了系统的研究,分析了合金中夹杂物的来源,并针对4J43合金和Cr20Ni80合金的生产工艺进行了优化。初步获得了较好的研究结果。
     配制了以复合含氧酸盐、氯化钠、柠檬酸钠为电解质的电解液,该电解液不仅可以高效萃取出镍基合金中的非金属夹杂物,而且电解过程中电解液温度变化小、PH值恒定,絮状的阳极泥沉淀少,电解过程平稳,电解后半透膜中的夹杂物混杂的金属掉渣少,清洗分离容易,收得率高,萃取所得的夹杂物较好地保留了在合金中的原貌,提高了实验分析的准确性。
     两种镍基合金中的夹杂物主要是熔炼过程生成的脱氧产物,因在浇注前未能完全上浮而滞留在合金中,属内生夹杂物。这些由Al、Si、Ca、Mn、Mg、Ti、Fe、Ni等元素组成的硅酸盐、铝酸盐及它们的复合夹杂物,在合金中因生成的时间、凝固的条件以及成分的不同而呈球状、小块状、条状及不规则形状。其中,大尺寸的脆性宏观夹杂物对合金的性能影响最大,尤其是4J43和Cr20Ni80合金中由Ti、Al、Fe组成的复合夹杂物,这类夹杂物主要是熔炼中钛脱氧产生的钛的氧化物或氮化物,多以锐角规则形貌出现,尺寸在20-300μm,变形率低、并具有较高的硬度。由于这种脆性夹杂物与合金基体之间在变形性方面存在着较大的差异,在加工变形过程中,合金基体的均匀连续性受到破坏,引起应力集中,导致合金基体与夹杂物交界处产生微裂纹,并且随着应力的增加,裂纹扩展并最终形成宏观缺口或断丝。
     采用三元酸性渣系CaF_2-Al_2O_3-CaO对中频感应熔炼后的4J43合金进行电渣重熔,实验证实,在此渣系下电渣重熔工艺稳定,电渣重熔后的4J43合金中非金属夹杂物总量减少了近40%,大于50μm的夹杂物完全消除,夹杂物的粒径主要控制在0~20μm,由于电渣重熔前合金中的脆性夹杂物(以铝酸盐为主的复合夹杂物和附合了氧化铝和氧化铁的氧化钛、氮化钛夹杂物)在重熔过程中已完全去除,重熔后合金中的新生夹杂物主要是塑性的硅酸盐类夹杂,使得合金的抗拉强度和延伸率都有较大的提高,但重熔前后4J43合金膨胀性能无明显变化,均在国标规定范围内。下游用户质量反馈证实:新工艺生产的4J43合金其表面质量和后续加工的成材率都比以前有较大提高。
     实验研究了钢包吹氩工艺参数对Cr20Ni80合金中夹杂物去除效果的影响,当吹氩量大于3.5L/min时,吹氩后夹杂物不但没有减少还有所增加,特别是大尺寸夹杂物,这主要是吹氩量大时氩气泡尺寸较大,引起钢液波动造成钢液卷渣和二次氧化;吹氩量选择在3L/min时,夹杂物去除效果最好,与未吹氩相比,合金中夹杂物可减少23%,特别是大尺寸夹杂物减少了12%,实验检测证实,在这种吹氩参数下生产的Cr20Ni80合金,其快速寿命和力学性能都有较大的提高,用户反馈得到了相同的结果。
With the rapid development of aviation,aerospace,missile and electronic industrial technology,the requirements for Ni-based alloys are stricter,especially for thin wires. Not only chemical constitution and service performance are limited,but also inner and surface qualities are required.The quality of 4J43 alloy and Cr20Ni80 alloy wires produced by one alloy company is examined and compared with the same products at home and abroad.It is found that all the alloy composition is coincident with standard requirement.But there are a lot of non-metallic inclusions in these two alloys and these nonmetallic inclusions may be the main cause of crack and break in products.Few people investigated on the behavior of non-metallic inclusions in the Ni-base alloy wire so far.In the paper new electrolyte used for electrolyzing Ni-based alloys is invented. Both metallographic examination and electrolytic assay are used to study nonmetal inclusions in Ni-based wires produced by normal process.The sources of inclusions in alloys are analyzed and process optimizing experiments for 4J43 alloy and Cr20Ni80 alloy are applied.Good test results are gained recently.
