用户名: 密码: 验证码:
中国黄海、南海和青岛近海表面海水二氧化碳体系的多层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是全球碳循环至关重要的纽带,它在大陆岩石圈、海底沉积物圈、生物圈和大气圈之间碳的交换、流动过程中占主导地位。研究二氧化碳在海洋中的转移和归宿,即海洋吸收、转移大气二氧化碳的能力以及二氧化碳在海洋中的循环机制等已经成为当今国际海洋科学诸多研究计划,如JGOFS、LOICZ、IGBP等特别是SOLAS研究的重要内容。
     海水微表层(Sea Surface Microlayer, SML)是介于海洋和大气之间的一个薄层,是海-气界面间物质交换的必由之路。它有着特殊的物理-化学-生物性质,对海洋生物地球化学循环、物质的海-气界面通量、乃至气候等等都有着直接而重要的影响。但是,到目前为止,尚未见到有关海水微表层二氧化碳体系的系统研究。因此本文首次将“海洋微表层”引入中国陆架边缘海域海-气界面二氧化碳循环的研究之中,同时将重点放在表面海水二氧化碳体系DIC、Alk、pH和pCO2四个参量的多层(包括海水微表层SML、海水次表层SSL和海水表层SL)研究上,试图通过对表面海水(特别是微表层)的研究,探寻海-气界面之间碳循环的基本规律及海水微表层在其中所发挥的作用,并希望基于以上研究所得的结果,在海洋和大气之间建立一个全球碳循环的新模型。
     本文主要进行了以下几方面的工作:(1)首次将“海水微表层(SML)”的概念引入到海-气界面二氧化碳循环的研究中,并对中国黄海、南海和青岛近海表面海水二氧化碳体系中DIC、Alk、pH、pCO2四个参量的多层分布规律作了系统的研究;(2)首次提出了海洋碳循环过程中的“海水微表层(SML)泵”的概念,建立了“SML泵”的模型和及其“三个推论”;(3)首次将“海水微表层(SML)泵”应用于判断海水是大气二氧化碳的“源”或“汇”以及计算海-气界面二氧化碳通量。
     本文的主要研究结果如下:
The ocean is a very important connection in global carbon cycles, which plays a leading role in carbon exchange and transfer between the lithosphere, seabed sediment, biosphere and atmosphere. Nowadays, the study on the transfer and end-result of carbon dioxide including the ocean’s ability in absorbing and transferring the atmospheric carbon dioxide, the cycle mechanism of carbon dioxide in oceans et al. has been an important content in many international marine scientific research plans, such as JGOFS, LOICZ and IGBP, especially in the Surface Ocean and Lower Atmosphere Study (SOLAS).
     The sea surface microlayer (SML) is a thin layer situated between the sea and atmosphere, which is the inevitable way of material exchange in the sea-air interface. Because of its unique physical, chemical and biological properties, the SML have an important and direct effect on biogeochemical cycles in ocean, material fluxes in sea-air interface and global climates. But systematical multilayer studies on carbon dioxide system of the“SML - SSL - SL”in the surface waters are scarcely reported by now. In this article the SML is introduced to the carbon dioxide cycle in sea-air interface of the marginal sea in China for the first time. In addition, the key study is put upon the carbon dioxide system including DIC, Alk, pH and pCO2 in SML, SSL, SL of the sea surface waters to look for the principal regularity of carbon cycle in the sea-air interface and the role of SML. On the basis of the experimental results obtained from the sea research, a new model of global carbon cycle is hoped to set up finally.
     This work includes: (1) The SML is introduced to the carbon dioxide cycle in sea-air interface of the marginal sea in China for the first time. In addition,
引文
1. Agatova A. I, Lapina N M, Torgunova N I, et al. Biochemical composition of particulate and dissolved organic matter in the Bering Sea. Multiple investigations of the Bering Sea ecosystem (Sapozhnikov V V ed.). Moskva Russian Izf. Vniro. 1993. 204-226.
    2. Agogué H, Casamayor E O, Bourrain M, et al. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiology Ecology, 2005, 54: 269-280.
    3. álvarez M, Fernández E and Peréz F F. Air-sea CO_2 fluxes in a coastal embayment affected by upwelling: physical versus biological control. Oceanologica Acta, 1999, 22(5): 499-515.
    4. Baier R E, Goupil D W, Perlmutters S, et al. Dominant chemical composition of sea surface films, natural slicks and foams. J. Rech. Atoms. 1974, 8: 571-600.
    5. Bakker D C E, de Baar H J W and Bathmann U V. Changes of carbon dioxide in Surface waters during spring in the Southern Ocean. Deep-Sea Research II, 1997, 44: 91–128.
    6. Bakker D C E, de Baar H J W and Jong E. The dependence on temperature and salinity of dissolved inorganic carbon in East Atlantic surface waters. Marine Chemistry, 1999, 65: 263-280.
    7. Barnes R K, Batley G E and Sharp J H. Heavy metal enrichment in the surface microlayer of the Nepean-Hawkesbury river system. Aust. J. Mar. Freshwater Res., 1982, 33(3): 417-430.
    8. Bates N R, Merlivat L, Beaumont L and Pequignet A C. Inter-comparison of shipboard and moored CARIOCA buoy seawater fCO_2 measurements in the Sargasso Sea. Marine Chemistry, 2000, 72: 239-255.
    9. Bates N R, Takahashi T, Chipman D W and Knap A H. Variability of pCO_2 on diel to seasonal timescales in the Sargasso Sea near Bermuda. J. Geophysical Research, 1998, 103(C8): 15,567-15,585.
    10. Battle M, Bender M L and Tans P P. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science, 2000, 287: 2467-2470.
    11. Beardsley R C. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 1985, 4: 57-76.
    12. Bender M. A quickening on the uptake? Nature, 1996, 381: 195-196.
    13. Berner R A. Comments on the role of marine sediment burial as a repository for anthropogenic CO_2. Global Biogeochemical Cycles, 1992, 6: 1-2.
    14. Bezdek H F and Carlucci A F. Surface Concentrations of Marine Bacteria. Limnol. Oceanogr. 1972, 17(4): 566-569.
    15. Bianchi T S, Baskaran M and Delord J. Carbon cycling in a shallow turbid estuary of southeast Texas: the use of plant pigement biomarkers and water quality parameters. Estuaries, 1997, 20: 404-415.
    16. Boehm P D. Evidence for the decoupling of dissolved particulate and surface microlayer hydrocarbons in Northwestern Atlantic continental shelf waters. Mar. Chem. 1980, 9: 255-281.
    17. Borgne R L, Feely R A and Mackey D J. Carbon fluxes in the equatorial Pacific: a synthesis of the JCOFS programme. Deep-Sea Research II, 2002, 49: 2425-2442.
    18. Bozec Y, Thomas H, Elkalay K, et al. The continental shelf pump for CO_2 in the North Sea-evidence from summer observation. Marine Chemistry, 2005, 93: 131-147.
    19. Brewer P G. What controls the variability of carbon dioxide in the surface ocean? A plea for complete information. In: Burton J D, Brewer P G, Chesselet R. Eds., Dynamic Processes in the Chemistry of the Upper Ocean. New York: Plenum, 1986.
    20. Brewer P G, Wong G T F, Bacon M P and Spencer D W. An oceanic calcium problem? Earth Planet Science Letter, 1975, 26: 81-87.
    21. Brewer P G and Goldman J. Alkalinity changes generated by phytoplankton growth. Limnol. Oceanogr., 1976, 21: 108-117.
    22. Broecker W S, Gerard R, Ewing M and Heezen B C. Radio-carbon analysis of oceanic CO_2. J. Geophysical Research, 1960, 65: 2903.
    23. Broecker W S and Peng T H. Tracers in the sea. Lamont-Doherty Geological Observatory. Palisades, NY: Eldigeo Press, 1992. 690.
    24. Bruegmann L, Bernard P C and Grieken R V. Geochemistry of suspended matter from the Baltic Sea. 2. Results of bulk trace metal analysis by AAS. Marine Chemistry, 1992, 38(3-4): 303-323.
    25. Cai P H and Dai M H. Upper ocean carbon export in the South China Sea and the Taiwan Strait estimated from 234Th -238U disequilibrium. EOS, Transactions, America GeophysicalUnion, 2002, 83(4): Ocean Science Meeting Supplement, Abstract OS11C-34.
    26. Cai P H, Huang Y P, Chen M, et al. New production based on 228Ra-drived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea. Deep-Sea ResearchⅠ, 2002, 49(1): 53-66.
    27. Cai Pinghe, Huang Yipu, Chen Min, et al. Export of particulate inorganic carbon estimated from 234Th -238U disequilibria and its temporal variation in the South China Sea. Chinese Science Bulletin, 2001, 46(20): 1722-1726.
    28. Cai W J. Enhanced diffusive flux of dissolved inorganic carbon near the sediment-water interface as revealed by microelectrode measurements. Abstract of Paper America Chemistry Study, 1999, 217: 087, GEOC part 1.
    29. Cai W J and Dai M H. Comment on “Enhanced Open Ocean Storage of CO_2 from shelf Sea Pumping”. Science, 2004, 306: 1477c.
    30. Cai W J, Dai M H, Wang Y C, et al. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 2004, 24: 1301-1319.
    31. Cai W J, Pometoy L R, Moran M A and Wang Y C. Oxygen and carbon dioxide mass balance in the estuarine/intertidal marsh complex of five rivers in the Southern, United States. Limnol. and Oceanogr., 1999, 44: 639-649.
    32. Cai W J and Reimers C E. Sensors for in situ pH and pCO_2 measurements in seawater and sediment-water interface. In: In-situ Monitoring of Aquatic System: Chemical Analysis and Speciation (ed. Buffle J). IUPAC Book Series, 2000, Vol. 16.
    33. Cai W J and Remiers C E. The development of pH and pCO_2 microelectrode for studying the carbonate chemistry of pore waters near the sediment-water interface. Limnol. Oceanogr., 1993, 38: 1762-1787.
