用户名: 密码: 验证码:
玉米γ-生育酚甲基转移酶基因的分离及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素E又称生育酚,仅由光合生物合成,可以清除生物体内的活性氧和自由基,是人体必需的一类脂溶性维生素,具有重要的抗氧化功能。每天食用一定量的维生素E可以起到增强机体免疫力、防衰老、防癌、防心脑血管疾病及预防或减慢某些慢性疾病的作用。在天然存在的8种生育酚中,α-生育酚的生物活性最高,且被人体优先吸收和利用,但人类维生素E的主要膳食来源-食用植物油中,α-生育酚水平普遍比较低,而其前体γ-生育酚的水平却比较高。
     γ-生育酚甲基转移酶(γ-TMT)是天然维生素E合成途径中的关键酶之一,其表达及活性对决定植物维生素E的组成起着重要作用,它催化6,γ-生育酚分别甲基化生成β,a-生育酚。玉米油是一种高品质的食用植物油,它含有86%的不饱和脂肪酸,其中56%是亚油酸,人体吸收率可达97%以上;玉米油中还含有少量的辅酶,也具有抗氧化性能;玉米油所含的谷固醇及磷脂,有防止衰老的功效,可降低人体内胆固醇的含量,增强人体肌肉、心脏和血管系统的机能,提高机体的抵抗能力。
     此外,本研究初期分别克隆了高油玉米115号、大豆(Glycine max)、模式植物拟南芥(Arabidopsis thaliana)、结球甘蓝(Oryza sativa)的γ-TMT基因的全长cDNA序列,进行原核表达,结果显示玉米γ-TMT体外比活最高。
     鉴于上述背景,本研究旨在通过分离玉米γ-TMT基因,并对其进行功能分析,为研究γ-TMT基因在维生素E生物合成中的作用和以后通过基因工程方法提玉米油α-生育酚水平奠定基础,主要结果如下:
     1.提取玉米总RNA,利用RT-PCR技术,从高油玉米115号中分离了γ-TMT的全长cDNA序列(1059bp)。
     2.构建了γ-TMT基因的原核表达载体pET-sigMTMT,并将其转化大肠杆菌BL21,纯化得到原核表达的高活性γ-生育酚甲基转移酶。
     3.构建了植物表达载体pBI121-MTMT,粘花法转化拟南芥,抗性筛选转基因拟南芥,获得7个纯系。
     4.提取纯系转基因拟南芥的总蛋白,进行ELISA检测和Western blotting分析。ELISA结果表明3#株系的γ-TMT活性最高,为野生拟南芥的4.56倍,6#为4.41倍;Western blotting也得到深浅不一的目的条带,表明不同株系具有活性不同的γ-TMT。
     5.分别提取7个纯系的转基因拟南芥总RNA,通过Northern blotting分析表明,γ-TMT基因在转基因拟南芥中均有表达。
     6.用HPLC技术测定7个纯系的α-生育酚和γ-生育酚含量变化,转基因植株的α-生育酚与γ-生育酚比值都高于野生型,其中6#最高为7.67,是野生型的13.14倍。7.构建了玉米γ-TMT基因与GFP融合的植物表达载体pBI121-MTMT-GFP,通过叶盘转化法转化烟草,通过对转基因烟草的根部细胞观察发现12颗有GFP表达,并且在细胞核中表达最强,其次是细胞膜,但并不是在所有细胞的核中都表达。
Tocopherols, commonly known as vitamin E, are a class of lipid-soluble antioxidants synthesized only by photosynthetic organisms. Tocopherols are essential to human because they perform numerous critical functions including quenching and scavenging various reactive oxygen species and free radical. Daily vitamin E supplementation results in decreased risk for cardiovascular disease, cancer and caducity, aid in immune function, and prevents or slows a number of degenerative diseases. Among the naturally occurring tocopherols,α-tocopherol has the highest bioactivity and is preferentially absorbed and distributed throughout the body. However, in the main diet resource, edible oil,α-tocopherol is present only as a minor component, while its biosynthetic precursor,γ-tocopherol, is present at high level.
     γ-tocopherol methyltransferase(γ-TMT) is one of key enzymes of tocopherol biosynthetic pathway, whose expression and activity are important for component of tocopherols, and catalyzes methylation ofγ-tocopherol and 8-tocopherol toα-tocopherol andβ-tocopehrol respectively. Zea mays oil is one kind of high-quality edible vegetable oil, which contains 86% of unsaturated fatty acid, and 56% is sub oleic acid among them, the absorptivity of human body may reach more than 97%; There is a few of coenzyme which also has the antioxidation function in Zea mays oil. What be contained sitosterol and phosphatide in the oil can slow down decrepitude, reduce cholesterin contents of human body, strengthen the function of muscle, heart, blood vessel, immune system.
