用户名: 密码: 验证码:
长链正构烷烃在多功能催化剂上的择形异构化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长链烷烃临氢异构化反应在生产高品质润滑油的过程中发挥着重要的作用,通常它是在具有择形催化性能的金属-酸性双功能催化剂上进行的。本论文制备了不同酸性的Pt/SAPO-11和Pt/MeAPO-11催化剂,并考察了其反应性能,阐述了催化剂中酸功能和加氢/脱氢功能之间的平衡在长链烷烃临氢异构化反应中的重要作用。
     利用水-醇两相体系合成法可以有效地提高SAPO-11的Si含量和酸量,从而提高它的异构化活性,但过高的酸性失去了与担载Pt的脱氢/加氢功能之间的平衡,导致Pt/SAPO-11的异构化选择性降低。
     用各种方法表征了不同金属杂原子取代的AlPO-11分子筛并考察了它们在正十二烷临氢异构化反应中的催化性能,发现Pt/MeAPO-11的活性首先取决于MeAPO-11的酸强度,顺序为:Pt/MgAPO-11 > Pt/CoAPO-11 > Pt/ZnAPO-11 > Pt/MnAPO-11,但由于Co和Mn对Pt的较强的相互作用,减弱了担载Pt的金属性能,明显地降低了异构化选择性。
     本文系统地考察了合成条件对MgAPO-11分子筛的晶相、Mg引入量、酸性和担载Pt催化剂的正十二烷临氢异构化反应性能的影响。研究发现,随着Mg含量的提高,MgAPO-11酸性增强,但由于Mg原子引入骨架产生的较强酸性位Mg-OH-P对Pt的作用,使Pt的金属性减弱,当Mg的含量超过一定值时,Pt的金属性难以与MgAPO-11的酸性相平衡,因此,Pt/MgAPO-11的活性随着Mg含量的提高呈现先增加后降低的趋势。上述研究结果表明,金属性和酸性同时影响催化剂的烷烃临氢异构化反应活性和选择性;只有当两者相互匹配,达到平衡时,才能达到最佳的反应性能。
Hydroisomerization of long-chain n-alkanes plays an important role in the process of producing lubricating base oil with high qualities, which is usually carried out over metal-acid bifunctional catalysts with shape-selectivity. In this work, we investigated the catalytic properties of Pt/SAPO-11 and Pt/MeAPO-11 catalysts with different acidities, and elucidated the important role of the balance between the acid function and the (de)hydrogenation function in the hydroisomerization of long-chain n-alkanes.
     The H2O-alcohol biphase system can effectively improve the Si content, the amount of the acid sites, and thus the activity of SAPO-11 for isomerization. However, due to the acidity of SAPO-11 is too high to balance with the (de)hydrogenation function of the supported Pt, the isomerization selectivity of Pt/SAPO-11 catalyst was decreased.
     Different metal substituted AlPO-11 molecular sieves were characterized by various techniques, and their catalytic performance was tested in the hydroisomerization of n-dodecane. It was found that the activity of Pt/MeAPO-11 catalysts was primarily determined by the acid strength of MeAPO-11 molecular sieves, and decreased in the order of Pt/MgAPO-11 > Pt/CoAPO-11 > Pt/ZnAPO-11 > Pt/MnAPO-11. Nevertheless, the isomerization selectivity of Pt/MnAPO-11 and Pt/CoAPO-11 was remarkably decreased, because the strong interaction of Mn and Co species with Pt significantly weakened the metallicproperties of Pt.
     The influence of the synthesis conditions on the crystalline phase, the Mg content, the acidity and the catalytic performance of MgAPO-11 molecular sieves for hydroisomerization of n-dodecane was systematically studied. It was found that the acidity of MgAPO-11 molecular sieves was increased with the increase of the Mg content, whereas the metallic properties of Pt were weakened by the interaction between the Pt and the strong acid sites of Me-OH-P generated by the substitution of Me2+ ions into the framework. Once the Mg content exceeded a certain value, the (de)hydrogenation function of Pt was incapable to balance with the acidity of MgAPO-11 molecular sieves. So the activity of Pt/MgAPO-11 catalysts was increased until the molar ratio of MgO/Al2O3 in the gels was 0.03, and then decreased with the further increase of the Mg content.
     The above results indicate that in the hydroisomerization of long-chain n-alkanes both the metallic properties and the acidity have effect on the activity and selectivity of the catalysts. Only when the metallic function and the acid function are in proper balance, the catalytic performance of the catalysts is optimum.
引文
[1] 张峥,张鸣,翁慧新,润滑油工艺发展及加氢润滑油基础油的优势,当代石油化工,2002,10(2):30-34。
    [2] M.R. Gould, A.R. Nitsch, Lubricating Oil Dewaxing with Membrane Separation of Cold Solvent, USP 5,494,566 (1996).
    [3] M.D. Farnos, Jr.Th.R. Forbus, J.P. McWilliams, D.S. Shihabi, Catalytic Dewaxing over Silica Bound Molecular Sieve, USP 5,614,079 (1997).
    [4] S.J. Miller, Process for Dewaxing Heavy and Light Fractions of Lube Base Oil with Zeolite and Sapo Containing Catalysts, USP 5,833,837 (1998).
    [5] S.J. Miller, Catalytic Dewaxing Process Using a Silicoaluminophosphate Molecular Sieve, USP 4,859,311 (1989).
    [6] H.L. Coonradt, W.E. Garwood, Mechanism of Hydrocracking. Reactions of Paraffins and Olefins, Ing. Eng. Chem. Proc. Des. Dev. 1964, 3(1): 38-45.
    [7] J. Weitkamp, P.A. Jacobs, J.A. Martens, Isomerization and Hydrocracking of C9 through C16 n-Alkanes on Pt/HZSM-5 Zeolite, Appl. Catal. 1983, 8(1): 123-141.
    [8] P.B. Weisz, V.J. Frilette, Intracrystalline and Molecular-Shape-Selectivity Catalysis by Zeolite Salts, J. Phys. Chem. 1960, 64(3): 382-382.
    [9] E.B. Webb III, G.S. Grest, Influence of Intracrystalline Diffusion in Shape Selective Catalytic Test Reactions, Catal. Lett. 1998, 56(2-3): 95-104.
    [10] E.B. Webb III, G.S. Grest, M. Mondello, Intracrystalline Diffusion of Linear and Branched Alkanes in the Zeolites TON, EUO, and MFI, J. Phys. Chem. B 1999, 103(24): 4949-4959.
    [11] Th.L.M. Maesen, M. Schenk, T.J.H. Vlugt, J.P. de Jonge, B. Smity, The Shape Selectivity of Paraffin Hydroconversion on TON-, MTT-, and AEL-Type Sieves, J. Catal. 1999, 188(2): 403-412.
    [12] G. Sastre, A. Chica, A. Corma, On the Mechanism of Alkane Isomerisation (Isodewaxing) with Unidirectional 10-Member Ring Zeolites. A Molecular Dynamics and Catalytic Study, J. Catal. 2000, 195(2): 227-236.