    34. Cai W J, Remiers C E and Shaw T. Microelectrode studies of organic carbon degradation and calcite dissolution at a California continental rise site. Geochimca et Cosmochimca Acta, 1995, 59: 497-511.
    35. Cai W J and Wang Y C. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Atlantic Rivers, Georgia. Limnol. Oceanogr., 1998, 43(4): 657-668.
    36. Cai W J, William J, Wiebe J, Wang Y C and Sheldon J E. Intertidal marsh as a source ofdissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the States. Limnol. Oceanogr., 2000, 45(4): 1743-1752.
    37. Cai W J, Zhao P, Theberge S M, et al. Environmental Electrochemistry. In: American Chemistry Society, ACS Symposium. Series 811 (eds. Taillefect M, Roran T F), Washington: American Chemical Society, 2002. 188-209.
    38. Cai W J, Zhao P and Wang Y. pH and pCO_2 measurements in seawater and at the sediment-water interface. In: In-situ Monitoring of Aquatic System: Chemical Analysis and Speciation (eds. Buffle J and Horvai G). London: Johm Wisey & Sons Ltd., 2000.
    39. Cai W J, Zhao P and Wang Y. pH and pCO_2 microelectrodes measurement and diffusive behavior of carbon dioxide species in coastal marine sediments. Marine Chemistry, 2000, 70: 133-148.
    40. Caldeira K and Duffy P B. The role of Southern Ocean in the uptake and storage of anthropogenic carbon dioxide. Science, 2000, 287: 620-622.
    41. Canadell J G, Dickinson R, Hibbard K, Raupach M, Young O. Global Carbon project, the Science Framework and implementation: ESSP Report No. 1, Canberra. 2003, 1-69.
    42. Cao M K and Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252.
    43. Carlson D J. A field evaluation of plate and screen microlayer sampling techniques. Marine Chemistry, 1982, 11: 189-208.
    44. Carlson D J. Chemistry and microbiology of surface microlayers of estuarine and coastal waters of the Gulf of Marine. Ph. D. Thesis. University of Maine, ME. U.S.A., 1981.
    45. Carlson D J. Dissolved organic materials in surface microlayers: temporal and spatial variability and relation to sea state. Limnol. Oceanogr. 1983, 28: 415-431.
    46. Carlucci A F, Craven D B and Henrichs S M. Surface film micro-heterotrophs: amino acid metabolism and solar radiation effects on their actives. Mar. Biol. 1985, 85: 13-22.
    47. Carlucci A F, Wolgast D M, Craven D B. Microbial populations in surface films: Amino acid dynamics in nearshore and offshore waters of Southern California. J. Geophys. Res. 1992, 97(C4): 5271-5280.
    48. Catherine G. High-accuracy measurements of total dissolved inorganic carbon in the ocean: comparison of alternate detection methods. Marine Chemistry, 1993, 44: 235-242.
    49. Chen C T A. Marginal seas may export anthropogenic CO_2 to the North Pacific Ocean. Proceedings, Global Carbon Cycle, Tsukuba, Japan, Feb. 1995.
    50. Chen C T A. New vs. export production on the continental shelf. Deep-Sea Research II, 2003, 50: 1327-1333.
    51. Chen C T A. Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. Deep-Sea Research II, 2002, 49: 5365-5375.
    52. Chen C T A. The Oceanic Anthropogenic CO_2 Sink. Chemosphere, 1993, 27: 1041-1064.
    53. Chen C T A and Wang S L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophysical Research, 1999, 104(C9): 20,675-20,686.
    54. Chen C T A and Wang S L. 1997. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. In: “Biogeochemical” processes in the North Pacific”, proceedings of
    1st Marine Science system, eds. Tsunogai S, 12-14 Nov. 1996. Matsu, Japan, 169-186.
    55. Chen C T A, Wang S L, Wang B J, et al. Nutrient budgets for the South China Sea basin. Marine Chemistry, 2001, 75: 281-300.
    56. Chen C T A and Tsunogai S. Carbon and nutrients in the ocean. In: Galloway J. Mellillo J eds. Asian Change in the Context of Global Climate Change. UK: Cambridge University Press, 1998. 271-307.
    57. Chen Jianfang, Zheng Lianfu, Wiesner M G, et al. Estimations of primary production and export production in the South China Sea based on sediment trap experiments. Chinese Science Bulletin, 1998, 43: 583-586.
    58. Coffin R B. Bacterial Uptake of Dissolved Free and Combined Amino Acids in Estuarine Waters. Limnol. Oceanogr. 1989, 34(3): 531-542.
    59. Cooper D J, Watson A J, Ling R D. Variation of pCO_2 along a North Atlantic shipping route (U.K. to Caribbean): A year of automated observations. Marine Chemistry, 1998, 1(60): 147-164.
    60. Copin-Montegut C. A formula of temperature on the partial pressure of carbon dioxide in seawater. Marine Chemistry, 1988, 25: 29-37.
    61. Copin-Montegut C. A method for the continuous determination of the partial pressure of carbon dioxide in the upper ocean. Marine Chemistry, 1995, 17: 13-21.
    62. Cross, J. N., Hardy, J. T., Hose J. E., et al. Contaminant concentrations and toxicity ofsea-surface microlayer near Los Angeles, California. Mar. Environ. Res., 1987, 23(4): 307-323.
    63. DeGrandpre M D, Hammar T R, Wallace D W R, Wirick C D. Simultaneous mooring-based measurements of seawater CO_2 and O2 off Cape Hatteras, North Carolina. Limnol. Oceanogr., 1997, 42: 21-28.
    64. DeGrandpre M D, Olbu G J, Beatty C M, et al. Air-sea CO_2 fluxes on the US Middle Atlantic Bight. Deep-Sea Research II, 2002, 49: 4355-4367.
    65. Dickson A G. The determination of total dissolved inorganic carbon in seawater using extraction/coulometry: the first stage of a collaborative study. US Department of Energy Report. No. DOE/RL/01830T-H14.
    66. Dickson A G and Millero F J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research II, 1987, 34: 1733-1743.
    67. Duce R A, Liss P S, Barber R, et al. Surface Ocean-Lower Atmosphere Study (SOLAS). Science Plan. SOLAS Open Science Conference, Damp. Germany, 21 December, 2000. 83.
    68. Duce R A, Quinn J G, Olney C E, et al. Enrichment of heavy metals and organic compounds in the surface microlayer of Narragansett Bay. Rhode Island. Science, 1972, 176: 161-173.
    69. Ducklow H W, Steinberg D K, Buesseler K O. Upper Ocean Carbon Export and the biological pump, Oceanography, 2001, 14(4): 50-58.
    70. Dyrssen D W. The biogeochemistry cycling of carbon dioxide in the oceans-perturbations by man. The Science of the Total Environment, 2001, 277: 1-6.
    71. Eldridge P J, Berry F H, Miller M C. Diurnal Variations in Catches of Selected Species of Ichthyoneuston by the Boothbay Neuston Net off Charleston, South Carolina. Fisheries Bullitin. 1978, 76(1): 295-297.
    72. Elliot W P and Angell J K. On the relation between atmospheric CO_2 and equatorial sea-surface temperature. Tellus, 1987, 39B: 171-183.
    73. Emerson S and Archer D. Calcium carbonate preservation in the ocean. Philosophical Transaction of The Royal Society of London Series A, 1990, 331: 29-40.
    74. Falck E and Anderson L G. The dynamics of the carbon cycle in the surface water of the Norwegian Sea. Marine Chemistry, 2005, 94: 43-53.
    75. Falkowski P, Scholes R J, Boyyle E, et al. The global carbon cycle: A test of our knowledgeof earth as a system. Science, 2000, 290: 291-296.
    76. Fasham M J R. Ocean Biogeochemistry. Berlin: Springer-Verlag, 2003. 297.
    77. Fasham M J R, Balino B M, Bowles M C. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). AMBIO Special Report, 2001, 31.
    78. Feely R A, Sabine C L, Key R M. Estimating the anthropogenic carbon dioxide sink in the Pacific Ocean. US JGOFS News, 1999, 9 (4): 1-4.
    79. Feely R A, Wanninkhof C C, Cosca P P. CO_2 distribution in the equatorial Pacific during 1991~1992 ENSO event. Deep-Sea Research II, 1995, 42: 365-386.
    80. Ferrarese S, Longhetto A, Cassardo C, et al. A study of seasonal and yearly modulation of carbon dioxide sources and sinks, with a particular attention to the Boreal Atlantic Ocean. Atmospheric Environment, 2002, 36: 5517-5526.
    81. Frankignoulle M, Bourge I, Canon C, and Dauby P. Distribution of surface seawater partial CO_2 pressure in the English Channel and in the Southern Bight of the North Sea. Continental Shelf Research, 1996, 16 (3): 381-395.
    82. Frankignoulle M and Borges A. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles, 2001, 15: 569-576.
    83. Gago J, Gilcoto M, Pérez F F, et al. Short-term variability of fCO_2 in seawater and air-sea CO_2 fluxes in a coastal upwelling system (Ría de Vígo, NW Spain). Marine Chemistry, 2003, 80: 247-264.
    84. Garabetian F, Romano J C, Paul R, et al. Organic matter composition and pollutant enrichment of sea surface microlayer inside and outside slicks. Mar. Environ. Res. 1993, 35(4): 323-339.
    85. Gardner W S and Stephens A. Stability and Composition of Terrestrially Derived Dissolved Organic Compounds in Natural Water. Limnol. Oceanogr. 1978, 14: 528-532.
    86. Garrett W D, et al. Collection of slick forming materials from the sea surface. Limnol. Oceanogr. 1965, 10: 602-605.
    87. Gearing, P. J. and Gearing, J. N. Transport of No.2 fuel oil between water column surface microlayer and atmosphere in controlled ecosystems. Marine Environment Research, 1982, 6: 133-143.
