用户名: 密码: 验证码:
纳米氧化铈及其铈钛复合物的制备与抛光性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学机械抛光(CMP)作为超大规模集成电路制造(ULSI)工艺中公认的最佳平坦化加工工艺,已成为ULSI制造中不可或缺的技术。为满足ULSI对高精度超光滑表面的要求,需要发展新的CMP技术及其相关的材料。目前,硅片抛光采用的是SiO2胶体粒子,而铈基氧化物作为硅片抛光的研究报道比较少。本文分别合成了纳米CeO2以及钛均匀掺杂和钛包覆CeO2粒子,研究了它们抛光硅片的工艺条件和抛光性能,探讨了硅片抛光性能提高的原因。
     以硝酸铈为原料,十二烷基苯磺酸钠为分散剂,过氧化氢为氧化剂,氨水为沉淀剂,采用直接沉淀法制备了粒径分布均匀的纳米氧化铈粉体,并通过XRD、TEM等手段对粉体进行了表征。采用所制备的氧化铈粉体配置成抛光浆料对硅片进行抛光,研究了浆料pH值、固含量及过氧化氢浓度对n型半导体硅晶片(111)晶面抛光性能的影响。确定了最佳的抛光条件为:pH值10.5,含固量为0.5%,过氧化氢体积分数为1.5%,此时的抛光速率为61.1nm/min,所抛光的硅晶片的表面粗糙度为0.148 nm。
     以CeO2纳米粉体为核晶,Ti(SO4)2为钛源,CTAB为表面活性剂,采用胶体水解法制备了TiO2包覆CeO2核壳复合粉体,并优化了合成条件以及抛光工艺。结果表明:包覆TiO2可以提高抛光速率,且与包覆量有关。当TiO2的包覆量为CeO2质量的10%时(合成时加入了1.1ml抑制剂,在800℃煅烧2h),合成的TiO2@CeO2核壳纳米复合粉体的抛光效果最好。在加入1.5%H2O2时测定的MRR达到了65.4nm/min,所抛硅片的表面粗糙度Ra为0.144nm。与掺杂10%TiO2后粉体的抛光速率相比,包覆10%TiO2得到的TiO2@CeO2粉体的抛光速率要低一些。
As the best technique for the planarization processing of ultra large scale integration circuits (ULSI), chemical mechanical polishing (CMP) has became an indispensable technique in the manufacture of various devices with ultra-smooth surface. In order to meet the demand of next generation ULSI, it is necessary to develop new CMP techniques and the relating materials. SiO2 gel particles are currently employed in silicon wafers polishing. It is suggested that ceria or ceria based composites show great performance for replacing silica as abrasive particles in polishing slurries for silicon. In this study, nanoparticles of CeO2, Ti doping Ceria and Ti coating Ceria were prepared and their performance for polishing silicon wafer were comparatively examined with respective to their physical and chemical characteristics.
     Firstly, Ceria nanoparticles were prepared by direct precipitation using cerium nitrate as raw material, sodium dodecyl benzene sulfonate as dispersion agent, hydrogen peroxide as oxidizing agent, and ammonium hydroxide as precipitant. XRD、TEM and so on were used to characterize Ceria.The effects of process parameters, including slurry pH, ceria content, and hydrogen peroxide concentration, on the material removal rate (MRR) in the CMP of n-type Si(111) were investigated. A maximum MRR value of 61.1nm/min was obtained using 0.5%(w/v) ceria slurry with 1.5%(v/v) hydrogen peroxide and adjusting pH 10.5, in flow rate 2000 ml/min, rotational speed 128 r/min, pressure of 6.60MPa.Correspondingly, the surface roughness Ra of polished n-type Si (111) wafer is 0.148nm.
     Secondly, TiO2@CeO2 core-shell composite powders were prepared by gel hydrolysis precipitation method using CeO2 as crystal seeds, Ti (SO4) 2 as raw material of Ti, CTAB as surfactant. The optimum synthesis conditions and polishing techonology were determined. The MRR value of polishing silicon using slurry containing TiO2@CeO2 core-shell composite powder coated with 10% TiO2 (synthesized under the existing of inhibitor and calcinations temperature at 800℃for 2h) and 1.5%(v/v) hydrogen peroxide was determined to be 65.4 nm/min, which is lower than that polished with ceria doped with 10% TiO2. Correspondingly, the surface roughness Ra of polished n-type Si (111) wafer is 0.144nm, which is less than that polished using pure CeO2.