    [13] P. Raybaud, A. Patrigeon, H. Toulhoat, The Origin of the C7-Hydroconversion Selectivities on Y, β, ZSM-22, ZSM-23, and EU-1 Zeolites, J. Catal. 2001, 197(1): 98-112.
    [14] J.A. Martens, P.A. Jacobs, The Potential and Limitations of the n-Decane Hydroconversion as a Test Reaction for Characterization of the Void Space of Molecular Sieve Zeolites, Zeolites 1986, 6(5): 334-348.
    [15] S. Ernst, J. Weitkamp, J.A. Martens, P.A. Jacobs, Synthesis and Shape-Selective Properties of ZSM-22, Appl. Catal. 1989, 48(1): 137-148.
    [16] P. Mériaudeau, Vu.A. Tuan, F. Lefebvre, Vu.T. Nghiem, C. Naccache,Isomorphous Substitution of Silicon in the AlPO4 Framework with AEL Structure: n-Octane Hydroconversion, Micropor. Mesopor. Mater. 1998, 22(1-3): 435-449.
    [17] S.M. Csicsery, The Cause of Shape Selectivity of Transalkylation in Mordenite, J. Catal. 1971, 23(1): 124-130.
    [18] M. Guisnet, J.-P. Gilson, Introduction to Zeolites Science and Technology, in M. Guisnet, J.-P. Gilson (ed.), Zeolites for Cleaner Technologies, Catalytic Sciences Series-Vol.3, Imperial College Press, 2002, 1-28.
    [19] J.A. Martens, R. Parton, L. Uytterhoeven, P.A. Jacobs, G.F. Froment, Selective Conversion of Decane into Branched Isomers: A Comparison of Platinum/ZSM-22, Platinum/ZSM-5 and Platinum/USY Zeolite Catalysts, Appl. Catal. 1991, 76(1): 95-116.
    [20] W. Souverijns, J.A. Martens, G.F. Froment, P.A. Jacobs, Hydrocracking of Isoheptadecanes on Pt/H-ZSM-22: An Example of Pore Mouth Catalysis, J. Catal. 1998, 174(2): 177-184.
    [21] J.A. Mu?oz Arroyo, G.G. Martens, G.F. Froment, G.B. Marin, P.A. Jacobs, J.A. Martens, Hydrocracking and Isomerization of n-Paraffin Mixtures and a Hydrotreated Gasoil on Pt/ZSM-22: Confirmation of Pore Mouth and Key-Lock Catalysis in Liquid Phase, Appl. Catal. A. 2000, 192(1): 9-22.
    [22] J.A. Martens, G. Vanbutsele, P.A. Jacobs, J. Denayer, R. Ocakoglu, G. Baron, J.A. Mu?oz Arroyo, J. Thybaut, G.B. Marin, Evidences for Pore Mouth and Key-Lock Catalysis in Hydroisomerization of Long n-Alkanes over 10-Ring Tubular Pore Bifunctional Zeolites, Catal. Today 2001, 65(2-4): 111-116.
    [23] VuT. Nghiem, G. Sapaly, P. Mériaudeau, C. Naccache, Monodimensional Tubular Medium Pore Molecular Sieves for Selective Hydroisomerisation ofLong Chain Alkanes: n-Octane Reaction on ZSM and SAPO Type Catalysts, Topics Catal. 2001, 14(1-4): 131-138.
    [24] G. Braun, F. Fetting, H. Shoenberger, Isomerization of n-Hexane and n-Pentane over Various Bifunctional Zeolite Catalysts. I. Influence of the Structure Parameters of the Catalysts on the Activity and Selectivity, in J.R. Katzer (Ed.), Molecular Sieves II, ASC Symposium 40, Washington, DC, 1977, 504-514
    [25] S.J. Miller, Catalytic Isomerization Process Using a Silicoaluminophosphate Molecular Sieve Containing an Occluded Group VIII Metal therein, USP 4,689,138 (1987).
    [26] K. Fang, W. Wei, J. Ren, Y. Sun, n-Dodecane Hydroconversion over Ni/AlMCM-41 Catalysts, Catal. Lett. 2004, 93(3-4): 235-242.
    [27] S.P. Elangovan, C. Bischof, M. Hartmann, Isomerization and Hydrocracking of n-Decane over Bimetallic Pt-Pd Clusters Supported on Mesoporous MCM-41 Catalysts, Catal. Lett. 2002, 80(1-2): 35-40.
    [28] 汪哲明,SAPO基、长链烷烃择形异构化催化剂的结构设计,博士学位论文,B018003826,2006,46-47。
    [29] P. Mériaudeau, V.A. Tuan, V.T. Nghiem, S.Y. Lai, L.N. Hung, C. Naccache, SAPO-11, SAPO-31, and SAPO-41 Molecular Sieves: Synthesis, Characterization, and Catalytic Properties in n-Octane Hydroisomerization, J. Catal. 1997, 169(1): 55-66.
    [30] Ch. Baerlocher, W.M. Meier, D.H. Olson, Atlas of Zeolite Framework Types, (5th Edit.), Elsevier, 2001.
    [31] Q. Gao, J. Chen, S. Li, R. Xu, Synthesis and Characterization of Aluminophosphate Molecular Sieve AlPO-41 from Alcohol Systems,Micropor. Mater. 1996, 7(4): 219-223.
    [32] 邓鹏,聂聪,李全芝,SAPO-11 中硅含量对长链烷烃加氢异构化反应的影响,复旦学报(自然科学版),2001,40(4):387-391。
    [33] 杨晓梅,徐竹生,田志坚,马怀军,徐云鹏,林励吾,SAPO-11分子筛上金属性和酸性对正十二烷临氢异构化反应的影响,第13届全国催化学术会议论文集,2006,P487。
    [34] X. Huang, L. Wang, L. Kong, Q. Li, Improvement of Catalytic Properties of SAPO-11 Molecular Sieves Synthesized in H2O-CTAB-Butanol System, Appl. Catal. A 2003, 253(2): 461-467.
    [35] T. Blasco, A. Chica, A. Corma, W.J. Murphy, J. Agúndez-Rodríguez, J. Pérez-Pariente, Changing the Si Distribution in SAPO-11 by Synthesis with Surfactants Improves the Hydroisomerization/Dewaxing Properties, J. Catal. 2006, 242(1): 153-161.
    [36] Z. Wang, Z. Tian, F. Teng, Y. Xu, Z. Xu, L. Lin, A Highly Active Si-Enriched Pt/SAPO-11 Catalyst Synthesized by the Solvothermal Method for the n-Dodecane Hydroisomerazation, Chin. J. Catal. 2005, 26(4): 268-270.