     In addition, we cloned high oil maize 115, soybean, Arabidopsis, oryza'full-length cDNA sequence ofγ-TMT gene respectively in the beginning of the working, and expressed them in E.coli. The results showed thatγ-TMT from Zea mays had the highest activity.
     Taking into account the above previous studies, we isolatedγ-TMT gene from Zea mays and defined the function of the genes for studying theγ-TMT gene's effect in vitamin E biosynthesis approach and paving the way for improving a-tocopherol content of Zea mays oil by means of genetic engineering. The main results were as follows:
     1. The full-length cDNA sequence of y-TMT gene was isolated by RT-PCR from Zea mays.
     2. A recombinant prokaryotic expression vector, named pET-sigMTMT, was constructed. We obtained high levelγ-TMT activity in E.coli. BL21.
     3. A recombinant plant expression vector, called pBI121-MTMT, was constructed and introduced into Arabidopsis thaliana. Homozygousγ-TMT gene transgenic lines were obtained.
     4. ELISA showed thatγ-TMT gene activity of 3# was the highest, which was about 4.56 times of wild type's,6#'s was about 4.41 times of wild type's. The hybridization belts of target protein with different shade were visualized by western blotting.
     5. The result of northern blotting showed thatγ-TMT gene was expressed in transgenic lines.
     6. HPLC showed that the ratio ofα-tocopherol toγ-tocopherol was higher than wild type. The ratio of 6# was 7.76, and it was 13.22 times of wild type.
     7. A recombinant vector pBI121-MTMT-GFP with GFP was constructed forγ-TMT location in plant cell and was transformed into the genome of tobacco by agro-bacterium infecting leaf tobacco. The green fluorescence was visibled in nucleolus and cell membrance of root cells. GFP expression was stronger in nucleolus than in cell membrance, but not all nucleolus had fluorescence.
引文
[1]Fryer MJ. Evidence for the photoprotective effects of vitamin E. Photochem Photobiol,1993,58: 304-312.
    [2]Brigelius-FlohE R, Traber MG. Vitamin E:Funtion and metabolism. The FASEB J, 1999,13:1145-1155.
    [3]Schneider C. Chemistry and biology of vitamin E. Mol.Nutr. Food Res.2005,49:7-30.
    [4]Pryor WA.Vitamin E and heart disease:basic science to clinical intervention trials. Free Radic Biol Med.2000,28:141-164 Winklhofer-Roob, B.M. et al. Effects of vitamin E and carotenoid status on oxidative stress in health and disease. Evidence obtained from human intervention studies. Mol. Aspects Med,2003,24,391-402.
    [5]Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE,Schuch W, Sheehy PJA, Wagner KH.Vitamin E. J Sci Food Agric,2000,80:913-938.
    [6]Tangney CC. Vitamin E and cardiovascular disease. Nutr Today,1997,32:13-22.
    [7]Eitenmiller, RR. Vitamin E content of fats and oils:Nutritional implications. Food Technol, 1997,51:78-81.
    [8]蒋明义.植物内源维生素E的抗氧化作用.生物学通报,1993,28(9):9-10.
    [9]Dean DellaPenna, Barry J Pogson. Vitamin Synthesis in Plants:tocopherols and Carotenoids. Annu Rev Plant Biol,2006,57:711-738.
    [10]Traber, MG, Sies, H. Vitamin E and humans:Demand and delivery. Annu Rev Nutr, 1996,16:321-347.
    [11]Alison L, Van Eenennaam, Kim Lincoln, et al. Enginerring Vitamin E Content:From Arabidopsis Mutant to Soy Oil. The Plant Cell,2003,15:3007-3019.
    [12]Grusak MA, DellaPenna D,Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol,1999,50:133-161.
    [13]Soil J, Schultz G. Comparison of geranylgeranyl and phytyl substituted methylquinols in the tocopherol synthesis of spinach chloroplast. Biochem Biophys Res Commun,1979,91:715-720.
    [14]Soil J, Douce R, Schultz G, Joyard J. Localization and synthesis of Prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochen Biophys, 1985,238(1):290-299.
    [15]Soll J, Douce R, Schulta G.Site of Biosynthesis of α-tocopherol in spinach chloroplasts. FEBS Lett,1980,112(2):243-246.