引文
[1]Malik F., Hasan M. Manufacturability of the CMP process [J]. Thin Solid Films,1995, 270(1-2):612-615.
    [2]Jairath R, Farkas J, Huang C. K, et al. Chemical-Mechanical Polishing in Process manufacturability [J]. Solid State Technology,1994,7:71-75.
    [3]徐进,雒建斌,路新春,等.超精密表面抛光材料去除机理研究进展[J].科学通报,2004,49(17):1700-1705.
    [4]何捍卫,胡岳华,周科朝,等.金属的化学-机械抛光技术研究进展[J].应用化学,2003,20(5):415-419.
    [5]Michael A.Fury. The early days of CMP [J]. Solid State Technology,1997,40(5):81-86.
    [6]Minoru T. Oxide CMP mechanisms [J]. Solid State Technology,1997,40(7):170.
    [7]Fury M A. Emerging developments in CMP for semiconductor Planarization [J]. Solid stateTechnology,1995,38(4):47.
    [8]郭东明,康仁科,苏建修,等.超大规模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报,2003,39(10):100-105.
    [9]张楷亮,宋志棠,封松林,等.ULSI化学机械抛光的研究与展望[J].微电子学,2005,35(3):226-230.
    [10](美)Mihcael Quirk, Julian Serda著;韩郑生等译.半导体制造技术[M].北京:电工业出版社,2004.1.
    [11]张厥宗编著.硅单晶抛光片的加工技术[M].北京:化学工业出版社,2005.8.
    [13]郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术[J].世界制造技术与装备市场,2003(1):35-40.
    [14]孙泉.解读摩尔定律[J].集成电路应用,,2004(8):3-4.
    [15]翁寿松.推动半导体产业链发展的两大轮子[J].半导体技术,2004,29(5):25-26(转42).
    [16]翁寿松.未来10年前后全球半导体市场的预测[J].中国集成电路,2006(4):58-61.
    [17]Chen Jerry M, Fang Yuan-Cheng. Hydrodynamic characteristics of the thin fluid film in Chemical-mechanic polishing [J]. IEEE Transaction on Semiconductor Manufacturing,2002, 15(1):39-44.
    [18]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技
    工程[M].冶金工业出版社,2002.
    [19]雷红,雒建斌,马俊杰.化学机械抛光(CMP)技术的发展、应用及存在问题[J].润滑与密封,2002(4):73-76.
    [20]Martinez M A. A year later, CMP market has grown even hotter [J]. Solid State Technology, 1995,38(9):44.
    [21]宋晓岚,李宇焜,江楠,等.化学机械抛光技术研究进展[J].化工进展,2008,27(1):26-31.
    [22]廉进卫,张大全.化学机械抛光液的研究进展[J].化学世界,2006(9):565-567.
    [23]Chen P H, Huang B W, Shih H C.A chemical kinetics model for a mixed-abrasive chemical mechanical polishing [J]. Thin Solid Films,2005,483(1-2):239-244.
    [24]Cook L M. Chemical process in glass polishing [J]. Journal of Non-crystalline Solids,1990. 120(1-3):152-171.
    [25]Preston F.The theory and design of plate glass polishing machines [J]. Journal of Glass Science and Technology,1927,11:214-256.
    [26]Oku T, Mori H, Murakami M, et al. Diffusion barriers for copper interconnects [A]. Proceedings of the 5th international conference on solid-state and integrated circuit technology [C], Beijing:1998,238-241.
    [27]Rha S K, Lee W J, Lee S Y, et al. Improved TiN film as a diffusion barrier between copper and silicon [J]. Thin Solid Film,1998,320(1):134-140.
    [28]苏建修.IC制造中硅片化学机械抛光材料去除机理研究[D].大连理工大学,2006.
    [29]刘瑞鸿.二氧化硅介质层CMP抛光液研制及其性能研究[D].大连理工大学,2009.
    [30]Shi F G., Zhao B. Modeling of chemical-mechanic polishing with soft pads [J]. Applied physics A (materials sciense & processing),1999,67(2):249-252.
    [31]Zhao Yongwu, Chang L, Kim S H. A mathematical model for chemical-mechanical polishing based on formation and removal of weakly bonded molecular species [J]. Wear, 2003,254:332-339.
    [32]Chen P H, Huang B W, Shih H C. A chemical kinetics model to explain the abrasive size effect on chemical mechanical polishing [J]. Thin solid films,2005,476:130-136.
    [33]Bai J, Zhao Y W, Wang YG.A mathematical model for material removal and chemical-mechanical synergy in chemical-mechanical polishing at molecular scale [J].Applied Surface Science,2007,253:8489-8494.