    88. Gerskey R M. A bubble adsorption device for the isolation of surface-active organic matter inseawater. Limnol. Oceanogr. 1983, 28(2): 395-400.
    89. Gong Haidong, Zhang Zhengbin, Zhang Chuang, et al. Multilayer study of carbon dioxide system in the surface waters of the Yellow Sea in spring. Chin. J. Oceanol. Limnol., 2006, in press.
    90. Gordon L I and Jones L B. The effect of temperature on carbon dioxide partial pressure in seawater. Marine Chemistry, 1973, 1: 317-322.
    91. Goyet C, Beauverger C, Brunet C, Poisson A. Distribution of carbon dioxide partial pressure in surface waters of the Southwest Indian Ocean. Tellus, 1991, 43B: 1-11.
    92. Goyet C and Brewer P. Biogeochemical properties of the oceanic carbon cycle. In: Willebrand J, Anderson D L T (eds.), Modeling Oceanic Carbon Interaction. NATO ASI Series, Springer Verlag, 1993, 1: 271-297.
    93. Goyet C, Millero F J, Possion A, Shafer D K. Temperature dependence of CO_2 fugacity in seawater. Marine Chemistry, 1993, 44(2-4): 205-219.
    94. Goyet C and Peltzer E. Comparison of the August-September 1991 and 1979 surface partial pressure of CO_2 distribution in the Equatorial Pacific Ocean near 150°W. Marine Chemistry, 1994, 45: 257-266.
    95. Grammatika M and Zimmerman W B. Microhydrodynamics of flotation processes in the sea surface layer. Dynamics of Atmospheres and Oceans, 2001, 34(2-4): 327-348.
    96. Gran G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst, 1952, 77: 661-671.
    97. Greenberg D M, Moberg E G, and Allen E. Determination of CO_2 and titratable base in sea water. Industrial Engineering Chemistry (Anal.), 1932, 4: 309.
    98. Guitart C, García-Flor N, Dachs J, et al. Evaluation of sampling devices for the determination of polycyclic aromatic hydrocarbons in surface microlayer coastal waters. Marine Pollution Bulletin, 2004, 48: 961-968.
    99. Hardy J T, Apts C W, Crecelius E A, et al. Sea surface microlayer metals enrichments in an urban and rural bay. Estuarine, Coastal and Shelf Science, 1985, 20: 299-312.
    100. Hardy J T, Apts C W, Crecelius E A, et al. The sea-surface microlayer: fate and residence time of atmospheric metals. Limnol. Oceanogr. 1985, 30(1): 93-101.
    101. Hardy J T, Crecelius E A, Antrim L D, et al. Aquatic surface microlayer contamination inChesapeake Bay. Marine Chemistry, 1990, 28: 333-351.
    102. Harmon C, Weiss R F, Clarke W B. Dissolved gases in the equatorial and South Pacific Ocean. Trans. Amer. geophys. Union, 1968, 49: 216.
    103. Harvey G W. Microlayer Collecting from the Sea Surface. A New Method and Initial Results. Limnol. Oceanogr. 1966. 11(4): 608~613
    104. Hatcher, R. F. and Parker, B. C. Laboratory comparison of four surface microlayer samplers. Limnol. Oceanogr. 1974, 19(1): 162-165.
    105. Hansson I. A new set of acidity constants for carbonic acid in seawater. Deep-Sea Research II, 1973, 20: 461-478.
    106. Harmon M E, Ferrel W K, Franklin J F. Effects on Carbon Storage of Conversion of Old-Growth Forests to Young Forests. Science, 1990, 247: 699-702.
    107. Haury H and Shulenberger E. Surface nutrient enrichment in the California Current off Southern California: description and possible causes. Deep-Sea Research II, 1998, 45: 1577-1601.
    108. Henrichs S M and Williams P M. Dissolved and particulate amino acid and carbohydrates in the sea surface microlayer. Marine Chemistry, 1985, 17: 141-163.
    109. Hirose K. Chemical speciation of trace metals. Marine Chemistry, 1990, 28: 267-274.
    110. Hong G H, Chung C S, Kang D J, et al. Synoptic distribution of nutrients and major biogeochemical provinces in the Yellow Sea. Proceedings of ISEE, 1993, 85-99.
    111. Honghton J T, Jenkins G J, Ephraums J J. Climate change, the IPCC Scientific Assessment. UK: Cambridge University Press, 1990.
    112. Houghton J T, Ding Y, Griggs D J, et al. (eds.), Climate Change: The Scientific Basis, Contribution of Working Group 1 to Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), UK: Cambridge University Press, 2001. 944.
    113. Houghton R A. Is carbon accumulating in the northern temperature zones? Global Biogeochemical Cycles, 1993, 7: 611-617.
    114. Hunter K A. Chemistry of the Sea-Surface Microlayer. Cambridge: Cambridge University Press, 1997. 519.
    115. IGBP Terrestrial Carbon Working Group. The Terrestrial Carbon Cycle: Implication for the Kyoto Protocol. Science, 1998, 280: 1393-1394.
    116. Inoue H, Sugimura Y, Fushimi K. pCO_2 and δ13C in the air and surface sea water in the western North Pacific. Tellus, 1987, 39B: 228-242.
    117. Ito R G, Schneider B, Thomas H. Distribution of surface fCO_2 and air-sea fluxes in the Southern subtropical Atlantic and adjacent continental shelf. J. Marine Systems, 2005, 56: 227-242.
    118. Jacobs C M J, Kohsiek W, Oost W A. Air-sea fluxes and transfer velocity of CO_2 over the North Sea: result from ASGAMAGE. Tellus, 1999, 51B: 629-641.
    119. Jeffery S W and Humphery G P. New spectrophotometric equations for determining chlorophylls a b C1 and C2 on higher plant, algae and natural phytoplankton. Biochem Physiol Pflanzen, 1975, 167: 191-194.
    120. Ji Lei, Cui He, Xin Shuping, et al. Characters of the pCO_2 and CO_2 Flux in the East China Sea in Autumn. Chin. J. Oceanol. Limnol., 2003, 21(2): 180-186.
    121. Johnson K M, Arthur E K, Sieburth M. Coulometric TCO_2 analysis for marine studies: An introduction. Marine Chemistry, 1985, 16: 61-82.
    122. Johnson K M, Dickson A G, Eischeid G, et al. Coulmetric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US Indian Ocean CO_2 survey 1994-1996. Marine Chemistry, 1998, 63: 21-37.
    123. Kanamori S S. Calibration of an IR absorption gas analyzer for total carbon dioxide determination in seawater. J. Oceanogr. Soc. Jpn., 1982, 38: 131-136.
    124. Kauppi P E. Biomass and carbon budget of European forest in 1971-1990. Science, 1992, 256: 70-74.
    125. Kawahata H, Suzuki A, Goto K. Coral reef ecosystems as a source of atmospheric CO_2: evidence from pCO_2 measurements of surface waters. Coral Reefs, 1997, 16: 261-266.
    126. Keeling C D. Global Observations of Atmospheric. In: Heimann M. The Global Carbon Cycles. New York: Springer-Verlag, 1993. 1-29.
    127. Keeling C D, Rakestraw N W, Waterman L S. Carbon dioxide in surface waters of the Pacific Ocean. 1. Measurements of the distributions. J. Geophysical Research, 1965, 70: 6087-6097.
    128. Keir R S, Rehder G, Frankignoulle M. Partial pressure and air-sea flux of CO_2 in the Northeast Atlantic during September 1995. Deep-Sea Res.Ⅱ, 2001, 48: 3179-3189.
    129. Kelley J J J. Carbon dioxide in the surface waters of the North Atlantic Ocean and theBarents and Kara Seas. Limnol. Oceanogr., 1970, 15: 80-97.
    130. Kim K R. Air-sea exchange of the CO_2 in the Yellow Sea. Seoul: The 2nd Korea-China symposium on the Yellow Sea research, 1999.
    131. Kjelleberg S and Hakansson N. Distribution of Lipolytic, Proteolytic, and Amylolytic Marine Bacteria between the Lipid Film and the Subsurface Water. Mar. Boil. 1977, 39: 103-109.
    132. Kjelleberg S, Humphrey B A, Marshall K C. Effect of Interface on Small, Starved Marine Bacteria. Appl. Environ. Microbial., 1982, 43: 1166-1172.
    133. Kjelleberg S and Stenstrom T A. Lipid Surface Films: Interaction of Bacteria with Free Fatty Acids and Phospholipids at the Air/water Interface. J. Gen. Microbial. 1980, 116: 417-423.
    134. Kjelleberg S, Stenstrom T A, Odham G. Comparative Study of Different Hydrophobic Devices for Sampling Lipid Surface Films and Adherent Microorganisms. Mar. Boil. 1979, 53: 21-25.
    135. Komori S. CO_2 exchange mechanism across air-sea interface. J. Jp. Ocean water Soc., 1993, 47: 59-66.
    136. Komori S, Shimada T and Murakami Y. Laboratory estimation of CO_2 transfer velocity across the air-sea interface. In: Biogeochemical Processes and Ocean Flux in the Western Pacific. Eds. Sakai H, Nozaki Y, Terra Sci. Pub, 1995.
    137. Kortzinger A. Air-sea inter-comparison of two newly designed underway pCO_2 systems encouraging results. Marine Chemistry, 1996, 52: 133-145.
    138. Kortzinger A. Determinations of carbon dioxide partial pressure. Methods of seawater analysis, 1999, Ed. K Grasshoff.
    139. Kortzinger A, Mintrop L, Wallace D W R, et al. The international air-sea inter-comparison of fCO_2 system during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean. Marine Chemistry, 2000, 72: 171-192.
    140. Kozarac Z, Cosovi B, Frka S, Mobius D and Hacke S. Complex methodological approach to the studies of natural microlayer at the air/water interface. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 219: 173-186.
    141. Kuznetsova M, Lee C and Aller J. Characterization of the proteinaceous matter in marine aerosols. Marine Chemistry, 2005, 96: 359-377.