    [37] Z. Wang, Z. Tiana, F. Teng, G. Wen, Y. Xu, Z. Xua, L. Lin, Hydroisomerization of Long-Chain Alkane over Pt/SAPO-11 Catalysts Synthesized from Nonaqueous Media, Catal. Lett. 2005, 103(1-2): 109-116.
    [38] A.K. Sinha, S. Sivasanker, P. Ratnasamy, Hydroisomerization of n-Alkanes over Pt-SAPO-11 and Pt-SAPO-31 Synthesized from Aqueous and Nonaqueous Media, Ind. Eng. Chem. Res. 1998, 37(6): 2208-2214.
    [39] A.K. Sinha, S. Seelan, Characterization of SAPO-11 and SAPO-31 Synthesized from Aqueous and Non-Aqueous Media, Appl. Catal. A 2004, 270(1-2): 245-252.
    [40] S.T. Wilson, E.M. Flanigen, Crystalline Metal Aluminophosphates, USP 4,567,029 (1986).
    [41] M. H?chtl, A. Jentys, H. Vinek, Acidity of SAPO and CoAPO Molecular Sieves and their Activity in the Hydroisomerization of n-Heptane, Micropor. Mesopor. Mater. 1999, 31(3): 271-285.
    [42] M. Hartmann, S.P. Elangovan, Isomerization and Hydrocracking of n-Decane over Magnesium-Containing Molecular Sieves with AEL, AFI and AFO Topology, Chem. Eng. Technol. 2003, 26(12): 1232-1235.
    [43] S.P. Elangovan, M. Hartmann, Evaluation of Pt/MCM-41//MgAPO-n Composite Catalysts for Isomerization and Hydrocracking of n-Decane, J. Catal. 2003, 217(2): 388-395.
    [44] S.T. Homeyer, Z. Karpinski, W.M.H. Sachtler, Effect of Zeolite Protons on Palladium-Catalyzed Hydrocarbon Reactions, J. Catal. 1990, 123(1): 60-73.
    [45] W.M.H. Sachtler, A.Yu. Stakheev, Electron-Deficient Palladium Clusters and Bifunctional Sites in Zeolites, Catal. Today 1992, 12(2-3): 283-295.
    [46] L.Q. Xu, G.D. Lei, W.M.H. Sachtler, Formation of PdFe Alloy Clusters in Zeolite-Y, J. Phys. Chem. 1993, 97(44): 11517-11523.
    [47] B. Wen, J.F. Jia, W.M.H. Sachtler, Chemical Anchoring of Palladium by Fe Oxo Ions in Zeolite ZSM-5, J. Phys. Chem. B 2002, 106(30): 7520-7523.
    [48] 林励吾,杨维慎,贾继飞,徐竹生,张涛,范以宁,寇元,沈俭一,负载型高分散双组分催化剂的表面结构及催化性能研究,中国科学(B辑),1999,29(2):109-117。
    [49] L. Lin, Y. Kou, M. Zou, Zh. Yan, An Amorphous Approach to the Structure of a Catalyst Pt-Fe/γ-Al2O3 Characterized by XAFS, Phys. Chem. Chem. Phys. 2001, 3(9): 1789-1794.
    [50] A. Vieira, M.A. Tovar, C. Pfaff, B.Méndez, C.M. López, F. J. Machado, J. Goldwasser, M.M. Ramírez de Agudeloy, The Transformations of n-Butane over Platinum-Promoted Mn-Aluminophosphate Molecular Sieves, J. Catal. 1998, 177(1): 60-71.
    [51] A. Vieira, M.A. Tovar, C. Pfaff, P. Betancourt, B. Méndez, C.M. López, F.J. Machado, J. Goldwasser, M.M. Ramírez de Agudelo, M. Houalla, A Study of Manganese-Silicoaluminophosphate Molecular Sieves, J. Mol. Catal. A 1999, 144(1): 101-116.
    [52] D. Kubi?ka, N Kumar, T Ven?l?inen, H Karhu, I Kubi?ková, H. ?sterholm, D.Yu. Murzin, Metal-Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity, J. Phys. Chem. B 2006, 110(10): 4937-4946.
    [53] A. de Lucas, P. Sánchez, F. Dorado, M.J. Ramos, J.L. Valverde, Effect of the Metal Loading in the Hydroisomerization of n-Octane over Beta Agglomerated Zeolite Based Catalysts, Appl. Catal. A 2005, 294(2): 215-225.
    [54] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, Silicoaluminophosphate Molecular Sieves: Another New Class of Microporous Crystalline Inorganic Solids, J. Am. Chem. Soc. 1984, 106(20): 6092-6093.
    [55] M. Hartmann, L. Kevan, Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and Catalytic Properties, Chem. Rev. 1999, 99(3): 635-663.
    [56] M. Hartmann, L. Kevan, Substitution of Transition Metal Ions into Aluminophosphates and Silicoaluminophosphates: Characterization andRelation to Catalysis, Res. Chem. Intermed. 2002, 28(7-9): 625-695.
    [57] H.O. Pastore, S. Coluccia, L. Marchese, Porous Aluminophosphates: From Molecular Sieves to Designed Acid Catalysts, Annu. Rev. Mater. Res. 2005, 35: 351-95.
    [58] 武克瑞,金属磷酸铝分子筛进展,陕西师大学报(自然科学版),1989,17(4):71-75。
    [59] B.M. Weckhuysen, R.R. Rao, J.A. Martens, R.A. Schoonheydt, Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution, Eur. J. Inorg. Chem. 1999, 1999(4): 565-577.
    [60] F. Corà, C.R.A. Catlow, Ionicity and Framework Stability of Crystalline Aluminophosphates, J. Phys. Chem. B 2001, 105(42): 10278-10281.
    [61] F. Corà, I. Saadoune, C.R.A. Catlow, Lewis Acidity in Transition-Metal-Doped Microporous Aluminophosphates, Angew. Chem. Int. Ed. 2002, 41(24): 4677-4680.
    [62] H. Nur, H. Hamdan, The Ionic Size of Metal Atoms in Correlation with Acidity by the Conversion of Cyclohexanol over MeAPO-5, Mater. Res. Bull. 2001, 36(1-2): 315-322.
    [63] M. Elanany, D.P. Vercauteren, M. Kubo, A. Miyamoto, The Acidic Properties of H-MeAlPO-5 (Me = Si, Ti, or Zr): A Periodic Density Functional Study, J. Mol. Catal. A 2006, 248(1-2): 181-184.
    [64] S. Ho?evar, J. Batista, V. Kau?i?, Acidity and Catalytic Activity of MeAPSO-44 (Me = Co, Mn, Cr, Zn, Mg), SAPO-44, AlPO4-5, and AlPO4-14 Molecular Sieves in Methanol Dehydration, J. Catal. 1993, 139(2): 351-361.
    [65] C. de las Pozas, R. Lopez-Cordero, J.A. Gonzalez-Morales, N. Travieso, R. Roque-Malherbe, Effect of Pore Diameter and Acid Strength in EthanolDehydration on Molecular Sieves, J. Mol. Catal. 1993, 83(1-2): 145-156.