     New neutral electrolyte is made up by mixing oxysalt,sodium chloride and citric acid, etc.New electrolyte can not only effectively extract nonmetal inclusions in Ni-based alloys but also can have other good characters,such as,temperature and PH value is invariable during electroanalysis,anode mud precipitation of garrulous shape is little, electroanalysis process is calm;garrulous precipitation mixed in inclusions in half transparent film is so little that can be easily cleaned & separated,and high harvest rate is acquired.The inclusions extracted keep their former morphologies well in alloy,thus improving the veracity of experiment.
     The main inclusions existed in two Ni-based alloys are deoxidation results in melting process.These deoxidation results,which are detained in alloys owing to incomplete floating off before pouring,are endogenesis impurity.Silicate,aluminate and their composite inclusions are composed of elements such as Al,Si,Ca,Mn,Mg,Ti,Fe,Ni and so on.These inclusions exhibit many shapes such as sphericity、tablet、strip and abnormal shape because of different inborn time、solidified condition and component.In these kinds of Ni-based alloys,big brittle macroscopic inclusions have the huge impact on the properties of alloys,especially the composite inclusions composed of Ti、Al、Fe in 4J43 alloy and Cr20Ni80 alloy.This kind of impurity is mainly titanic oxides or nitrides generated by oxidizing of titanium in smelting which exhibits abnormal acute angle with size of 20-300μm and higher rigidity,belonging to brittle impurity with low strain rate.Because a rather large difference existed between fragile inclusions and alloy matrix in deformability,uniformity and continuity of alloy matrix were destroyed during the processing and deforming,causing stress concentration,inducing tiny cracks generated in the edge between alloy matrix and inclusions.With the increase of strain force,the crack extended and macroscopic gap or fracture formed.
     4J43 alloy processed by medium frequency induction melting is treated by electroslag remelting used ternary acid residue system of CaF2-Al2O3-CaO in industrial experiment.The results show that the process of electroslag remelting is stable under acid residue system and thus can effectively decrease nonmetal inclusions in 4J43 alloy. The total amounts of nonmetal inclusions decrease about 40%than those of normal process withous remeltingand whose sizes are bigger than 50μm disappear.The sizes of inclusions are in the range of 0-20μm.Inclusions are mainly brittle inclusions such as composite impurity which is mainly composed by aluminate and titanium oxide (titanium nitride)with some alumina and femic oxide before remelting.But,inclusions are mainly plastic silicate after electroslag remelting.The reason is that nonmetal inclusions in 4J43 alloy have been wiped off and new inclusions are created during remelting process.Tensile strength and elongation improve greatly,but the expansion property varies very samall and all fit the requirement of the state standard.The following process show that the rate of finished products improve
     The influence of bottom blowing argon of lidale on the effect of removing of inclusions for 2080 alloy is studied by industrial experiment.The results show that only proper blowing argon flux can gain good removing effect.When the argon flux is stronger than 3.5L/min,inclusions increase after blowing argon,especially big size inclusions.It is because that strong blowing flux conduce big air bubbles,arising big fluctuation and rolling residue of molten steel and farther oxidation also.When the argon flux is 3.5L/min,the removing effect is best,inclusions decreasing 23%, especially big size inclusions decreasing 12%,compared with normal process without blowing argon.The test results show that mechanical property and accelerated test lifetime improve greatly after bottom blowing argon and clients give the same results.
引文
[1]黄伯云,李成功,石力开.中国材料工程大典第4、5卷.有色金属材料工程(上).北京:化学工业出版社,2006,2-3.
    [2]中国腐蚀与防护学会主编.镍基及铁镍基耐蚀合金.北京:化学工业出版社,1989,9-10.
    [3]荣国器.镍基合金的性能和用途.材料导报,1992,(3):16-23.
    [4]金川集团有限公司信息中心.国内镍产品市场专项调研报告.2007,9.
    [5]2007年我国镍矿进口量及镍消费量分析.http://www.wdore.com/information/NewsDetail.aspx?InfoID=1339&flag=fx.2008-1-30.