    [34]Berzelius J. J. Semicon. Mater.Florida, USA:CRC Press Inc.,1997,37,56,59,61,65-74, 86-99,43-56.
    [35]刘志杰,郑安生.半导体材料[M].化学工业出版社,2004.
    [36]阑端麟,陈修治.硅材料科学与技术[M].浙江大学出版社,2000.
    [37]吴明明.单晶硅片的超精密加工技术研究[D].浙江工业大学,2005.
    [38]郭士茹.单晶硅抛光加工技术的研究[D].长春理工大学,2009.
    [39]Chiu Jian-bin, Yu Cheng-ching, Shen Shih-haur.Application of soft landing to the process control of chemical mechanical polishing [J]. Microelectronic Engineering,2003.65(3): 345-356.
    [40]陈杨,陈志刚,陈爱莲.纳米CeO2磨料在硅晶片化学机械抛光中的化学作用机制[J].润滑与密封,2006,3:67-72.
    [41]陈杨,陈建清,陈志刚,等.纳米CeO2磨料对硅晶片CMP的效果与机理研究[J].电子元件与材料,2004,23(5):46-48.
    [42]李生华,周春红,张瑞军,等.摩擦化学进展-化学的地位与作用[J].摩擦学学报,2002,22(1):75-80.
    [43]薛群基,刘维民.摩擦化学的主要研究领域及其发展趋势[J].化学进展,1997,9(3):311-318.
    [44]Zhong C J, Maye M. M. Core-shell Assemblyed Nanoparticles as Catalysts [J]. Adv Mater, 2001,13(19):1507-1511.
    [45]李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [46]段涛,杨玉山,彭同江,等.核壳型纳米复合材料的研究进展[J].材料导报,2009,23(2):19-23.
    [47]陈加娜,叶红齐,谢辉玲.超细粉体表面包覆技术综述[J].安徽化工,2006,2:12-15.
    [48]Kong X Z, Ruckenstein E. Core-shell latex particles consisting of polysiloxane-poly (styrene-methyl methacrylate-acrylic acid):Preparation and pore generation [J]. J. Appl. Polym. Sci.,1999,73:2235-2245.
    [49]盘荣俊,何宝林.纳米颗粒表面包覆技术[J].化学与生物工程,2005,7:40-42.
    [50]赵振国.应用胶体与界面化学[M].北京:化学工业出版社,2008.
    [51]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002:130-140.
    [52]徐滨士.纳米表面工程[M].北京:化学工业出版社,2003:81-119.
    [53]Cui H, Hong G, Wu X, et al. Silicon dioxide coating of CeO2 nanoparticles by solid state reaction at room temperature [J]. Mater Res Bull,2002,37(13):2155-2163.
    [54]刘波,庄志强,刘勇,等.粉体的表面修饰与表面包覆方法的研究[J].中国陶瓷工业,2004,1](1):50-54(转31页).
    [55]Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core [J]. Journal of photochemistry and photobiology A:Chemistry,2002,148:303-413.
    [56]Song Xiaolan, Jiang Nan, Li Yukun, et al. Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension [J]. Materials Chemistry and Physics,2008,110: 128-135.
    [57]Yang Fuyong, Chu Ying, Huo Lei, et al. Preparation of uniform rhodamine B-doped SiO2/TiO2 composite microspheres [J]. Journal of Solid State Chemistry,2006,179: 457-463.
    [58]Xiaobing Zhao, Renwei Long, Yang Chen, et al. Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior [J]. Microelectronic Engineering, doi: 10.1016/j.
    [59]刘红华,邵鑫,李建波,等.表面修饰FeS纳米微粒的研究-合成及表征[J].润滑与密封,2005, 5:61-65.
    [60]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [61]付廷明,李凤生.包覆式超细复合粒子的制备[J].火炸药学报,2002,1:33-36.
    [62]Feng X D, Sayle D C, Wang Z L, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres[J]. Science,2006,312 (5779):1504-1508.
    [63]丁星兆,董远达.溶胶-凝胶薄膜工艺及其应用[J].材料导报,1993,3:32-36.
    [64]杨南如,余桂郁.溶胶-凝胶法简介[J].硅酸盐通报,1992,2:2093-2097.
    [65]Zhang M., X.Wang, F.Wang, et al. Preparation of nanostructured CeO2 coated TiO2 [J]. Materials Science and Technologe,2002,18:345-348.