    [66] F. Corà, C.R.A. Catlow, B. Civalleri, R. Orlando, Acid Strength of Low-Valence Dopant Ions in Microporous Zeolites and AlPOs, J. Phys. Chem. B 2003, 107(43): 11866-11870.
    [67] G. Sastre, D.W. Lewis, C.R.A. Catlow, Structure and Stability of Silica Species in SAPO Molecular Sieves, J. Phys. Chem. 1996, 100(16): 6722-6730.
    [68] G. Sastre, D.W. Lewis, C.R.A. Catlow, Mechanisms of Silicon Incorporation in Aluminophosphate Molecular Sieves, J. Mol. Catal. A 1997, 119(1-3): 349-356.
    [69] G. Sastre, D.W. Lewis, C.R.A. Catlow, Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves, J. Phys. Chem. B 1997, 101(27): 5249-5262.
    [70] T. Masukawa, T. Komatsu, T. Yashima, Strong Acid Sites Generated in Aluminosilicate Region of SAPO-5, Zeolites 1997, 18(1): 10-17.
    [71] T. Masukawa, T. Komatsu, T. Yashima, Alkylation of Toluene on HSAPO-5 with Various Si Concentrations, Zeolites 1997, 19(5-6): 429-433.
    [72] D.B. Akolekar, Acidity and Catalytic Properties of AlPO4-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 Molecular Sieves, J. Mol. Catal. A 1995, 104(1): 95-102.
    [73] 辛勤,固体催化剂研究方法,第一版,北京:科学出版社,2004。
    [74] C.W. Lee, X. Chen, G. Brouet, L. Kevan, Comparative Spectroscopic Studies on MnSAPO-11, (L)MnH-SAPO-11, and (S)MnH-SAPO-11 Molecular Sieves (SAPO = Silicoaluminophosphate), J. Phys. Chem. 1992, 96(7): 3110-3113
    [75] Z. Levi, A.M. Raitsimring, D. Goldfarb, ESR and Electron Spin-Echo Studies of MnAPO-5, J. Phys. Chem. 1991, 95(20): 7830-7838.
    [76] G. Brouet, X. Chen, C. Lee, L. Kevan, Evaluation of Mn(II) Framework Substitution in MnAPO-11 and Mn-Impregnated AlPO4-11 Molecular Sieves by Electron Spin Resonance and Electron Spin-Echo Modulation Spectroscopy, J. Am. Chem. Soc. 1992, 114(10): 3720-3126.
    [77] A.K. Sinha, C.V.V. Satyanarayana, D. Srinivas, S. Sivasanker, P. Ratnasamy, Location of Mn(II) Ions in Manganese Aluminophosphate Molecular Sieves: a Comparative Study of MnAPO-11 and MnAPO-41, Micropor. Mesopor. Mater. 2000, 35-36: 471-481.
    [78] Z. Olender (Levi), D. Goldfarb, J. Batista, Magnetic Resonance Studies of SAPO-44 and MnAPSO-44, J. Am. Chem. Soc. 1993, 115(3): 1106-1114.
    [79] P.A. Barrett, G. Sankar, C.R.A. Catlow, J.M. Thomas, X-ray Absorption Spectroscopic Study of Br?nsted, Lewis, and Redox Centers in Cobalt-Substituted Aluminum Phosphate Catalysts, J. Phys. Chem. 1996, 100(21): 8977-8985.
    [80] 任永利,刘国柱,王莅,米镇涛,铜磷铝分子筛的合成及其对苯液相氧化制苯酚的催化性能,催化学报,2004,25(5):357-362。
    [81] K.J. Chao, A.C. Wei, H.C. Wu, J.F. Lee, Characterization of Metal-incorporated Molecular Sieves, Catal. Today 1999, 49(1-3): 277-284.
    [82] J. Wu, S. Chien, B. Wan, Characterization of MnAPO-5 for Ethane Oxydehydrogenation, Ind. Eng. Chem. Res. 2001, 40(1): 94-100.
    [83] A. Risti?, N.N. Tu?ar, I. Ar?on, N.Z. Logar, F. Thibault-Starzyk, J. Czyzniewska, V. Kau?i?, Large-Pore FAPO-36: Synthesis and Characterization, Chem. Mater. 2003, 15(19): 3643-3649.
    [84] F.J. Machado, C.M. López, J. Goldwasser, B. Méndez, Y. Campos, D. Escalante, M. Tovar, Spectroscopic and Catalytic Evidence for the Incorporation of Gallium in the AEL Framework, Zeolites 1997, 19(5-6): 387-394.
    [85] B. Modén, L. Oliviero, J. Dakka, J.G. Santiesteban, E. Iglesia, Structural and Functional Characterization of Redox Mn and Co Sites in AlPO Materials and Their Role in Alkane Oxidation Catalysis, J. Phys. Chem. B 2004, 108(18): 5552-5563.
    [86] H. Berndt, A. Martin, Y. Zhang, Study on the Nature and the Redox Properties of Cobalt Species Located in CoAPO Molecular Sieves, Micropor. Mater. 1996, 6(1): 1-12.
    [87] L. Zhou, J. Xu, H. Miao, X. Li, F. Wang, Synthesis of FeCoMnAPO-5 Molecular Sieve and Catalytic Activity in Cyclohexane Oxidation by Oxygen, Catal. Lett. 2005, 99(3-4): 231-234.
    [88] R. Fernandez, M.V. Giotto, H.O. Pastore, D. Cardoso, Synthesis and Characterization of MAPO-11 Molecular Sieves, Micropor. Mesopor. Mater. 2002, 53(1-3): 135-144.
    [89] G. Mali, A. Risti?, V. Kau?i?, 31P NMR as a Tool for Studying Incorporation of Ni, Co, Fe, and Mn into Aluminophosphate Zeotypes, J. Phys. Chem. B 2005, 109(21): 10711-10716.
    [1] C.S. Triantafillidis, A.G. Vlessidis, L. Nalbandian, N.P. Evmiridis, Effect of the Degree and Type of the Dealumination Method on the Structural, Compositional and Acidic Characteristics of H-ZSM-5 Zeolites, Micropor. Mesopor. Mater. 2001, 47(2-3): 369-388.
    [2] G. Zhao, J. Teng, Y. Zhang, Z. Xie, Y. Yue, Q. Chen, Y. Tang, Synthesis of ZSM-48 Zeolites and their Catalytic Performance in C4-Olefin Cracking Reactions, Appl. Catal. A 2006, 299: 167-174.
    [1] M.L. Coonradt, W.E. Garwood, Mechanism of Hydrocracking. Reactions of Paraffins and Olefins, Ind. Eng. Chem. Prod. Res. Dev. 1964, 3(1): 38-45.
    [2] G.E. Glannetto, G.R. Perot, M.R. Gulsnet, Hydroisomerization and Hydrocracking of n-Alkanes. 1. Ideal Hydroisomerization PtHY Catalysts, Ind. Eng. Chem. Prod. Res. Dev. 1986, 25(3): 481-490.