    142. Lamb M F, Sabine C L, Feely R, et al. Consistency and synthesis of Pacific Ocean CO_2survey data. Deep-Sea Research II, 2002, 49: 21-58.
    143. Li Jun, Ding Haibing, Wu Zhijian, Zhang Zhengbin. Determination of Apparent Sampling Thickness of sea surface microlayer. Chin. J. Oceanol. Limnol., 1998, 16(2): 177-182.
    144. Li X L, Zhu G F, Zhan J Y. The Carbonate system in the central South China Sea. Acta Oceanologica Sinica, 1988, 7: 237-246.
    145. Libes S M. A Introduction to Marine Biogeochemistry, Inc. New York, John Wiley & Sons, 1992. 734
    146. Liss P S and Duce R A. The Sea Surface and Global change. Cambridge: Cambridge University Press, 1997. 517.
    147. Liss P S and Merlivat L. Air-sea gas exchange rates: introduction and synthesis, In: The role of air-sea exchange in geochemical cycling. Adv. Sci. Inst. Ser. P. Buat-Menard, Ed. Reidel D, Norwell, Mass, 1986.
    148. Liu K K, Atkinson L, Chen C T A et al. Exploring continental margin carbon fluxes on a global scale. EOS, Transactions, American Geophysical Union, 2000, 81(52): 641-644.
    149. Liu K K, Iseki K, Chao S Y. Continental marine carbon fluxes. In: The changing Ocean Carbon Cycle, Eds. Hanson R B, Ducklow H W and Field J G. UK: Cambridge University Press, 2000. 187-239.
    150. Longton R W, Cole J S, Quinn P F. Isoelectric Focusing of Baceria; Species Location within an Isoelectric Focusing Column by Surface Charge. Archives of Oral Biology. 1975, 20: 103-106.
    151. Lyman J. Buffer Mechanism of Seawater. Ph. D. Thesis. University of California, Los Angeles, CA, 1956. 196.
    152. MacIntyre F. Chemical fractionation and sea-surface microlayer processes. In: The sea. (Goldberg E D Ed.). New York: Wiley. 1974. 5: 245-299.
    153. Manabe S, Tang W, Fu L L. Century-scale effects of increased atmospheric CO_2 on the ocean-atmosphere system. Nature, 1993, 364: 215-218.
    154. Mantoura R F C, Martin J M, Wollast R. Ocean margin process in global change. Paris: John Wiley and Sons L td. 1991.
    155. Marty J C, Saliot A, Buat-Menard P, et al. Relationship between the lipid composition of marine aerosols, the sea-surface microlayer and subsurface water. J. Geophys. Res. 1979,84(C9): 5707-5716.
    156. Mccarrthy J L, Brewer P G, Feldman G. Global ocean flux. Oceanus, 1986, 29(4): 16-26.
    157. Mehrbach C, Culberson C H, Hawley J E, et al. Measurement of the apparent dissociation constants of carbonic acids in seawater at atmospheric pressure . Limnol. Oceanogr., 1973, 18: 897-907.
    158. Mikhaylov V I. Results of determination of petroleum hydrocarbons and chlorinated organic pesticides in a thin surface microlayer of the Mediterranean Sea. Oceanology. 1979, 19(5): 541-543.
    159. Millero F J. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 2005, 59(4): 661-677.
    160. Millero F J, Dickson A G, Eischeid G, et al. Assessment of the quality of the shipboard measurements of total alkalinity on the WOCE Hydrographic Program Indian Ocean CO_2 survey cruises 1994-1996. Marine Chemistry, 1998, 63: 9-20.
    161. Millero F J, Lee K, Roche M. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry, 1998, 60: 111-130.
    162. Mimura T, Romano J C , De Souza-Lima Y. Microbiomas structure and respiratory activity of microneuston and microplankton in northeastern Mediterranean Sea influenced by Rh?ne river water. Mar. Ecol. Prog. Ser. 1988, 49: 151-162.
    163. Morita R Y and Burton S H. Occurrence, Possible Significance, and Metabolism of Obligate Psychrophiles in Marine Waters. In: Organic matter in natural waters, D. W. Hood, editor, Institute of Marine Science, University of Alaska, Occ. Publication, 1970. 31: 275-285.
    164. Mudryk Z, Korzeniewski K, Falkowska L. Bacteriological investigation of the surface microlayer of the Gulf of Gdansk. Oceanologia, 1991, 30: 93-103.
    165. Murata A, Takizawa T. Impact of a coccolithophorid bloom on the CO_2 system in surface waters of the eastern Bering sea shelf .Geophysical Research Letters, 2002, 29(11): 1547. doi:
    10. 1029/2001Gl013906 (Jun .l, 2002 issue).
    166. Murata A and Takizawa T. Summertime CO_2 sinks in shelf and slope waters of the western Arctic Ocean. Continental Shelf Research, 2003, 23: 753-776.
    167. Murphy P P, Feely R A, Gammon R H. Assessment of air-sea exchange of CO_2 in the South Pacific during austral autumn. J. Geophysical Research, 1991, 96: 20,455-20,465.
    168. Neftel A, Moor E, Oeschger H, et al. Evidence from polar ice for the increase in atmospheric CO_2 in the past two centuries. Nature, 1985, 315: 45-47.
    169. Nightingale P D, Malin G, Law C S, Watson A J, Liss P S, Liddicoat M I, Boutin J, Upstill-Goddard R C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 2000, 15 (1): 31-42.
    170. Nishizawa S. Concentration of organic and inorganic material in the surface skin at the equator, 155oW. Bull. Plankton. Soc. Jpn, 1971, 18: 41-44.
    171. NOAA/CMDL, 2002. Climate Monitoring and Diagnostics Laboratory Summary Report No.26 (200022001). Available at http:// www.cmdl.noaa.gov/ publications/ annrpt26/ index. html. accessed on 2003203227.
    172. Noble I R. Ocean and land carbon dynamics: Sinks forever versus sink saturation. Presented at the 2001 Amsterdam Global Change Open Science Conference. 2001.
    173. OGANA H. Vertical distribution of DOC and nitrogen in the southern ocean. Deep-Sea ResearchⅠ: Oceanographic Research Paper, 1999, 46: 1804-1826.
    174. Oh D-C, Park M-K, Kim K-R. CO_2 exchange at air-sea interface in the Huanghai Sea. Acta Oceanologica Sinica, 2000, 19(1): 79-89.
    175. Ohtaki E, Yamashita E, Fujiwara F. Carbon dioxide in surface sea waters of the Seto Inland Sea, Japan. Journal of Oceanography, 1993, 49: 295-303.
    176. Oost W A. The effect of long measurement times on flux measurements at sea, In: Report of the ASGAMAGE Workshop. 22~25 September, 1997, Ed. by Oost, W. A.
    177. Otsuki A S, Watanabe S, Tsunogai S. Absorption of atmospheric CO_2 and its transport to the intermediate layer in the Okhotsk Sea. Journal of Oceanography, 2003, 59: 709-717.
    178. Overton E B, Mascarella S W, McFall J A, et al. Organics in the water column and air-water interface samples of Mississippi River water. Chemosphere, 1980, 9(10): 629-633.
    179. Park K, Kennedy G H, Dobson H H. Comparison of gas chromatographic method and pH-alky method for determination of total CO_2 in sea water. Anal. Chem., 1964, 36: 1686.
    180. Park P K. Oceanic CO_2 system: An evaluation of ten methods of investigation. Limnol. Oceanogr., 1969, 2: 179-186.
    181. Peng T H and Takahashi T. Carbon Dioxide in the Ocean. Under contract PE-ACO5-840R 31400, April, 1989, publication No.3311, Environmental Sciences Division. ORNL.
    182. Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429- 436.
    183. Poisson A., Metzl N, Brunet C, et al. Variability of sources and sinks of CO_2 in the Western Indian and Southern Oceans during the year 1991. J. Geophysical Research, 1993, 98(C12): 22,759-22,778.
    184. Prentice I C and Lloyd J C. Quest in the Amazon Basin. Nature, 1998, 396: 619-620.
    185. Prentice K C and Fung I Y. The Sensitivity of Terrestrial Carbon Storage to Climate Change. Nature, 1990, 346: 48-51.
    186. Quay P D, Tilbrook B, Wong C S. Oceanic uptake of fossil fuel CO_2: Carbon-13 evidence. Nature, 1992, 256: 74-79.
    187. Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea water. In: Hill M N (ed.), The Sea, vol. 2, Interscience. New York. 1963. 26-77.
    188. Rehder G and Suess E. Methane and pCO_2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 2001, 75: 89-108.
    189. Riley J P and Segar D A. The Seasonal Variation of the Free and Combined Dissolved Amino Acids in the Irish Sea. J. Mar. Boil. Assoc. U. K. , 1970, 50: 713-720.
    190. Riley J P and Skirrow G ed. Chemical Oceanography. 2nd edition. London: Academic press, 1975. 2, 648.
    191. Riznyk R Z, Hardy J T, Pearson W, et al. Short-term effects of polynuclear aromatic hydrocarbons on sea-surface microlayer phytoneuston. Bull. Environ. Contam. Toxicol. 1987, 38: 1037-1043.
    192. Romanenko V I, Pubenes M A, Daukashta A S. Growth and Activity of Bacteria on the Surface Film of Water under Experimental Conditions. Mikrobiologiya. 1978, 47: 149-157.
    193. Rowe G T, Sibuet M, Vangriesheim A. Domains of occupation of abyssal scavengers inferred from baited cameras and traps on the Demerara Abyssal Plain. Deep-Sea Research, Part A: Oceanographic Research Paper, 1986, 33(4): 501-522.
    194. Roy R N, Roy L N, Vogel K M, et al. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperature 0 to 45℃. Marine Chemistry, 1993, 42: 249-267.