    [66]Lin Yue, Zhang Xiaoming.Preparation of highly dispersed CeO2/TiO2 core-shell nanoparticles [J]. Materials Letters,2008,62:3764-3766.
    [67]李启厚,吴希桃,黄亚军,等.超细粉体材料表面包覆技术的研究现状[J].粉末冶金材料科学与工程,2009,14(1):1-6.
    [68]Zhang Lihui, Yang Heqing, Li Li. Synthesis and characterization of core/shell-type ZnO nanorod/ZnSe nanoparticle composites by a one-step hydrothermal route [J]. Materials Chemistry and Physics,2010,120(2-3):526-531.
    [69]吴秀勇,胡正水.水热法制备核-壳结构勃姆石超细粉体[J].无机化学学报,2008,24(5):760-764.
    [70]刘志平,黄慧民,邓淑华.一步水热法制备核壳型纳米粉体[J].化工新型材料,2005,33(11):35-36.
    [71]Herbert Giesche. Preparation and applications of coated powders in ceramics and related fields [J]. Journal of Dispersion Science and Technology,1998,19(2-3):249-265.
    [72]Lee J, Senna M. Preparation of monodispersed polystyrene microspheres uniformly coated by magnetite via heterogeneous polymerization [J]. Colliod Polym. Sci.,1995,273:76-82.
    [73]Wang H Z, Hiroyuki N, Ken Y, et al. Effect of polyelectrolyte dispersants on the preparation of silica-coated zinc oxide particles in aqueous media [J]. J. Am. Ceram. Soc.,2002,85(8): 1937-1940.
    [74]Shih W H, Kisailus D, Shih W.Y., et al. Rheology and consolidation of colloidal alumina-coated silicon nitride suspensions [J]. J. Am. Cerm. Sci.,1996,79:1155-1162.
    [75]樊世民,盖国胜,苗赫灌.颗粒包覆技术研究进展[J].中国粉体技术,2002,8(专辑):199-202.
    [76]Friederike P, Michael B, Joachim O. Filter-coated phosphor [P]. USP 4 339 501,1982-07-131
    [77]Friederike P, Michael B, Joachim O. Phosphor composition with a coating of colloidal SiO2 particles and an oxygen compound of Mg, Ca, Ba, Zn, or Al [P]. USP 6 013 979, 2000-01-11.
    [78]罗付生,李凤生.超微粒子设计技术及应用[J].材料科学与工程,2001,19(2):115-118.
    [79]Victor K.Lamer, Robert H. Dinegar.Theory production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society.1950,72(11): 4847-4854.
    [80]刘旭俐,马俊峰,等.Gd2O3掺杂CeO2粉体的包覆处理[J].硅酸盐通报,2003,1:84-87.
    [81]张巨先,候耀永,高陇桥,等.非均匀成核法改性纳米SiC粉体表面研究[J].硅酸盐学报,1998,26(6):762-767.
    [82]李凤生,崔平,杨毅,等.微纳米粉体后处理技术及应用[M].北京:国防工业出版社,2005:191-205.
    [83]刘冰,王德平,姚爱华,等.反相微乳液法制备核壳SiO2/Fe3O4复合纳米粒子[J].硅酸盐学报,2008,36(4):569-574.
    [84]连洪洲,石春山.用于纳米粒子合成的微乳液[J].化学通报,2004,5:333-340.
    [85]梁依经,黄伟九,田中青.微乳液法制备纳米材料研究进展[J].重庆工学院学报:自然科学版,2007,21(9):87-91.
    [86]何涛波,陈建峰,毋伟.无机超细粒子表面聚合物包覆改性研究进展[J].高分子材料科学与工程,2004,20(3):13-16.
    [87]Chuang F Y, Yang S M. Cerium dioxide/polyaniline core-shell nanocomposites [J]. Journal of Colloid and Interface Science,2008,320:194-201.
    [88]Shirai Y, Tsubokawa N. Grafting of polymers onto ultrafine inorganic particle surface:graft polymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface and molybdenum hexacarbonyl [J]. Functional Polymers,1997(32): 153-160.
    [89]刘威,钟伟,都有为.核壳结构复合纳米材料研究进展[J].材料导报,2007,21(3):59-62.
    [90]潘振华,程志鹏,杨毅,等.包覆型复合材料制备的新进展[J].实用技术,2007,4(1):52-55.
    [9]]骆心怡,朱正吼,等.高能球磨制备纳米CeO2/Al复合粉末[J].热加工工艺,2003,2:]4-]6.