    [6]中国可能成为全球最大的镍消费国.http://www.fengj.com/html/98/news show_98870.html.2006-4-20.
    [7]李李泉,蒋光明.杜美丝玻璃封接技术.中国照明电器,2003,11:31-35.
    [8]Eldred B E.Compound metal.US Patent:1083070,1913-12-30.
    [9]Fink C G.Evacuated container.US Patent:1498908,1924-6-24.
    [10]YB/T 5236-2005,杜美丝芯用铁镍基合金4J43.
    [11]倪鲁峰.杜美丝芯材4J43合金生产工艺初探.材料开发与应用,2003,18(1):37-42.
    [12]《膨胀合金手册》编写组.膨胀合金手册.北京:冶金工业出版社,1979:40-67.
    [13]JB/T 57277-1999,杜美丝产品质量分等.
    [14]周文辉.Cr20Ni80电热合金的试制和生产.冶金丛刊,1994.
    [15]GB T 1234-1995.高电阻电热合金.
    [16]王振东,宫元生.电热合金.北京:化学工业出版社,2006,23-46.
    [17]芮静康.实用电工材料手册.北京:中国电力出版社,2003,10-47.
    [18]韩莉.FeNiCrAlRe高温度耐热合金研制.稀土,1997.
    [19]李为谬编译.钢中的非金属夹杂物[M].北京:冶金工业出版社.1988.
    [20]中国科学院金属研究所.钢种非金属夹杂物的鉴定及图谱[M].北京:冶金工业出版社,1988.
    [21]日本科技厅金属材料研究所开发极低磷不锈钢.世界金属导报,2001.3.13.
    [22]Lowe J H,UKby J.Ntting,Mitchell A.Zero Inclusion Steels.In:Clean Steel.In:Super clean Steel 6-7th,London,1995,223.
    [23]许春雷.超纯净钢冶炼技术,宝钢技术,1996,(4):1-5.
    [24]储少军,纪忠民,李中朝,等.纯净铸钢及其精炼,铸造,1998,(1):49-52.
    [25]Wilson A D.Advances in the production and Use of Steel with Improved Internal Cleanliness, J. K. Mahaney, eds. In: Ameican Society for Testing and Materials (ASTM ), West Conshohocken, USA, 1999, 73-88.
    [26] Bettembourg J. P. International Conference on Production and Application of Clean Steels. In: The Iron and Steel Institute, London, Ralatnnfured, Hungary, 1970, 59-67.
    [27] Crethrn E, Philipe I. Intematinnal Conferrnce on Production and Application of Clean Steels. In: The Iron and Steel Institute, London, Balatonfured Hungary. 1970 , 29-34.
    [28] Olette M, Gatellier C. Information Symposium of Casting and Solidifcation of Steel. In: IPC Science and Technol ogy Press Ltd, Guildford, 1977, 1-60.
    [29] Souptel D, Loser W, Gruner W, et al. Oxygen as impurity in crystal growth of intermetallics. Journal of Crystal Growth, 2007, 307(2): 410-420.
    [30] Horwath J A, Goodrich G M. Microinclusion classification in steel castings. American Foundrymen's Society Transactions, 1995,4: 495-510.
    [31] Zhang B W, Li B W. Growth kinetics of single inclusion particle in molten melts. Acta Metallurgica Sinica, 2007, 20(2): 129-138.
    [32] Afshar M R, Aboutalebi M R, Isac M, et.al. Mathematical modeling of electromagnetic separation of inclusions from magnesium melt in a rectangular channel. Materials Letters, 2007,61(10): 2045-2049.
    [33] Fan D, Liu G Discussion on deoxidization process in ASEA-SEF ladle refining furnace. Steelmaking,2000,16( 11): 43 -46.
    [34] Kravchenku V A. Calculating the parameters of grooves in three-high stands. Metallurgicheskaya i Gnmuntdnaya Promyshlennost, Russia, 2000, 1 (1):23-26.
    [35] Beskow K, Jia J, Sichen D, et.al. Chemical characteristics of inclusions formed at various stages during the ladle treatment of steel. Ironmaking and Steelmaking, 2002.29(6): 427.