    195. Roy S, Sundby B, Vezina A F, et al. A Canadian JGOFS process study in the Gulf of St. Lawrence. Deep-Sea Research II, 2000, 47: 377-384.
    196. Sabine C L, Feely R A, Gruber N, et al. The Oceanic Sink for Anthropogenic CO_2. Science, 2004, 305: 367-371.
    197. Sabine C L, Heimann M, Artaxo P, et al. Current Status and Past Trends of the Global Carbon Cycle. In: The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Field C B and Raupach M R (Eds.). SCOPE 62, Washington DC: Island Press, 2004. 17- 44.
    198. Sarmiento J L. Atmospheric CO_2 stalled. Nature, 1993, 365: 697-698.
    199. Sarmiento J L, Hughes T M, Stouffer R J. Simulated response of ocean carbon cycle to anthropogenic climate warming. Nature, 1998, 393: 245-249.
    200. Sarmiento J L and Orr J C. A perturbation simulation of CO_2 uptake in an ocean general circulation model. J. Geophysical Research, 1992, 97: 3621-3645.
    201. Saruhashi K. Total carbonaceous matter and H-ion concentration in the sea water-metabolism in natural matter (I). Tokyo: Paper Met. Geophysical, 1953, 3: 202.
    202. Schneider B, Kremling K, Duinker J C. CO_2 partial pressure in Northeast Atlantic and adjacent shelf waters: Processes and seasonal variability. J. Marine System, 1992, 3: 453-463.
    203. Schimel D L, House J I, Hibbard K A. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169-172.
    204. Schimel D S. The carbon equation. Nature, 1998, 393: 208-209.
    205. Schindler D W and Bayley S E. The biosphere as an increasing nitrogen deposition. Global Biogeochemical Cycles, 1993, 7: 717-733.
    206. Schindler D W. Carbon Cycling: The mysterious missing sink. Nature, 1999, 398: 105-107.
    207. Shen Z L. Historical changes in nutrient structure and its influence on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 2001, 52: 211-224.
    208. Sieburth J. Abundance of Bacteria in Oceanic Surface Films. Bacteriological Proceedings, 1963, 2. Abstract A8, 63rd Annual Meeting of the American Society of Microbiology, Cleveland, Ohio. 1963.
    209. Sieburth J M, Willis P J, Johnson K M, et al. Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science, 1976, 194: 1415- 1418.
    210. Siegenthaler U and Sarmiento J L. Atmospheric carbon dioxide and the ocean. Nature, 1993, 365: 119-125.
    211. Smethie W M, Takahashi T, Chipman D W, et al. Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from Rn and pCO2 measurements. J. Geophysical Research, 1985, 90: 7005-7022.
    212. Song Y, Chen B, Nishio M & Akai M. The study on density change of carbon dioxide seawater solution at high pressure and low temperature. Energy, 2005, 30: 2298-2307.
    213. Strickland J D H and Parsons T R. Proximate analysis of marine standing crops. Bulletin Fish Research Bd. Can., 1960, 125: 185.
    214. Suzuki A and Kawahata H. Partial pressure of carbon dioxide in coral reef lagoon waters: Comparative study of atolls and barrier reefs in the indo-Pacific Oceans. Journal of Oceanography, 1999, 55(6):731-745.
    215. Sverdrup H, Johnson M W, Fleming R H. The Oceans: Their Physics, Chemistry and General Biology. Englewood Cliffs, NJ: Prentice-Hall. 1942.
    216. Takahashi T. Carbon dioxide in the atmosphere and in Atlantic Ocean water. J. Geophysical Research, 1961, 66: 477-494.
    217. Takahashi T. The carbon dioxide puzzle. Oceanus, 1989, 32(2): 22-29.
    218. Takahashi T, Feely R A, Weiss R F, et al. Global air–sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. The Proceedings of the National Academic of Sciences USA, 1997, 94: 8292–8299.
    219. Takahashi T and Hoshlka A. Seasonal variation of suspended matter transport in the East China Sea. In: Margin Flux in the East China Sea. Beijing: China Ocean Press, 1999. 68-76.
    220. Takahashi T, Olafsson J, Boecker W S. Seasonal variability of the carbon-nutrient chemistry in the ocean areas west and north of Iceland. Journal of Marine Research, 1985, 9: 20-36.
    221. Takahashi T, Olafsson J, Goddard J G, Chipman D W, Sutherland S C. Seasonal variation of CO2 and nutrients in the high latitude surface oceans: A comparative study. Global Biogeochemistry cycles, 1993, 7: 843-878.
    222. Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science, 1990, 247: 1431-1438.
    223. Tans P P and White J W. In balance: with a little help from the plants. Science, 1998, 281: 183-184.
    224. Ternon J F, Oudot C, Dessier A, et al. A seasonal tropical sink for atmospheric CO2 in theAtlantic Ocean: the role of the Amazon River discharge. Marine Chemistry, 2000, 68: 183-201.
    225. Thomas H and Bozec Y. Response to Comment on “Enhanced Open Ocean Storage of CO_2 from shelf Sea Pumping”. Science, 2004, 306: 1477d.
    226. Tsunogai S, Watanabe S. Role of the continental margins in the absorption of the atmospheric CO_2: Continental Shelf Pump. In: Norjiri Y, ed. Proceedings of the 2nd International Symposium on CO_2 in the Oceans. Tsukuba, Japan: Center for Global Environmental Research, National Institute for Environmental Studies, 1999, 299-308.
    227. Tsunogai S, Watanabe S, Sato T. Is there a “continental shelf pump” for the absorption of atmospheric CO_2? Tellus, 1999, 51B: 701-712.
    228. Tsyhan A V. Marine Bacterioneuston. Journal of the Oceanographical Society of Japan. 1971, 27(2): 56-66.
    229. UNESCO Technical Papers in Marine Science No. 60, Reference material for oceanic carbon dioxide measurements. 1991. 41.
    230. Van Slyke D D and Neill J M. Determination of gases in blood and other solutions by vacuum extn. and manometric measurement (I). Boil. Chem. 1924, 61: 523.
    231. Van Slyke D D and Sendroy J. CO_2 factors for the manometric blood-gas app. Boil. Chem. 1927, 73: 127.
    232. Volk T and Hoffer M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO_2 changes, in: Sundquist E T and Broecker W S ed., The Carbon Cycle and Atmospheric CO_2: Natural Variations Archean to Presem, 1995, 99-110.
    233. Walsh J J, Biscaye P E, Csanady G T. The 1983-1984 Shelf Edge Exchange Processes (SEEP)-1 experiment: hypothesis and highlights. Continental Shelf Research, 1988, 8: 435- 456.
    234. Walsh J J, Rowe G T, Iverson C P & Mcroy C P. Biological export of shelf carbon: a neglected sink of the global CO_2 cycle. Nature, 1981, 291: 196-201.
    235. Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 1991, 350: 53-55.
    236. Wang Gengchen, Wen Yupu, Kong Qinxin, et al. CO_2 back-ground concentration in the atmosphere over the Chinese mainland. Chinese Science Bulletin, 2002, 47(14): 1217-1220.
    237. Wang Rujian, Lin Jun, Zheng Lianfu, et al. Siliceous microplankton fluxes and seasonal variations in the central South China Sea during 1993-1995. Monsoon climate and El Ni?o responses. Chinese Science Bulletin, 2000, 45: 2168-2172.
    238. Wang S L, Chen C T A, Hong G H, et al. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 2000, 20: 525-544.
    239. Wang Z H A, Wang Y C, Cai W J, Liu S Y. A long path-length spectro-photometric pCO_2 sensor using a gas-permeable liquid-core waveguide. Talanta 2002, 57: 69-80.
    240. Wang Z H A, Cai W J, Wang Y C & Ji H W. The southern continental shelf of the United States as an atmospheric CO_2 source and an exporter of inorganic carbon to the ocean. Continental Shelf Research, 2005, 25: 1917-1941.
    241. Wanninkhof R H. Relationship between gas exchange and wind speed over the ocean. J. Geophysical Research, 1992, 97(C5): 7373-7381.
    242. Wanninkhof R, Lewis E, Feely R A and Millero F J. The optional carbonate dissociation constants for determining surface water pCO_2 from alkalinity and total inorganic carbon. Marine Chemistry, 1999, 65: 291-301.
    243. Weiss R F. Carbon dioxide in water and seawater: the solubility of a non ideal gas. Marine Chemistry, 1974, 2: 203-215.
    244. Weiss R F. Determinations of Carbon Dioxide and Methane by Dual Catalyst Flame Ionization Chromatography and Nitrous Oxide by Electron Capture Chromatography. Journal of Chromatographic Science, 1981, 19, December, 611-616.
    245. Weiss R F. Pricise shipboard determination of dissolved nitrogen, oxygen, argon and total inorganic carbon by gas chromatography. Deep-Sea Research II, 1973, 20: 291-293.
    246. Weiss R F, Bucker P, Oeschger H, et al. Compositional variations of gases in temperature glaciers. Deep-Sea Research II, 1973, 20: 191-198.
    247. Weiss R F, Jahne R A, Keeling C D. Seasonal effects of temperature and salinity on the partial pressure of CO_2 in seawater. Nature, 1982, 300: 511-513.
    248. Wells R C. Extn. of K salts from Pintados Salar. J. Eng. Mining, 1918, 105: 678-679.
    249. West T and Mcbride A C. The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport and net emissions. Agriculture, Ecosystem and Environment, 2005, 108: 145-154.
    250. Wiegran K , Trapp T, Cammann K. Development of a dissolved carbon dioxide sensor based on a coulometric titration. Sensors and Actuators, 1999. 57 B: 120-124.
    251. Williams P M. Sea-surface chemistry: organic carbon and organic and inorganic nitrogen and phosphorus in surface films and subsurface waters. Deep-sea Research II, 1967, 14: 791-800.
    252. Williams P M, Carlucci A F, et al. Chemical and microbiological studies of sea surface films in the Southern Gulf of California and off the West Coast of Baja California. Marine Chemistry, 1986, 19: 17-98.