    [92]朱峰,杨沁玉,张菁,等.低温等离子体技术及在粉体材料表面改性方面的应用[J].合成技术及应用,2003,18(2):13-16.
    [93]Vollath D, Szabo D V. Coated nanoparticles:a new way to improved nanocomposites [J]. J Nanoparticle Res,1999, (1):235-242.
    [94]周婷婷,冯彩梅.高速气流冲击法制备制备NB包覆TiB2复合粉末[J].武汉理工大学学报,2004,8(26):1-3(转34).
    [95]李晓波.沉淀法制备MLCC内电极用锆酸钙包覆超细复合镍粉的研究[D].长沙:中南大学,2006.
    [96]李志强,李娟,田少华,等.CVD法在电致发光粉表面包覆Si02膜[J].表面技术,2004,33(2):32-35.
    [97]官建国,邓惠勇,王维,等.以胶体粒子为模板制备核壳纳米复合粒子[J].化学进展,2004,1(3):327-334.
    [98]Weiner. B. B. Particle and spray sizing using laser diffraction [J].Society Photo-optical instrnmentation engineers,1979,170:53-56.
    [99]刘伟,盖国胜,杨玉芬,等.核壳结构粒子制备及分析[J].有色矿冶,2005,21(增刊):102-104.
    [100]曹顺生,刘白玲,邓小波.核壳结构材料表征技术[J].江西化工,2008(3):5-10.
    [101]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of Nanosized Gold-Silica Core-Shell Particles [J]. Langmuir,1996,12(18):4329-4335.
    [102]Homola A M, Lorenz M R, Mastrangelo C, et al. Novel magnetic dispersions using silica stabilized particles [J]. IEEE Trans. Magn.,1986,22(5):716-719.
    [103]Zhu Y J, Qian Y T, Li X J, et al. γ-Radiation synthesis and characterization of polyacrylamide-silver nanocomposites [J]. Chemical Communication,1997,12:1081-1082.
    [104]Antipov A A, Sukborukov G B, Fedutik Y A, et al. Fabrication of a novel type of metallized colloids and hollow capsules [J]. Langmuir,2002,18(17):6687-6693.
    [105]Sinha A, Suzuki K. Preparation and Characterization of Novel Mesoporous Ceria-Titania[J]. J. Phys. Chem. B,2005,109(5):1708-1714.
    [106]Lei Hong, Zhang Pengzhen.Preparation of alumina/silica core-shell abrasives and their CMP behavior [J].Applied surface science,2007,253(21):8754-8761.
    [107]Sukhoon J, Sangjik L, Haedo J. Effect of polishing pad with holes in electro-chemical mechanical planarization [J]. Microelectronic Engineering,2008,85(11):2236-2242.
    [108]陆中,陈杨.化学机械抛光浆料研究进展[J].趋势与展望,doi:1013969/j.
    [109]CMP slurries:A wild ride head, Solid State Technology,2000.
    [110]Fu Maosheng, Wei Lianghua, Li Yanhua, et al. Surface charge tuning of ceria particles by titanium doping:Towards significantly improved polishing performance [J]. Solid State Science,2009,11(12):2133-2137.
    [111]柴明霞,胡建东,冯晓平,等.SiO2-CeO2复合氧化物的制备及抛光性能[J].无机化学学报,2007,23(4):623-629.
    [112]Ramakrishnan S., Janjam S. V. S. B., Patri U.B.,et al. Comparison of dicarboxylic acids as complexing agents for abrasive-free chemical mechanical planarization of copper [J]. Microelectronic Engineering,2007,84(1):80-86.
    [113]Hegde S, Babu S V. Study of surface charge effects on oxide and nitride planarization using alumina/ceria mixed abrasive slurries [J]. Electrochemistry Solid-State Letter,2004,7(12): G316-G318.
    [114]宋晓岚.纳米SiO2浆料中半导体硅片的化学机械抛光及其应用研究[D].中南大学博士毕业论文,2007.12.
    [115]宋晓岚,刘宏燕,杨海平,等.纳米SiO2浆料中半导体硅片的化学机械抛光速率及抛光机理[J].硅酸盐学报,2008,36(8):1187-1194.
    [116]雷红,雒建斌,张朝辉.化学机械抛光的技术进展[J].上海大学学报(自然科学版),2003,6:494-502.
    [117]Matijevic E, Babu S V. Colloid aspects of chemical-mechanical planarization [J]. Journal of Colloid and Interface Science,2008,320(1):219-237.