    [36] Beskow K, Jonsson L, Sichen D, et.al. Study of the deoxidation of steel with aluminum wire injection in a gas-stirred ladle. Metal. & Material Trans. B., 2001, 32B(2):319.
    [37] Zhang L, Thomas B G, Wang X, et.al. Evaluation and control of steel cleanliness review. In: 85 Steelmaking Conference Pmceedinpys, RS, eds. ISS. Warrandale, PA, 2002,463-476.
    [38] Zhang L, Thomas B C. In: 7th European Electric Steelmaking Conference, Associazione Italianadi Metsllurgia, Milano, Italy, 2002, II, 2: 77-86.
    [39] Zhang L, Pluschkell W. Nucleation and growth kinetics of inclusions during liquid steel deoxidation.Imnmaking & Steelmaking,2003,30(2):106-111.
    [40]Aritomi N,Gunji K.Inclusions in Iron Ingots Deoxidized with Aluminum and Solidified Unidirectionally.Transactions of the Japan Institute of Metals.1981,22(1):43.
    [41]Fuchs E,Jonsson P.Inclusion characteristics in bearing steel before and during Ingot casting.High Temperature Materials and Processes,2000,19(5):333.
    [42]Majewski Z.Modeling Al O inclusion separation across steel-slag interfaces.In:International Conference on Production and Application of Clean Steels,eds..The Iron and Steel Institute,London,Balatonfured,Hungary,1970,68-74.
    [43]Golikov I N,in International Conference on Production and Application of Clean Steels,eds.,The Iron and Steel Tnstiune,London,Balatonfured,Hnngaty,1970,35-41.
    [44]Schlatter R,Review of Teeming Stream Protection Systems for Ingot Casting.Steel Times,1986,(8):432.
    [45]Dana R,Prasad A,Kumar S.Genesis of Exogenous Inclusions in Concast Plate Products.Steel Times International,1991,15(2):40.
    [46]Crumb A.W.and Byrne M,in 67th Sieelmaking Conference Pra,67,eds.,ISS,Warrendale,PA,1984,5-13.
    [47]Jack R.Investigation and Metallographic Examination of Large Non-Metallic Inclusions in Fully Killed Steels.Metals Forum,1979,2(2):87-97.
    [48]Dekkers R,Blanpain B,Wollants P,et.al.Steel cleanliness at Sidmar.In:ISSTech 2003 Conference Pronredings,eds.,.Warrandale,PA,2003,197-209.
    [49]Souptel D,Loser W,Gruner W,et al.Oxygen as impurity in crystal growth of intermetallics.Journal of Crystal Growth,2007,307(2):410-420.
    [50]Malinochka Y N.Nature of Coarse Inclusions in Ingots of Low Alloy Steels.Steel in the USSR,(1990),2(1):50.
    [51]宋维锡.金属学.北京:冶金工业出版社,1980,87-89.
    [52]GB10561-2005,钢中非金属夹杂物的鉴定.
    [53]刘天佑.钢材质量检验.北京:冶金工业出版社,1999:45-59.
    [54]陈家祥.钢铁冶金学(炼钢部分).北京:冶金工业出版社,1990,67-69.
    [55]李代锺.钢中的非金属夹杂物.北京:科学出版社,1983,331-339.
    [56]孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2003.
    [57]长谷川正义,竹下一彦.日本金属学会会报,1976,15(7):46-52.
    [58]李静缓.钢和钼中夹杂物的鉴定.北京:科学出版社,1988,266-269.
    [59]Atkinson H V,Shi G..Characterization of inclusionsin clean steel:a review including the statistics of extremes methods.Progress in Materials Science,2003,48:457-520.
    [60]陈奇志,黄一中,王燕斌,等.310不锈钢中氢致纳米空洞导致断裂的机理.中国科学(E辑),1998,20(4):295.
    [61]Lee T D,Goidenberg T,Hirth J P.Effect of hydrogen on fracture on U-notched bend specimens of spheroidized AISI 1095 steel.Metall Trans,1979,10 A(2):199.
    [62]Kiessling R,Lange N著,鞍钢钢研所,中科院金属研究所译.钢中非金属央杂物.1980,45-47.