    253. Wills K and Johnson K M. High-accuracy measurements of total dissolved inorganic carbon in the ocean: comparison of alternate detection methods–A comment. Marine Chemistry, 1994, 48: 87-88.
    254. Wilson A T. Surface of the ocean as a source of air-borne nitrogenous material and other plant nutrients. Nature, 1959, 184: 99-110.
    255. Wilson H W. Infrared spectra and vibrational assignments of ethane-1,1-d2 and ethane-1,1,1-d3. Dissertation Abstract, 1961, 21: 3652.
    256. Winn C D, Li Y H, Mackenzie F T, et al. Rising surface ocean dissolved carbon at the Hawaii Ocean Time-series site. Marine Chemistry, 1998, 60: 33-47.
    257. Wofsy S C. Where has all the carbon gone? Science, 2001, 292: 2261-2263.
    258. Wong C S. Quantitative analysis of total carbon dioxide in seawater: a new extraction method. Deep-Sea Research II, 1970, 17: 9-17.
    259. Wong C S, Chan Y H, Page G E. Changes in equatorial CO_2 flux and new production estimated from CO_2 and nutrient levels in Pacific surface waters during the 1986/87 El Ni?o. Tellus, 1993, 43B: 64-79.
    260. Wong C S and Matear R J. Ocean Disposal of CO_2 in the North Pacific Ocean: Assessment of CO_2 Chemistry and Circulation on Storage and Return to the Atmosphere. Waste Management, 1997, 17(56): 329-335.
    261. Woodwell G M, Hobbie J E, Houghton R A, et al. Global Deforestation: Contribution to Atmospheric Carbon Dioxide. Science, 1983, 222: 1081-1086.
    262. Wu T L. Enrichment of the agricultural herbicide atrazine in the microsurface water of an estuary. Bull. Environ. Contam. Taricol. 1980, 24: 411-414.
    263. Wurl O and Obbard J P. A review of pollutants in the sea-surface microlayer (SML): a uniquehabitat for marine organisms. Marine Pollution Bulletin, 2004, 48: 1016-1030.
    264. Yang G P, et al. Dimethylsulfide in the surface water of the East China Sea. Continental Shelf Research, 2000, 20: 69-82.
    265. Yang G P, Levasseur M, Michaud S, et al. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during spring. Marine Chemistry, 2005, 96: 315-329.
    266. Yang G P, Liu X T, Li L, et al. Biogeochemistry of dimethylsulfide in the South China Sea. Journal of Marine Research, 1999, 57: 189-211.
    267. Yang G P and Tsunogai S. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer of western North Pacific. Deep-Sea ResearchⅠ, 2005, 52: 553-567.
    268. Yang G P, Watanabe S, Tsunogai S. Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater. Marine Chemistry, 2001, 76: 137-153.
    269. Yang G P. Dimethylsulfide enrichment in the surface microlayer of the South China Sea. Marine Chemistry, 1999, 66: 215-224.
    270. Yang G P. Spatial distributions of dimethylsulfide in the South China Sea. Deep-Sea ResearchⅠ, 2000, 47: 177-192.
    271. Yang Guipeng, Zhang Zhengbin, Liu Liangsheng, et al. Study on the analysis and distribution of dimethylsulfide in the East China Sea. Chin. J. Oceanol. Limnol., 1996, 14: 141-147.
    272. Yang Guipeng, Zhang Zhengbin, Liu Xintong, et al. Kinetic study of photochemical oxidation reaction of dimethylsulfide in aqueous solution. J. Ocean Univ. Qingdao, 1997, 27: 225-232.
    273. Yang Y L, Li Y, Pan J. Characteristics of an Open Complex Giant System Carbon Cycling System in the Ocean. Journal of System Simulation, 2003, 15(1): 141-145.
    274. Yool A and Fasham M J R. An examination of the “continental shelf pump” in an open ocean general circulation model. Global Biogeochemical Cycles, 2001, 15: 831-844.
    275. Zaitser Y P. Marine Neustonology (Translated from Russian), National Marine Fisheries Service. Washington DC: NOAA and NSF, 1972. 207.
    276. Zeng J Y, Nokihiro Y, Murphy P P, et al. A comparison of ?pCO_2 distributions in the northern North Pacific using results from a commercial vessel in 1995-1999. Deep-SeaResearch II, 2002, 49: 5303-5315.
    277. Zhai W D, Dai M H, Cai W J, et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry, 2005, 96: 87-97.
    278. Zhai W D, Dai M H, Cai W J, et al. High partial pressure of CO_2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry, 2005, 93: 21-32.
    279. Zhang Zhengbin, Liu Chunying, Liu Liansheng. Physicochemical studies of the sea-surface microlayer. Frontiers of Chemistry in China, 2006, 1(1): 1-14.
    280. Zhang Zhengbin, Liu Chunying, Liu Liansheng, et al. Study on Dissolved Trace Metals in Sea Surface Microlayer in Daya Bay. Chin. J. Oceanol. Limnol., 2004, 22(1): 54-63.
    281. Zhang Zhengbin, Liu Chunying, Yu Zhigang, et al. Determination of copper complexation in surface microlayer of Daya Bay and Jiaozhou Bay. Chin. J. Oceanol. Limnol., 2005, 23(2): 238-245.
    282. Zhang Zhengbin, Liu Liansheng, Liu Chunying, et al. Studies on the sea surface microlayer II. The layer of sudden change of physical and chemical properties. J. Colloid & Interface Science, 2003, 264: 148-159.
    283. Zhang Zhengbin, Liu Liansheng, Wu Zhijian, et al. Physicochemical studies of the sea surface microlayerⅠ . Thickness of the sea surface microlayer and its experiment determination. J. Colloid & Interface Science, 1998, 204(2): 294-299.
    284. Zhang Zhengbin, Pan Mingxiang, Wang Zhaoding, et al. Biological and Chemical Studies of Sea-surface Microlayer (SML) in Daya Bay, China IIA: Biological and Chemical Characteristics of the SML and the Correlation among them. Chin. J. Oceanol. Limnol., 2001, 19(3): 272-281.
    285. Zhang Zhengbin, Zhang Anhui, Liu Liansheng, et al. Viscosity of Sea Surface Microlayer in Jiaozhou Bay and Adjacent Sea Area. Chin. J. Oceanol. Limnol., 2003, 21(4): 351-357.
    286. Zhao P and Cai W J. pH polymeric membrane microelectrodes based on neutral carries and their applications in aquatic environments. Analytica Chimica Acta, 1999, 395: 285-291.
    287. Zhou X L and Mopper K. Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Marine Chemistry,1997, 56: 201-213.
    288. Zuev B K, Chudinova V V, Kovalenko V V and Yagov V V. The conditions of formation of the chemical composition of the sea surface microlayer and techniques for studying organic matter in it. Geochemistry International (Geochem. Int./Geokhimiya), 2001, 39(7): 702-710.
    289. 蔡昱明, 宁修仁, 刘诚刚. 1999 年夏季南海北部和北部湾海域粒度分级叶绿素 a 和初级生产力的分布特征. 海洋科学集刊, 2002, 44: 11-21.
    290. 陈洪涛, 陈淑珠, 张经, 刘素美, 吴强明. 南黄海海水中各种形态磷的分布变化特征. 海洋环境科学, 2002, 21(1): 9-13.
    291. 陈建芳, Wiesner M G, Wong H K, 郑连福, 郑士龙, 徐鲁强. 南海颗粒有机碳通量的垂直变化及早期降解作用的标志物. 中国科学(D 辑), 29(4): 372-378.
    292. 陈金斯, 李飞永, 朱卓洪. 珠江口水域微表层中的痕量金属. 热带海洋, 1994, 13: 25-30.
    293. 陈敏, 黄奕普, 邱雨生. 厦门湾水体中颗粒有机碳的垂直输出通量: Th234/U238 不平衡的应用. 海洋学报, 2000, 24(2): 67-76.
    294. 戴民汉, Martun J M, 洪华生, 等. 珠江口溶解有机碳和胶体有机碳的初步研究. 海洋湖沼通报, 2000, 18: 265-273.
    295. 戴民汉, 魏俊峰, 翟惟东. 南海碳的生物地球化学研究进展. 厦门大学学报, 2001, 40(2): 545-551.
    296. 戴民汉, 翟惟东, 鲁中明, 蔡平河, 蔡卫君, 洪华生. 中国区域碳循环研究进展与展望. 地球科学进展, 2004, 19(1): 120-130.
    297. 丁海兵. 海洋微表层磷酸盐富集机理研究. 青岛海洋大学硕士论文. 1997.
    298. 丁一汇, 李崇银, 主编. 南海季风爆发和演变及其与海洋的相互作用. 北京: 气象出版社, 1999.
    299. 董金海, 焦念志, 主编. 胶州湾生态学研究. 北京: 科学出版社, 1995. 137-149.
    300. 杜岩, 王东晓, 陈举, 齐义泉, 施平. 南海南部混合层底盐度异常水体的结构特征. 热带海洋学报, 2004, 23(6): 52-59.
    301. 方精云, 朴世龙, 赵淑清. CO_2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报, 2001, 25 (5): 594-602.
    302. 高会旺, 石广玉. 上层海洋-低层大气研究(SOLAS)首次科学开放会议在加拿大召开. 地球科学进展, 2005, 20(1): 10.
    303. 高众勇, 陈立奇, 王伟强. 南大洋二氧化碳源汇分布及其海-气通量研究. 极地研究,2001, 13(3): 175-185.
    304. 顾宏堪, 黄海溶解氧垂直分布中的最大值. 海洋学报, 1980, 2(2): 70-79.
    305. 顾宏堪, 等. 渤海黄海东海海洋化学. 北京: 科学出版社, 1991. 500.
    306. 管秉贤. 南海北部冬季水温垂直结构的重要特征. 海洋与湖沼, 1981, 12(4): 311-320.