    [3] F. Alvarez, F.R. Ribeiro, G. Perot, C. Thomazeau, M. Guisnety, Hydroisomerization and Hydrocracking of Alkanes 7. Influence of the Balance between Acid and Hydrogenating Functions on the Transformation of n-Decane on PtHY Catalysts, J. Catal. 1996, 162(2): 179-189.
    [4] M. H?chtl, A. Jentys, H. Vinek, Hydroisomerization of Heptane Isomers over Pd/SAPO Molecular Sieves: Influence of the Acid and Metal Site Concentration and the Transport Properties on the Activity and Selectivity, J. Catal. 2000, 190(2): 419-432.
    [5] M. H?chtl, A. Jentys, H. Vinek, Alkane Conversion over Pd/SAPO Molecular Sieves: Influence of Acidity, Metal Concentration and Structure, Catal. Today 2001, 65(2-4): 171-177.
    [6] A. de Lucas, P. Sánchez, F. Dorado, M.J. Ramos, J.L. Valverde, Effect of the Metal Loading in the Hydroisomerization of n-Octane over Beta Agglomerated Zeolite Based Catalysts, Appl. Catal. A 2005, 294(2): 215-225.
    [7] 汪哲明,SAPO 基、长链烷烃择形异构化催化剂的结构设计,中国科学院研究生院博士学位论文,编号 B018003826,2006,39-40。
    [8] J.A. Martens, P.J. Grobet, P.A. Jacobs, Catalytic Activity and Si, Al, P Ordering in Microporous silicoaluminophosphates of the SAPO-5, SAPO-11 and SAPO-37 Type, J. Catal. 1990, 126(1): 299-305.
    [9] G. Sastre, D.W. Lewis, C.R.A. Catlow, Structure and Stability of Silica Species in SAPO Molecular Sieves, J. Phys. Chem. 1996, 100(16): 6722-6730.
    [10] G. Sastre, D.W. Lewis, C.R.A. Catlow, Mechanisms of Silicon Incorporation in Aluminophosphate Molecular Sieves, J. Mol. Catal. A 1997, 119(1-3): 349-356.
    [11] G. Sastre, D.W. Lewis, C.R.A. Catlow, Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves, J. Phys. Chem. B. 1997, 101(27): 5249-5262.
    [12] T. Masukawa, T. Komatsu, T. Yashima, Strong Acid Sites Generated in Aluminosilicate Region of SAPO-5, Zeolites 1997, 18(1): 10-17.
    [13] T. Masukawa, T. Komatsu, T. Yashima, Alkylation of Toluene on HSAPO-5 with Various Si Concentrations, Zeolites 1997, 19(5-6): 429-433.
    [14] 邓鹏,聂聪,李全芝,SAPO-11中硅含量对长链烷烃加氢异构化反应的影响,复旦学报(自然科学版),2001,40(4):387-391.
    [15] M.J. Franco, A. Mifsud, J. Perez-Pariente, Study of SAPO-5 Obtained from Surfactant-Containing Gels: Part 1. Crystallization Parameters and Mechanism of Si Substitution, Zeolites 1995, 15(2): 117-123.
    [16] P. Mériaudeau, Vu A. Tuan, F. Lefebvre, Vu T. Nghiem, C. Naccache, Isomorphous Substitution of Silicon in the AlPO4 Framework with AEL Structure: n-Octane Hydroconversion, Micropor. Mesopor. Mater. 1998, 22(1-3): 435-449.
    [17] M. Montoya-Urbina, D. Cardoso, J. Pérez, E. Sastre, T. Blasco, V. Fornés, Characterization and Catalytic Evaluation of SAPO-5 Synthesized in Aqueous and Two-Liquid Phase Medium in Presence of a Cationic Surfactant, J. Catal. 1998, 173(2): 501-510.
    [18] X. Huang, L. Wang, L. Kong, Q. Li, Improvement of Catalytic Properties of SAPO-11 Molecular Sieves Synthesized in H2O-CTAB-Butanol System, Appl. Catal. A 2003, 253(2): 461-467.
    [19] R. Szostak, T. Thomas, D. Shieh, Comparative Study of Dipropylamine-Directed Synthesis of SAPO Molecular Sieves, Catal. Lett. 1989, 2(1): 63-70.
    [20] 徐如人,庞文琴,于吉红,霍启升,陈接胜,分子筛与多孔材料化学,第一版,北京:科学出版社,2004,215-216.
    [1] S.T. Wilson, E.M. E.M. Flanigen, Crystalline Metal Aluminophosphates, USP 4,567,029 (1986).
    [2] R. Fernandez, M.V. Giotto, H.O. Pastore, D. Cardoso, Synthesis and Characterization of MAPO-11 Molecular Sieves, Micropor. Mesopor. Mater. 2002, 53(1-3): 135-144.
    [3] U. Lohse, B. Parlitz, D. Müller, E. Schreier, R. Bertram, R. Fricke, MgAPO Molecular Sieves of CHA and AFI Structure—Acidity and Mg Ordering, Micropor. Mater. 1997, 12(1-3): 39-49.
    [4] M. Hartmann, L. Kevan, Substitution of Transition Metal Ions into Aluminophosphates and Silicoaluminophosphates: Characterization and Relation to Catalysis, Res. Chem. Intermed. 2002, 28(7-9): 625-695.
    [5] M. Hartmann, L. Kevan, Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and Catalytic Properties, Chem. Rev. 1999, 99(3): 635-663.
    [6] B.M. Weckhuysen, R.R. Rao, J.A. Martens, R.A. Schoonheydt, Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution, Eur. J. Inorg. Chem. 1999, 1999(4): 565-577.
    [7] D.B. Akolekar, Acidity and Catalytic Properties of AlPO4-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 Molecular Sieves, J. Mol. Catal. A 1995, 104(1): 95-102.
    [8] G. Lischke, B. Parlitz, U. Lohse, E. Schreier, R. Fricke, Acidity and Catalytic Properties of MeAPO-5 Molecular Sieves, Appl. Catal. A 1998, 166(2): 351-361.
    [9] Z. Zhu, M. Hartmann, L. Kevan, Catalytic Conversion of Methanol to Olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Cr-SAPO-n Molecular Sieves, Chem. Mater. 2000, 12(9): 2781-2787.
    [10] I. Saadoune, F. Corà, C.R.A. Catlow, Computational Study of the Structural and Electronic Properties of Dopant Ions in Microporous AlPOs. 1. Acid Catalytic Activity of Divalent Metal Ions, J. Phys. Chem. B 2003, 107(13): 3003-3011.
    [11] M. H?chtl, A. Jentys, H. Vinek, Acidity of SAPO and CoAPO Molecular Sieves and their Activity in the Hydroisomerization of n-Heptane, Micropor. Mesopor. Mater. 1999, 31(3): 271-285.