    [63]惠卫军,董翰,陈思联.非金属夹杂物和表面状态对高强度弹簧钢疲劳性能的影响.特殊钢.1998,19(6):8-14.
    [64]Cogne J Y,Heritier B,Monnot J.Cleanness and fatigue life of bearing steels.Production and Application of Clean Steels.1970,6:26-31.
    [65]张德堂.钢中非金属夹杂物图谱.北京:国防工业出版社,1980,65-68.
    [66]切尔维亚科夫 A H.著,吴昌衡,李静媛,李代锺,等译.钢中央杂物的金相鉴定.北京:科学出版社,1956,87-89.
    [67]Byme M,Fenide T W,Cramb A W.The Source of Exogeneas of Exogeneas Inclusions in continuous cast Aluminum—killed steels.I&SM,1998,7:41-50.
    [68]Fernandes M,CheungN,Garcia A.Investigation of nonmetallic inclusions in continuously cast carbon steel by dissolution of the ferritic matrix.Materials Characterization,2002,48:255-261.
    [69]杨桂荣,王祖宽.钢中非金属夹杂物的金相鉴定.河北理工学院学报,1999,21(2):22-26.
    [70]Yang Z G.The fatigue behaviors of zero inclusion and commercial 42CrMo steels in the super long fatigue life regime.Acta Materialia,2004,52(18):5235-5241.
    [71]方克明,熊仲明,张鑫.钢中夹杂物研究方法的探索.见:冶金物理化学论文集,北京:冶金工业出版社,1997,23-25.
    [72]方克明,王国承.钢中的夹杂物研究从表征到改性.中国稀土学报,2006,24(专辑):439-441.
    [73]孙辰龄.钢中大型夹杂物的提取与分离.北京科技大学学报,1996,16(4):392-395
    [74]Fang K M,Ni R M..Research on Determination of the Rare-Earth Content in Metal Phases of Steel.Metallurgical Transactions A,1986,17A:315.
    [75]师昌绪,李代锺,赵淑熙.钢中非金属夹杂物在电解分离过程中的溶解.金属学报,1957,2(3):295-298.
    [76]荘育智,白玉文,李静媛,等.电解分离低碳纲中非金属夹杂物的研究.金属 学报,1956,1(1):59-71.
    [77]曲英.炼钢学原理.北京:冶金工业出版社,1980.
    [78]Lehner,T.Slag-metal mass transfer in argon stirred melts.Can.Metall.Q.1981(20):163-168.
    [79]F.奥特斯著,倪瑞明,张圣弼,项长祥译.钢冶金学.北京:冶金工业出版社,1997.
    [80]Taniguchi S,Kikuchi A.钢水中夹杂物行为的水模研究.钢铁.1999,34(增刊):319-323.
    [81]Beskow K,Jia J,Lupis C H P,et al.Chemical Characteristics of Inclusions Formed at Various Stages during the Ladle Treatment of Steel[J].Ironmaking and Steelmaking.2002,29(6):427-435.
    [82]Rakoski E.Nichtmetalische Einschlusse in Stahlen.Stahl und Eisen.1994,114(7):71-77.
    [83]尹弘斌,金山同.CAS法钢包内夹杂物上浮规律的水模型研究.钢铁.1997,32(5):20-24.
    [84]赵连刚,肖泽强.吹气搅拌过程钢水脱氧夹杂行为的数学模拟.东北大学学报.1998,19(增刊):164-167.
    [85]史国敏,张立,郑贻裕,等.转炉-CAS-连铸工艺生产低碳铝镇静钢中非盒属夹杂的研究.钢铁.2000,35(3):12-15.
    [86]尹弘斌,金山同.CAS工艺条件下钢包内夹杂物上浮规律的理论研究.钢铁1995,30(10):13-17.
    [87]区铁.转炉工艺操作和钢包吹氢对钢中氧化物夹杂的影响.炼钢,1995.11(2):29-33.
    [88]姜伟明,罗传清,赵扬,等.15MnHP钢夹杂物行为研究.钢铁研究.1997,25(4):6-10.
    [89]Wang L.H.,Lee H.G.,Hayes P.Prediction of the Optimum Bubble Size for Inclusion Removal from molten steel by Flotation.ISIJ Int,1996,36(1):7-16.