    307. 韩舞鹰. 南海海洋化学. 北京: 科学出版社, 1998.
    308. 韩舞鹰. 深海盆水氧的消耗率. 南海海洋科学集刊, 1983, 4: 115-120.
    309. 韩舞鹰, 林洪瑛, 蔡艳雅. 南海的碳通量研究. 海洋学报, 1997, 19(1): 50-54.
    310. 韩舞鹰, 王明彪, 林洪瑛. 南沙群岛海域深层海水碳垂直通量. 海洋学报, 1995, 17(3): 118-121.
    311. 韩舞鹰, 王明彪, 王汉奎. 南沙海域上层海水碳垂直通量的初步研究. 海洋与湖沼. 1994, 25(3): 345-348.
    312. 郝建华, 霍文毅, 俞志明. 胶州湾增养殖海域营养状况与赤潮形成的初步研究. 海洋科学, 2004, 24(4): 37-41..
    313. 赫崇本, 汪园祥, 雷宗文, 等. 黄海冷水团的形成及其性质的初步探讨. 海洋与湖沼, 1959, 2: 1-14.
    314. 洪华生, 林杰. 厦门港、九龙江口海洋微表层营养盐、有机物、微量金属分布特征初探. 海洋学报, 1988, 10(6): 695-703.
    315. 洪华生, 王大志. 台湾海峡生源要素生物地球化学过程研究. 厦门大学学报(自然科学版), 2001, 40(2): 535-544.
    316. 胡敦欣,杨作升. 东海海洋通量关键过程. 北京: 海洋出版社,2001. 204.
    317. 黄邦钦, 洪华生, 王大志, 等. 台湾海峡浮游植物生物量和初级生产力的粒级结构及碳流途径. 台湾海峡, 2002, 21(1): 23-30.
    318. 黄明祥, 陈镇东. 南海东北部之海水碳酸盐现状. 台湾海峡, 1995, 14(2): 124-134.
    319. 黄西能, 韩舞鹰, 容荣贵, 等. 西太平洋赤道海区海洋微表层化学的初步观测. 热带海洋, 1990, 9(4): 93-97.
    320. 霍文毅, 俞志明, 邹景忠, 等. 胶州湾中肋骨条藻赤潮与环境因子的关系. 海洋与湖沼, 2001, 32(3): 311-318.
    321. 姬泓巍, 徐环, 辛惠蓁, 宁霞. 海水中溶解无机碳 DIC 的分析方法. 海洋湖沼通报, 2002, 4: 16-24.
    322. 焦秀玲, 詹滨秋. 大气和海洋 δ13C 研究的进展及意义. 海洋科学, 1996, 103(1): 30-32.
    323. 金心, 石广玉. 生物泵在海洋碳循环中的作用. 大气科学, 2001, 25(5): 683-688.
    324. 柯东胜. 南海 pH 值的年际变化及其与温、盐的关系. 海洋通报, 1990, 9(3): 23-27.
    325. 赖利, J. P. 和斯基罗, G. 主编,崔清晨等译. 化学海洋学(第二版, 第二卷). 北京: 海洋出版社. 1982. 212-262.
    326. 李飞永, 陈金斯, 朱卓洪. 珠江口水域微表层的类脂物质. 海洋学报, 1995, 17(2): 61-68.
    327. 李立. 南海上层环流观测研究进展. 台湾海峡, 2002, 21(1): 114-125.
    328. 李宁, 李学刚, 宋金明. 海洋碳循环研究的关键生物地球化学过程. 海洋环境科学, 2005, 24(2): 75-80.
    329. 李绪录, 周毅频. 南海中部深水中溶解氧和总无机碳的垂直分布模式及其相互关系. 海洋与湖沼, 1991, 22(2): 162-167.
    330. 李悦. 渤海现代物质通量研究. 青岛大学学报, 1997, 10(3): 46-49.
    331. 林洪瑛. 南海的碳通量研究. 南海研究与开发, 1996, 2: 30-35.
    332. 林洪瑛, 韩舞鹰. 南海溶解氧通量的初步研究. 海洋与湖沼, 1998, 29(1): 61-66.
    333. 林辉, 许昆灿, 暨卫东. 南海“耗氧”及“贫氧”水体中消耗氧与硝酸盐和磷酸盐再生比值估算. 海洋学报, 2003, 25(5): 76-82.
    334. 刘春颖. 大亚湾海洋微表层和珊瑚礁的痕量金属研究. 青岛海洋大学硕士论文, 2001. 102.
    335. 刘春颖, 张正斌, 张安慧, 等. 中国近岸部分海域海水中金属络合物配位体浓度的研究. 海洋学报, 2005, 27(2): 54-62.
    336. 刘辉, 姬泓巍, 辛梅. 胶州湾水体中的二氧化碳体系. 海洋科学, 1998, 6: 44-47.
    337. 刘江 主编. 中国可持续发展战略研究. 北京: 中国农业出版社, 2001. 738.
    338. 刘瑞玉 主编. 胶州湾生态学和生物资源. 北京: 科学出版社, 1992. 110-126.
    339. 刘子琳, 宁修仁, 蔡昱明. 北部湾浮游植物粒度分级叶绿素a和初级生产力的分布特征. 海洋学报, 1998, 20(1): 50-57.
    340. 楼如云, 袁耀初, 卜献卫. 1999年6月南黄海和东海东北部的水文及环流特征. 海洋学报, 2002, 24(增刊1): 42-52.
    341. 卢敏, 张龙军, 王彬宇, 张经. 海水pCO_2流通式光度测定法研究. 青岛海洋大学学报, 2002, 32(1): 94-100.
    342. 南海中部海域资源综合调查报告编写组. 南海中部海域环境资源综合调查报告: 海水化学. 北京: 海洋出版社, 1987. 89-128.
    343. 牛增元. 中国南海海洋微表层和次表层的地球化学研究. 青岛海洋大学博士论文, 1995. 107.
    344. 潘明祥, 张正斌, 王肇鼎, 等. 大亚湾海水微表层生物-化学研究Ⅱ.(二)生物- 化学特性的周日变化规律. 热带海洋, 2000, 19(2): 57-63.
    345. 乔然, 王彰贵, 张滨, 于艳红, 马黎明. 海洋中的CO_2观测与研究. 海洋预报, 2005, 22(增刊), 106-114.
    346. 任玲, 张曼平, 孙军, 李铁, 祝陈坚. 胶州湾内外水体部分化学、生物因子的调查分析. 青岛海洋大学学报, 2003, 33(4): 557-564.
    347. 沈志良. 胶州湾营养盐结构的长期变化及其对生态环境的影响. 海洋与湖沼, 2002, 33(3): 322-331.
    348. 沈志良, 刘明星. 胶州湾海水中二氧化碳的研究. 海洋学报, 1997, 19(2): 115-120.
    349. 盛立芳, 吴增茂, 张龙军. 海-气间化学物质交换通量的研究. 地球科学进展, 1998, 13(3): 225-231.
    350. 施平, 杜岩, 王东晓. 南海混合层年循环特征. 热带海洋学报, 2001, 20: 10-17.
    351. 宋金明. 海洋碳的源与汇. 海洋环境科学, 2003, 22(2): 75-80.
    352. 宋金明, 李学刚, 李宁, 高学鲁, 袁华茂, 詹天荣. 一种海水中溶解无机碳的准确简易测定方法. 分析化学, 2004, 32(12): 1689-1692.
    353. 苏纪兰. 中国近海的环流动力机制研究. 海洋学报, 2001, 23(4): 1-15.
    354. 苏纪兰, 黄大吉. 黄海冷水团的环流结构. 海洋与湖沼, 1995, 26(5): 1-7.
    355. 苏纪兰, 许建平, 蔡树群, 等. 南海的环流和漩涡. 见: 李崇银, 丁一汇主编. 南海季风爆发和演变及其与海洋的相互作用. 北京: 气象出版社, 1999. 66-72.
    356. 孙云明, 宋金明. 中国海洋碳循环生物地球化学过程研究的主要进展(1998-2002). 海洋科学进展, 2002, 20(3): 110-118.
    357. 谭敏, 陈燕珍. 渤黄海水体中的二氧化碳. 海洋环境科学, 1990, 9(1): 35-40.
    358. 谭燕. 长江口、黄海口邻近海域 CO_2 通量及东海 pCO_2 估测模型的讨论. 中国海洋大学硕士论文, 2004. 85.
    359. 谭燕, 张龙军, 王凡, 胡敦欣. 夏季东海西部表层海水中的 pCO_2 及海-气界面通量. 海洋与湖沼. 2004, 35(3): 239-245.
    360. 王保栋. 黄海冷水域生源要素的变化特征及相互关系. 海洋学报, 2000, 22(6): 47-54.
    361. 王保栋. 南黄海营养盐的垂直分布特性及其垂向输运规律. 海洋环境科学, 1999, 18(1):13-18.
    362. 王保栋, 刘峰, 战闰. 黄海生源要素的生物地球化学研究评述. 黄渤海海洋, 2001, 19(2): 99-106..
    363. 王保栋, 王桂云, 刘峰. 南黄海春季海水化学要素的分布特征. 海洋环境科学, 1998, 17(3): 45-50.
    364. 王保栋, 王桂云, 郑昌洙, 梁东范. 南黄海冬季生源要素的分布特征. 黄渤海海洋, 1999, 17(1): 40-45.
    365. 王保栋, 王桂云, 郑昌洙, 梁东范. 南黄海营养盐的平面分布及横向输运. 海洋学报, 1999, 21(6): 124-129.
    366. 王东晓, 陈举, 陈荣裕, 等. 2000 年 8 月南海中部与南部海洋温、盐与环流特征. 海洋与湖沼, 2004, 35(2): 97-109.
    367. 王凡, 赵永平, 冯志纲, 白学志, 吴爱明. 1998 年春夏南海温盐结构及其变化特征. 海洋学报, 2001, 23(5): 1-13.