    [118]Basim G B, Moudgil B M. Effect of Soft Agglomerates on CMP Slurry Performance [J]. Journal of Colloid and Interface Science,2002,256(1):137-142.
    [119]连军.超大规模集成电路二氧化硅介质层的化学机械抛光技术的研究[D].天津:河北工业大学,2002.
    [120]Wang L Y, Zhang K L, Song Z T, et al.Ceria concentration effect on chemical mechanical polishing of optical glass [J]. Applied Surface Science,2007,253(11):4951-4954.
    [121]Manivannan R, Ramanathan S. Role of abrasives in high selectivity STI CMP slurries [J]. Microelectron Eng.,2008,85(8):1748-3753.
    [122]Kang H G, Park H S, Paik U, et al. Effects of abrasive particle size and molecular weight of poly(acrylic acid) in ceria slurry on removal selectivity of SiO2/Si3N4 films in shallow trench isolation chemical mechanical planarization [J]. J. Mater. Res.,2007,22(3): 777-787.
    [123]Carter P W, Johns T P. Interfacial reactivity between ceria and silicon dioxide and silicon nitride surfaces-Organic additive effects [J].Electrochemical. Solid State Letters,2005, 8(8):G218-G221.
    [124]Xu J, Luo J B, Lu X C, et al. Progress in material removal mechanisms of surface polishing with ultra precision [J]. Chinese Sci Bull.,2004,49(16):1687-1693.
    [125]Chen H Y, Chang H Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method [J]. Ceram. Int.,2005,31(6):795-802.
    [126]Song X L, Xu D Y, Zhang X W, et al. Electrochemical behavior and polishing properties of silicon wafer in alkaline slurry with abrasive CeO2 [J]. T. Nonferr. Metal. Soc.,2008,18(1): 178-182.
    [127]谭刚.纳米CeO2抛光料对硅晶片进行化学机械抛光的研究[J].中国机械工程,2005,16(1/3):341-343.
    [128]Li Y Q, Fang W Q, Liu W H, et al. Study of polarization field in GaN-based blue LEDs on Si and sapphire substrate by electroluminescence [J]. J. Lumin.,2007,122:567-570.
    [129]Fang W Q, Xiong C B, Zheng C D, et al. The influence of the coating metals with various work function on the photoluminescence of a GaN-based blue LED wafer[J]. J. Lumin., 2007,126(2):636-640.
    [130]莫春兰,方文卿,王立,等.硅衬底GaN基LED的研究进展[J].液晶与显示,2005,20(5):422-428.
    [131]宋晓岚,刘宏燕,杨海平,等.纳米SiO2浆料中半导体硅片的化学机械抛光速率及抛光机 理[J].硅酸盐学报,2008,36(8):1187-1194.
    [132]危亮华,傅毛生,李艳花,等.氯化钠和六偏磷酸钠对氧化铈抛光ZF7玻璃的协同增强作用[J].过程工程学报,2008,8(6):1241-1244.
    [133]傅毛生,李永绣,陈伟凡,等Ce0.8Zr0.2O2固溶体磨料对ZF7光学玻璃抛光性能的改善[J].摩擦学学报,2009,29(2):180-185.
    [134]Lu Zhenyu, Lee S H, Matijevic E, et al. Evaluation of Monodispersed Silica particles and Ceria Coated Silica Particles for Chemical Mechanical Polishing [J]. Mat. Res. Soc.,2002, 732E:1371-1376.
    [135]田宝勇,杨晓华.双氧水分光光度法测定天竹纤维中Ti02含量[J].河北大学学报,2008,29(3):200-203.
    [136]Mao Wei. Ma Hongzhu, Wang Bo.A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts [J]. Journal of Hazardous Materials,2009, 167(1-3):707-712.
    [137]McDevitt N T, Baun W L. Infrared absorption study of metal oxides in the low frequency region (700-240 cm-1) [J]. Spectrochimica Acta,1964,20 (5):799-808.
    [138]岳钦艳,张升晓,于慧,等.TiO2加入量对高炉渣微晶玻璃析晶的影响[J].过程工程学报,2007,7(2):327-331.
    [139]Stober W, Fink A, Bohn E..Controlled growth of monodisperse silica spheres in the micron size range [J]. J.Collied Interface Sci.,1968,26(1):62-69.
    [140]Yohida M, Koyama N, Ashizawa T, et al. A new ceriun-based ternary oxide slurry, CeTi2O6, for Chemical-Mechanic Polishing [J]. Jpn. J. Appl. Phys,2007,46(3A):977-979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700