    [12] V.R. Vijayaraghavan, K.J.A. Raj, Ethylation of Benzene with Ethanol over Substituted Large Pore Aluminophosphate-Based Molecular Sieves, J. Mol. Catal. A 2004, 207(1): 41-50.
    [13] 王利军,黄茜丹,赵伟,李全芝,SAPO-11 分子筛改进合成及正十二烷加氢异构化性能,化学学报,2002,60(6):1122-1124。
    [14] 邓鹏,聂聪,李全芝,SAPO-11 中硅含量对长链烷烃加氢异构化反应的影响,复旦学报(自然科学版),2001,40(4):387-391。
    [15] 柳云骐,田志坚,徐竹生,林励吾,石油大学学报(自然科学版),2002,26(5):88-90。
    [16] 汪哲明,田志坚,滕飞,徐云鹏,胡胜,谭明伟,徐竹生,林励吾,催化学报,2005,26(9):819-823。
    [17] J.M. Campelo, F. Lafont, J.M. Marinas, Hydroconversion of n-Dodecane over Pt/SAPO-11 Catalyst, Appl. Catal. A 1998, 170(1): 139-144.
    [18] C. Geng, F. Zhang, Z. Gao, L. Zhao, J. Zhou, Hydroisomerization of n-Tetradecane over Pt/SAPO-11 Catalyst, Catal. Today 2004, 93-95: 485-491.
    [19] M. Hartmann, S.P. Elangovan, Isomerization and Hydrocracking of n-Decane over Magnesium-Containing Molecular Sieves with AEL, AFI, and ATO Topology, Chem. Eng. Technol. 2003, 26(12): 1232-1235.
    [20] S.P. Elangovan, Martin Hartmann, Evaluation of Pt/MCM-41//MgAPO-n Composite Catalysts for Isomerization and Hydrocracking of n-Decane, J. Catal. 2003, 217(2): 388-395.
    [21] PCPDFWIN, Version 1.30, 1997, JCPDS-ICDD, File 41-0023.
    [22] F. Corà, C.R.A. Catlow, B. Civalleri, R. Orlando, Acid Strength of Low-Valence Dopant Ions in Microporous Zeolites and AlPOs, J. Phys. Chem. B 2003, 107(43): 11866-11870.
    [23] P. Mériaudeau, V. A. Tuan, V. T. Nghiem, S. Y. Lai, L. N. Hung, C. Naccache, SAPO-11, SAPO-31, and SAPO-41 Molecular Sieves: Synthesis, Characterization, and Catalytic Properties in n-Octane Hydroisomerization, J. Catal. 1997, 169(1): 55-66.
    [24] W.M. Meier, D.H. Olson, Ch. Baerlocher, Structure type codes, Zeolites 1996, 17(1-2): 16-17.
    [25] B. Xu, X. Han, Z. Yan, Z. Zhang, Synthesis, Characterizatio and Catalytic Properties of CoAPO-11 Molecular Sieve: Skeletal Isomerization of1-Hexene, Chin. J. Fuel Chem. Technol. 2005, 33(5): 617-621.
    [26] 庞新梅,朱卫东,常晓平,王宝杰,李树本,SAPO-11 分子筛的性质与催化应用,分子催化,2004,18(2):153-160。
    [27] Y. Kuang, N. He, J. Wang, P. Xiao, C. Yuan, Z. Lu, Investigating the State of Fe and La in MCM-41 Mesoporous Molecular Sieves Materials, Colloids. Surf. A 2001, 179(2-3): 177-184.
    [28] Y. Liu, M. Luo, Z. Wei, Q. Xin, P. Ying, C. Li, Catalytic Oxidation Chlorobenzene on Supported Manganese Oxide Catalysts, Appl. Catal. B 2001, 29(1): 61-67.
    [29] A. Vieira, M.A. Tovar, C. Pfaff, P. Betancourt, B. Méndez, C.M. López, F.J. Machado, J. Goldwasser, M.M. Ramírez de Agudelo, M. Houalla, A Study of Manganese-Silicoaluminophosphate Molecular Sieves, J. Mol. Catal. A 1999, 144(1): 101-116.
    [30] B. Modén, L. Oliviero, J. Dakka, J.G. Santiesteban, E. Iglesia, Structural and Functional Characterization of Redox Mn and Co Sites in AlPO Materials and their Role in Alkane Oxidation Catalysis, J. Phys. Chem. B 2004, 108(18): 5552-5563
    [31] H. Lin, Y. Chen, The Mechanism of Reduction of Cobalt by Hydrogen, Mater. Chem. Phys. 2004, 85(1): 171-175.
    [32] H. Berndt, A. Martin, Y. Zhang, Study on the Nature and the Redox Properties of Cobalt Species Located in CoAPO Molecular Sieves, Micropor. Mater. 1996, 6(1): 1-12.
    [33] L. Frunza, J. Pelgrims, H. Leeman, P.V.D. Voort, E.F. Vansant, R.A. Schoonheydt, B.M. Weckhuysen, Incorporation of Transition Metal Ions in Aluminophosphate Molecular Sieves with AST Structure, J. Phys. Chem. B2001, 105(14): 2677-2686.
    [34] L. Canesson, Dr.A. Tuel, Synthesis and Characterization of CoAPO4-39 Molecular Sieves, Zeolites 1997, 18(4): 260-268.
    [35] A.A. Verberckmoes, M.G. Uytterhoeven, R.A. Schoonheydt, Framework and Extra-Framework Co2+ in CoAPO-5 by Diffuse Reflectance Spectroscopy, Zeolites 1997, 19(2-3): 180-189.
    [36] M. Guisnet, P. Ayrault, C. Coutanceau, M.F. Alvarez, J. Datkac, Acid Properties of Dealuminated Beta Zeolites Studied by IR Spectroscopy, J. Chem. Soc., Faraday Trans. 1997, 93(8): 1661-1665.
    [37] M.L. Coonradt, W.E. Garwood, Mechanism of Hydrocracking. Reactions of Paraffins and Olefins, Ind. Eng. Chem. Prod. Res. Dev. 1964, 3(1): 38-45.
    [38] C.M. López, M.D. Sousa, Y. Campos, L. Hernández, L. García, Dehydroisomerization of n-Pentane on SAPO-11 Molecular Sieves Impregnated with Platinum, Appl. Catal. A 2004, 258(2): 195-202.
    [39] S. Yuvaraj, T. Chang, C. Yeh, Segregation of Platinum from Mordenite Channels on Calcination and Reduction Pretreatments, J. Catal. 2004, 221(2): 466-473.
    [40] S.T. Homeyer, Z. Karpinski, W.M.H. Sachtler, Effect of Zeolite Protons on Palladium-Catalyzed Hydrocarbon Reactions, J. Catal. 1990, 123(1): 60-73.
    [41] W.M.H. Sachtler, A.Yu. Stakheev, Electron-Deficient Palladium Clusters and Bifunctional Sites in Zeolites, Catal. Today 1992, 12(2-3): 283-295.