    368. 王飞. 黄河口无机碳的时空分布及其输运通量. 中国海洋大学硕士论文, 2004. 63.
    369. 王峰, 张龙军, 王彬宇, 张经. 海水 pCO_2 测定中喷淋-鼓泡式平衡器和层流式平衡器的互校. 青岛海洋大学学报, 2001, 31(4): 573-578.
    370. 王峰, 张龙军, 张经. 南黄海夏季表层海水中 pCO_2分布的初步探讨. 青岛海洋大学学报, 2002, 32(6): 1007-1011.
    371. 王荣. 海洋生物泵与全球变化. 海洋科学, 1992, 99(1): 18-21.
    372. 王中柱, 隋永年, 郝恩良. 海水中总无机碳的气相色谱测定. 海洋学报, 1980, 2: 181- 185.
    373. 王中柱, 隋永年, 郝恩良. 气相色谱法测定海水中气体的气提技术. 海洋科学, 1981, 3: 11-13.
    374. 王肇鼎, 彭云辉. 珠江口营养盐的研究. 见: 张经 主编, 中国主要河口的生物地球化学研究, 北京: 海洋出版社,1996. 33-36.
    375. 魏皓, 赵亮, 冯士筰. 渤海氮磷营养盐的循环和收支. 环境科学, 2002, 23(1): 78-81.
    376. 魏皓, 赵亮, 冯士筰. 渤海碳循环与浮游植物动力学过程研究. 海洋学报, 2003, 25(增刊2): 151-156.
    377. 魏皓, 赵亮, 武建平. 浮游植物动力学模型及其在海域富营养化研究中的应用. 地球科学进展, 2001, 16(2): 220-225.
    378. 吴玉霖, 孙松, 张永山, 张芳. 胶州湾浮游植物数量长期动态变化的研究. 海洋与湖沼, 2004, 35(6): 518-523.
    379. 邢宝忠, 张永琴, 马红武. 相对库仑滴定法. 天津大学学报, 1996, 3(29): 283-285.
    380. 邢如楠. 带生物泵三维全球海洋碳循环模式. 大气科学, 2000, 24(3): 333-340.
    381. 许东禹, 刘锡清, 张训华, 李唐根, 陈邦彦, 主编. 中国近海地质. 北京: 地质出版社, 1997. 310.
    382. 徐永福. 二氧化碳生物地球化学循环研究进展. 地球科学进展, 1995, 10(4): 367-372.
    383. 严国安, 刘永定. 水生生态系统的碳循环及对大气 CO_2 的汇. 生态学报, 2001, 21(5): 827-833.
    384. 杨海军, 刘秦玉. 南海上层水温分布的季节特征. 海洋与湖沼, 1998, 29(5): 501-507.
    385. 杨嘉东. 南海中部海域铵浓度及其与浮游植物的关系. 台湾海峡, 1993, 12(4): 369-375.
    386. 杨永亮, 李悦, 潘静. 海洋碳循环系统-开放的复杂巨系统的特点. 复杂系统与复杂性科学, 2004, 1(1): 68-77.
    387. 姚云, 沈志良. 胶州湾海水富营养化水平评价. 海洋科学, 2004, 28(6): 14-17.
    388. 易家康. 防止气候变暖刻不容缓. 世界科学, 2005, 5: 23-24.
    389. 于琳. 痕量金属在海洋微表层中富集机理的研究. 青岛海洋大学博士论文, 1999. 174.
    390. 于琳, 张正斌, 刘莲生, 等. 南沙海区微表层研究-pH、碱度、密度和表面张力的测定. 青岛海洋大学学报, 1998, 28(4): 633-640.
    391. 于琳, 张正斌, 刘莲生, 等. 南沙海区海洋微表层的研究-Ⅱ痕量金属的测定. 青岛海洋大学学报, 1999, 29(1): 129-134.
    392. 俞光耀, 吴增茂, 张志南, 等. 胶州湾北部水层生态动力学模型与模拟 Ⅰ .胶州湾北部水层生态动力学模型. 青岛海洋大学学报, 1999, 29(3): 421-428.
    393. 俞光耀, 吴增茂, 张志南, 等. 胶州湾北部水层生态动力学模型与模拟 Ⅱ .胶州湾北部水层生态动力学模拟研究. 青岛海洋大学学报, 1999, 29(3): 429-435.
    394. 郁建铨, 陈甫华, 戴树桂. 天然淡水表面微层中某些金属富集现象研究. 中国环境科学, 1994, 14: 1-5.
    395. 郁建铨, 戴树桂, 陈甫华. 天然湖水表面微层砷、磷酸盐、悬浮颗粒物及藻类富集现象的研究. 环境化学, 1997, 16(4): 359-363.
    396. 于玉忠, 严河清. 二氧化碳电化学传感器的研究现状和发展前景. 武汉大学学报(自然科学版), 1998, 44(2): 179-182.
    397. 乐肯堂, 毛汉礼. 南黄海冬季温盐结构及其流系. 海洋与湖沼, 1990, 21(6): 505-515.
    398. 詹滨秋, 赵永平. 二氧化碳, 海洋与气候. 海洋与湖沼, 1989, 20 (1): 92-98.
    399. 张安慧. 胶州湾和青岛近海海洋微表层粘度的研究. 中国海洋大学硕士论文, 2002. 83.
    400. 张安慧, 张正斌, 刘莲生, 林彩. 胶州湾海水微表层粘度及其在海-气通量计算中的作用. 青岛海洋大学学报, 2002, 33(3): 456-462.
    401. 张均顺, 沈志良. 胶州湾营养盐结构变化的研究. 海洋与湖沼, 1997, 28(5): 529-535.
    402. 张龙军. 东海海-气界面CO_2通量研究. 中国海洋大学博士论文, 2003. 101.
    403. 张龙军, 王彬宇, 张经. 东海冬、夏两季表层海水的二氧化碳分压. 青岛海洋大学学报(增刊), 1999 年 10 月, 149-153.
    404. 张远辉, 黄自强, 马黎明, 乔然, 张滨. 东海表层水二氧化碳及其海气通量. 台湾海峡, 1997, 16(1): 37-42.
    405. 张远辉, 黄自强, 王伟强, 黄宣宝, 陈忠阳. 台湾海峡二氧化碳研究. 台湾海峡, 2000, 19(2): 163-169.
    406. 张远辉, 王伟强, 陈立奇. 海洋二氧化碳的研究进展. 地球科学进展, 2000, 15(5): 559-564.
    407. 张正斌, 蔡卫君, 刘莲生, 等. pH 微电极法原位直接测定海水微表层的厚度. 中国科学(B 辑), 2003, 33(3): 201-210.
    408. 张正斌, 陈镇东, 刘莲生, 王肇鼎. 海洋化学原理与应用-中国近海的海洋化学. 北京: 海洋出版社, 1999. 504.
    409. 张正斌, 宫海东, 刘莲生, 张闯. 海洋碳循环过程中的海水微表层泵. 中国科学(B辑), 2005, 35(6): 459-465.
    410. 张正斌, 刘莲生. 海洋微表层的物理-生物-化学研究. 2001年中国化学会年会上的报告. 北京: 中国化学会, 2001. 1-23.
    411. 张正斌, 刘莲生. 海洋化学(曾呈奎主编, 孙斌、张正斌副主编的海洋科学). 现代科学技术丛书中的海洋化学卷, 济南: 山东教育出版社, 2003. 682.
    412. 张正斌, 刘莲生. 海洋化学进展. 北京: 化学工业出版社, 2005. 466.
    413. 张正斌, 刘莲生. 海洋物理化学. 北京: 科学出版社, 1989. 811.
    414. 张正斌, 杨桂朋, 刘莲生. 物质海-气通量计算的新建议. 科学通报, 1997, 42: 943-946.
    415. 张正斌 主编. 海洋化学. 青岛: 中国海洋大学出版社, 2004. 441.
    416. 张正斌 主编. 南沙海域化学过程研究. 北京: 科学出版社, 1996. 152.
    417. 赵宏宾, 刘莲生, 张正斌. 海水中磷酸盐在固体粒子上阴离子交换作用—海水中磷酸盐—固体粒子相互作用的台阶型等温线. 海洋与湖沼, 1997a, 28(2): 172-177.
    418. 赵宏宾, 刘莲生, 张正斌. 海水中磷酸盐在固体粒子上阴离子交换作用—海水中磷酸盐—固体粒子相互作用的 V 形交换率—pH 曲线. 海洋与湖沼, 1997b, 28(3): 294-300.
    419. 赵辉, 齐义泉, 王东晓, 等. 南海叶绿素浓度季节变化及空间分布特征研究. 海洋学报, 2005, 27(4): 45-52.
    420. 赵卫红, 王江涛. 胶州湾胶体有机碳、氮和磷的初步研究. 济南大学学报(自然科学版), 2005, 19(1): 25-28.
    421. 郑培迎. 胶州湾功能与区划. 海岸工程, 1994, 13(4): 63-69.
    422. 中国科学院南海海洋研究所. 南海地质构造与陆缘扩张. 北京: 科学出版社, 1992. 41-73.
    423. 周发琇, 高荣珍. 南海次表层水温的季节内变化. 科学通报, 2001, 46(21): 1831-1837.
    424. 周明杰, 徐梅春. 气相色谱法测定海水中的氧、氮和总无机碳. 热带海洋, 1990, 9(3): 79-83.
    425. 朱卓洪 等. 大亚湾西南部全年磷、硅酸盐含量分布特征. 海洋通报, 1995, 141: 11-15.
    426. 朱卓洪, 李飞永, 陈金斯. 珠江河口微表层营养盐和有机物的含量分布特征. 海洋环境科学, 1993, 12(3-4): 40-44.
    427. 邹娥梅, 郭炳火, 汤毓祥, 李载学, 熊学军, 曾宪模. 秋季南黄海水文特征及海水的混合与交换. 海洋学报, 1999, 21(5): 12-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700