    [90]Anagbo P.E.,Brimacombe J.K.Plume Characteristic and Liquid Circulation in Gas Injection through a porous plug.metallurgical transactions,1990,21B(8):637-648.
    [91]R.T.Baxter,A.E.Wraith.Transitions in the Bubble Formation Mold of a Submerged Porous Disc.Chem.Eng.Sci.,1970,25(6):1244-1247.
    [92]薛正良,王义芳,王立涛,等.用小气泡从钢液中去除夹杂物颗粒.会属学报,2003,39(4):431.
    [93]李正邦,邹文正,谢继莹,等.电渣熔铸.北京:国防工业出版社,1981. 123-127.
    [94]Zhen D T.Second International Symposium on Electroslag Remelting Technology,Symposium proceeding part.Pittsburgh,1969.
    [95]Bhat G.K.,First International Symposiumon Electroslag Consumable electrode Remelting and Casting Technology.Pittsburgh,1967.
    [96]Richling W.Proceedings of the Fourth International Symposium on Electroslag Remelting Processes.1961,565.
    [97]Gammal T El.Proceedings of the Fourth International Symposium on Electroslag Remelting Processes.1961,45.
    [98]李正邦.电渣冶金的几个问题.见:全国电渣冶炼第一届会议集,北京:冶金工业出版社,1961,67-70.
    [99]李正邦.电渣冶金中非金属央杂的去除机理.钢铁,1966,1:20.
    [100]傅杰,朱觉.GCr15钢电渣重熔的研究.见:全国电渣冶炼第一届会议论文集,北京:冶金工业出版社,1961,23-25.
    [101]李正邦.电渣重熔去夹杂物机理.钢铁,1980,15(1):20.
    [102]傅杰.电渣重熔过程中氧化物夹杂去除机理的探讨.金属学报,1979,15(4):526.
    [103]傅杰.钢冶金过程动力学.北京:冶金工业出版社,2001,211-218.
    [104]李正邦.电渣重熔渣系新发展.见:特殊钢电渣冶金专集,北京:冶金工业出版社,1984,11.
    [105]李正邦.自耗电极原始夹杂物成分对电渣重熔精炼效果的影响.钢铁,1983,18(5):13.
    [106]李正邦.电渣重熔凝固过程的控制.见:特殊钢电渣冶金专集,北京:冶金工业出版社,1987,15.
    [107]徐卫国,陈希春,傅杰,等.感应电渣离心浇注件中的夹杂物.北京科技大学学报,1998,20(5):426.
    [108]刘中柱,蔡开科.纯净钢生产技术.钢铁,2000,35(2):64-69.
    [109]蒋海燕,孙宝德,倪红军,等.铝合金熔体净化工艺.特种铸造及有色合金,2001,(02):48-49.
    [110]傅高升,康积行,陈文哲.提高铝熔体净化效果的理论基础及途径.轻合金加工技术,2002,30(6):17-23.
    [111]鞍钢钢铁研究所编.实用冶金分析-方法与基础.辽宁:辽宁科学出版社,1990.726-743.
    [112]王建业,徐家文.电解加工原理及应用.北京:国防工业出版社出版,2001,101-110.
    [113]电解加工编译组编译.电解加工.北京:国防工业出版社出版,1977,11-12.
    [114]陈国华,王光信.电化学方法应用.北京:化学工业出版社,2003,2-3.
    [115]符德学,毋彩虹.电极反应机理的测定.焦作大学学报,2000,1:60-62.
    [116]曾振欧.镍电解精炼的电化学基础研究.湖南冶金,1991,5:10-14.
    [117]张家雯,熊轶.电渣重熔酸性渣的研究及应用.特殊钢,1998,19(3):6-9
    [118]倪世跃,潘效定.30t钢包底吹Ar搅拌实践.华东冶金学院学报,1997,16(3):279-283
    [119]GB/T 13300-91,高电阻电热合金快速寿命实验方法.
    [120]HB 5258-2000,钢及高温合金抗氧化性测定实验方法.
    [121]王立涛.微气泡法去除钢液中夹杂物的数学物理模拟.钢铁研究总院博士论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700