    [42] D. Kubi?ka, N Kumar, T Ven?l?inen, H Karhu, I Kubi?ková, H. ?sterholm, D.Yu. Murzin, Metal-Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity, J. Phys. Chem. B 2006, 110(10): 4937-4946.
    [43] T.J. McCarthy, C.M.P. Marques, H. Trevino, W.M.H. Sachtler, Suppressed Hydrogen Chemisorption of Zeolite Encaged Metal Clusters: Discrimination between Theoretical Models on the Basis of Ru/NaY, Catal. Lett. 1997, 43(1-2): 11-18.
    [44] 林励吾,杨维慎,贾继飞,徐竹生,张涛,范以宁,寇元,沈俭一,负载型高分散双组分催化剂的表面结构及催化性能研究,中国科学(B辑),1999,29(2):109-117。
    [45] L. Lin, Y. Kou, M. Zou, Zh. Yan, An Amorphous Approach to the Structure of a Catalyst Pt-Fe/γ-Al2O3 Characterized by XAFS, Phys. Chem. Chem. Phys. 2001, 3(9): 1789-1794.
    [1] 许本静,阎子峰,韩雪莲,霍全,于春梅,张志华,不同镁源 MAPO-11分子筛的合成及其表征,分子催化,2004,18(6):409-415。
    [2] B. Xu, L. Qian, X. Liu, C. Song, Z. Yan, Synthesis and Characterization of Magnesium Substituted Aluminophosphate Molecular Sieves with AEL Structure, J. Natur. Gas Chem. 2004, 13(4): 231-237.
    [3] M.daS. Machado, D. Cardoso, Synthesis and Characterization of AlPO4-36and MAPO-36 with Different Magnesium Content, Chem. Mater. 1999, 11(11): 3238-3244.
    [4] M.daS. Machado, J. Pérez-Pariente, E. Sastre, D. Cardoso, M.V. Giotto, J.L. García-Fierro, V. Fornés, Characterization and Catalytic Properties of MAPO-36 and MAPO-5: Effect of Magnesium Content, J. Catal. 2002, 205(2): 299-308.
    [5] P. Concepción, J.M. López Nieto, A. Mifsud, J. Pérez-Pariente, Preparation and Characterization of Mg-Containing AFI and Chabazite-Type Materials, Zeolites 1996, 16(1): 56-64.
    [6] R. Fernandez, M.V. Giotto, H.O. Pastore, D. Cardoso, Synthesis and Characterization of MAPO-11 Molecular Sieves, Micropor. Mesopor. Mater. 2002, 53(1-3): 135-144.
    [7] J. Li, Ying Guo, G. Li, J. Chen, C. Li, Y. Zou, Investigation into the Role of MgO in the Synthesis of MAPO-11 Large Single Crystals, Micropor. Mesopor. Mater. 2005, 79(1-3): 79-84.
    [8] 汪哲明,阎子峰,SAPO-11 分子筛的合成,燃料化学学报,2003,31(4):360-366。
    [9] C.M. Lopez, F.J. Machado, J. Goldwasser, B. Méndez, K. Rodríguez, The Successive Crystallization and Characterization of SAPO-31 and SAPO-11 from the Same Synthesis Gel: Influence on the Selectivity for 1-Butene Isomerization, Zeolites 1997, 19(5): 133-141.
    [10] N.J. Tapp, N.B. Milestone, D.M. Bibby, Synthesis of AlPO4-11, Zeolites 1988, 8(1): 183-188.
    [11] B.M. Lok, T.R. Cannan, C.A. Messina, The Role of Organic Molecular in Molecular Sieve Synthesis, Zeolites 1983, 3(1): 282-291.
    [12] R. Xu, S. Komaarneni, D.M. Roy, The Role of Gel Chemistry in Synthesis of Aluminophosphate Molecular Sieves, Zeolites 1991, 11(1): 142-147.
    [13] 张志华,胡胜,韩雪莲,许本静,田永亮,阎子峰,Pt/SAPO-11 催化剂上柴油馏分临氢异构化改质反应研究,分子催化, 2005,19(5):332-337。
    [14] J.M. Campelo, F. Lafont, J.M. Marinas, Hydroconversion of n-Dodecane over Pt/SAPO-11 Catalyst, Appl. Catal. A 1998, 170(1): 139-144.
    [15] C. Geng, F. Zhang, Z. Gao, L. Zhao, J. Zhou, Hydroisomerization of n-Tetradecane over Pt/SAPO-11 Catalyst, Catal. Today 2004, 93-95: 485-491.
    [16] H. Lechert, The pH Value and its Importance for the Crystallization of Zeolites, Micropor. Mesopor. Mater. 1998, 22(4-6): 519-523.
    [17] S. Ahn, H. Chon, The Influence of Metal Ions on the Synthesis of MeAPO-5 (Me = Mg, Co) in the Presence of Acetate Ions, Micropor. Mater. 1997, 8(3-4): 113-121.
    [18] 周公度,段连运,结构化学基础,第二版,北京:北京大学出版社,1995,第 432 页。
    [19] P.S. Singh, R. Bandyopadhyay, B.S. Rao, Spectroscopic Studies of Vanadium Incorporated SAPO-11, J. Mol. Catal. A 1995, 104(1): 103-110.
    [20] C.M. López, M.D. Sousa, Y. Campos, L. Hernández, L. García, Dehydroisomerization of n-Pentane on SAPO-11 Molecular Sieves Impregnated with Platinum, Appl. Catal. A 2004, 258(2): 195-202.
    [21] S.T. Homeyer, Z. Karpinski, W.M.H. Sachtler, Effect of Zeolite Protons on Palladium-Catalyzed Hydrocarbon Reactions, J. Catal. 1990, 123(1): 60-73.
    [22] W.M.H. Sachtler, A.Yu. Stakheev, Electron-Deficient Palladium Clusters and Bifunctional Sites in Zeolites, Catal. Today 1992, 12(2-3): 283-295.
    [23] M.L. Coonradt, W.E. Garwood, Mechanism of Hydrocracking. Reactions of Paraffins and Olefins, Ind. Eng. Chem. Prod. Res. Dev. 1964, 3(1): 38-45.
    [24] 肖天存,王海涛,安立敦,王弘立,热及水热处理对 SAPO-5 分子筛结构的影响,催化学报, 1997,18(6):483-487。
    [25] T. Xiao, L. An, H. Wang, Dependence of the Nature and Catalytic Performance on the Synthesis Factors of SAPO-5 Molecular Sieve, Appl. Catal. A 1995, 130(2): 187-194.
    [26] 魏迎旭,王公慰,刘中民,许磊,谢鹏,SAPO 分子筛的酸性及孔道分布对丁烷异构脱氢反应的影响,催化学报, 2001,22(6):537-540。
    [27] 肖天存,王海涛,陈方,鹿玉理,安立敦,王弘立,硅源及晶化时间对SAPO-5 分子筛模板剂、酸性及催化性能的影响,催化学报, 1998,19(2):144-148。
    [28] X. Yang, Z. Xu, Z. Tian, H. Ma, Y. Xu, W. Qu, L. Lin, Performance of Pt/MgAPO-11 Catalysts in the Hydroisomerization of n-Dodecane, Catal. Lett. 2006, 109(3-4): 139-145.
    [29] 张志华,胡胜,韩雪莲,许本静,阎子峰,Pt 在 SAPO-11 分子筛上的分散性研究,燃料化学学报, 2005,33(6):746-749。
    [30] M. Hartmann, L. Kevan, Substitution of Transition Metal Ions into Aluminophosphates and Silicoaluminophosphates: Characterization and Relation to Catalysis, Res. Chem. Intermed. 2002, 28 (7-9): 625-695.
    [31] B.M. Weckhuysen, R.R. Rao, J.A. Martens, R.A. Schoonheydt, Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution, Eur. J. Inorg. Chem. 1999, 5(2): 565-577.
    [32] M. Hartmann, L. Kevan, Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with
    Adsorbates and Catalytic Properties, Chem. Rev. 1999, 99(3): 635-662.
    [33] W. Fan, R.A. Schoonheydta, B.M. Weckhuysen, Hydrothermal Synthesis of Co-Rich CoAPO-5 Molecular Sieves, Phys. Chem. Chem. Phys. 2001, 3(15): 3240-3246.
    [34] W. Fan, R.A. Schoonheydta, B.M. Weckhuysen, Synthesis of Co-Rich CoAPO-CHA Molecular Sieves in the Presence of Ethanol and Caesium, Chem. Commun. 2000, 2000(22): 2249-2250.
    [35] W. Fan, B.M. Weckhuysen, Synthesis of Co-Rich CoAPO-5 Molecular Sieves: A Comparison between Glycerol and Water as Solvent, J. Nanosci. Nanotech. 2003, 3(3): 271-275.
    [36] W. Fan, R. Li, T. Dou, T. Tatsumi, B.M. Weckhuysen, Solvent Effects in the Synthesis of CoAPO-5, -11 and -34 Molecular Sieves, Micropor. Mesopor. Mater. 2005, 84(1-3): 116-126.
    [37] A.K. Sinha, N.E. Jacob, D. Srinivas, S. Sivasanker, Location of Mn in MnAPO-11: Influence of Synthesis from Aqueous and Non-aqueous Media, Catal. Lett. 1999, 61(3-4): 193-198.
    [38] J. Kornatowski, G. Zadrozna, M. Rozwadowski, B. Zibrowius, F. Marlow, J.A. Lercher, New Strategy for Chromium Substitution and Crystal Morphology Control―Synthesis and Characteristics of CrAPO-5, Chem. Mater. 2001, 13(12): 4447-4456.
    [39] M.J. Franco, A. Mifsud, J. Perez-Pariente, Study of SAPO-5 Obtained from Surfactant-Containing Gels: Part 1. Crystallization Parameters and Mechanism of Si Substitution, Zeolites 1995, 15(2): 117-123.
    [40] 汪哲明,SAPO 基、长链烷烃择形异构化催化剂的结构设计,中国科学院研究生院博士学位论文,编号 B018003826,2006,第 139 页。
    [41] 韩崇仁,主编,加氢裂化工艺与工程,第一版,北京:中国石化出版社,2001,第 1,398-340,423-431,447-455 页。
    [42] 水天德,主编,龙显烈,主审,现代润滑油生产工艺,第一版,北京:中国石化出版社,1997,第 320 页。
    [43] 李成栋,编著,催化重整装置技术问答,修订版,北京:中国石化出版社,2004,第 40 页。
    [44] 侯祥麟,主编,中国炼油技术,第二版,北京:中国石化出版社,1991,第 239-240 页。
    [45] F. Corà, C.R.A. Catlow, B. Civalleri, R. Orlando, Acid Strength of Low-Valence Dopant Ions in Microporous Zeolites and AlPOs, J. Phys. Chem. B. 2003, 107(43): 11866-11870.
    [46] D.B. Akolekar, Acidity and Catalytic Properties of AlPO-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 Molecular Sieves, J. Mol. Catal. A 1995, 104(1): 95-102.
    [47] G. Lischke, B. Parlitz, U. Lohse, E. Schreier, R. Fricke, Acidity and Catalytic Properties of MeAPO-5 Molecular Sieves, Appl. Catal. A 1998, 166(2): 351-361.
    [48] I. Saadoune, F. Corà, C.R.A. Catlow, Computational Study of the Structural and Electronic Properties of Dopant Ions in Microporous AlPOs. 1. Acid Catalytic Activity of Divalent Metal Ions, J. Phys. Chem. B 2003, 107(13): 3003-3011.
    [1] H.L. Coonradt, W.E. Garwood, Mechanism of Hydrocracking. Reactions of Paraffins and Olefins, Ing. Eng. Chem. Proc. Des. Dev. 1964, 3(1): 38-45.
    [2] S.T. Homeyer, Z. Karpinski, W.M.H. Sachtler, Effect of Zeolite Protons on Palladium-Catalyzed Hydrocarbon Reactions, J. Catal. 1990, 123(1): 60-73.
    [3] W.M.H. Sachtler, A.Yu. Stakheev, Electron-Deficient Palladium Clusters and Bifunctional Sites in Zeolites, Catal. Today 1992, 12(2-3): 283-295.
    [4] D. Kubi?ka, N. Kumar, T. Ven?l?inen, H. Karhu, I. Kubi?ková, H. ?sterholm, D.Yu. Murzin, Metal-Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity, J. Phys. Chem. B 2006, 110(10): 4937-4946.
    [5] 汪哲明,SAPO 基、长链烷烃择形异构化催化剂的结构设计,博士学位论文,B018003826,2006,3-3。
    [6] C. Marcilly, Present Status and Future Trends in Catalysis for Refining andPetrochemicals, J. Catal. 2003, 216(1-2): 47-62.
    [7] S. Gopal, P.G. Smirniotis, Factors Affecting Isomer Yield for n-Heptane Hydroisomerization over As-synthesized and Dealuminated Zeolite Catalysts Loaded with Platinum, J. Catal. 2004, 225(2): 278-287.
    [8] J.A. Martens, R. Parton, L. Uytterhoeven, P.A.Jacobs, G.F. Froment, Selective Conversion of Decane into Branched Isomers: A Comparison of Platinum/ZSM-22, Platinum/ZSM-5 and Platinum/USY Zeolite Catalysts, Appl. Catal. 1991, 76(1): 95-116.
    [9] J.M. Campelo, F. Lafont, J.M. Marinas, Hydroisomerization and Hydrocracking of n-Heptane on Pt/SAPO-5 and Pt/SAPO-11 Catalysts, J. Catal. 1995, 156(1): 11-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700