    [16]Tan B. Palm carotenoids, tocopherols and ocotrienols. J AM Oil Chem Soc,1989,66:770-776.
    [17]Yamauchi, R., and Matsushita, S. Light induced lipid peroxidation in isolated chloroplasts from spinach leaves and role of alpha-tocopherol vitamin E. Agric Biol Chem,1979,43:2157-2161.
    [18]National Research Council (U. S.), Food and Nutrition Board. NAS2NRC Recommended Dietary Allowances.10th ed. Washington, DC:National Academy Press,1989.284.
    [19]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol.2004,55:373-399.
    [20]Kanwischer M, Porfirova S, Bergmaller E, Darmann P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol.2005,137:713-723.
    [21]Sergi Munne-Bosch. The role of a-tocophherol in plant stress tolerance.Journal of Plant Physiology. 2005,162:743-748.
    [22]Sergi Munne-Bosch, Leonor Alegre. The function of tocopherol and tocotrienols in plants. Critical Reviewsin Plant Science,2002,21:31-57.
    [23]黄筱声.天然维生素E与人体健康.粮食与油脂,2001,9:35-36.
    [24]Hofius D, Sonnewald U. Vitamin E biosynthesis:biochemistry meets cell biology. Trends in Plant Science,2003,8:6-8.
    [25]Keller Y, Bouvier F, D'Harlingue A. Metabolic compartmentation of plastid prenylipid bioysnthesis-evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur. J. Biochem,1998,251:413-417.
    [26]Eva Collakova, Dean DellaPenna. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiology,2003,133:930-940.
    [27]Soll J. α-Tocopherol and plastoquinone synthesis in chloroplast membranes. Methods Enzymol, 1987,148:383-392.
    [28]Collakova E, DellaPenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol,2001,127:1113-1124.
    [29]Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp.PCC 6803 and Arabidopsis. Plant Physiol 2002,129:321-332.
    [30]Schledz M, Seidler A, Beyer P, er al. A novel phytyltransferase from synechocystis sp.PCC 6803 involved in tocopherol biosynthesis. FEBS Lett,2001,499:15-20.
    [31]Shintani DK, Cheng Z, DellaPenna D. The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett,2002,511:1-5.
    [32]Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA,2002,99:12495-12500.
    [33]Stocker A, Fretz H, Frick H, Ruttimann A, Woggon W-D. The substrate specificity of tocopherol cyclase. Bioorg Med Chem,1996,4:1129-1134.
    [34]Arango Y, Heise K-P. Tocopherol synthesis from homogentisate in Capsicum anuum L. (yellow pepper) chromoplast membranes:evidence for tocopherol cyclase. Biochem J,1998,336:531-533.
    [35]D'Harlingue A, Camara B. Plastid enzymes of terpenoid biosynthesis:purification and characterization of a gamma-tocopherol methyltransferase. J Biol Chem,1985,260:15200-15203.
    [36]Shintani D, DellaPenna D. Elevating the vitamin E content of plants through metabolic engineering. Science,1998,282:2098-2100.
    [37]Scott E Sattler, Laura U Gilliland, Maria Magallanes-Lundback, Mike Pollard, Dean Dellapenna. Vitamin E is Essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell,2004,16:1419-1432.
    [38]Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol,2003,21:1082-1087.
    [39]Sattler SE, Cahoon, EB, Coughlan SJ, DellaPenna D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol,2003,132:2184-2195.
    [40]Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell,2003,15:2343-2356.
    [41]Sandorf I, Hollander-Czytko H. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thliana. Planta.2002,216:173-179.
    [42]Falk J, Andersen G, Kernebeck B, Krupinska K. Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett.2003,540:35-40.
    [43]Qi Q, Karunanandaa B, Taylor DC. Metabolic engineering of tocopherol biosynthesis for increased tocopherol content in Arabidopsis and Synechocystis sp. PCC6803. Plant Physiol. 2003,1074(Suppl):326-337.
    [44]Welsch R, Medina J, Giuliano G, Beyer P, Von Lintig J. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta.2003,216:523-534.
    [45]Okada K, Saito T, Nakagawa T, et al. Five geranylgeranyl diphosphate synthase expressed in different organs are localized into three subcellular compatments in Arabidopsis. Plant Physiol, 2000,122(4):1045-1056.
    [46]欧阳青,蔡文启.天然维生素E的生物合成途径.植物生理学通讯,2003,39(5):501-507.
    [47]Sitthithaworn W, Kojima N, Viroonchatapan E, et al. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis. Chem Pharm Bull(Tokyo),2001,49(2):197-202.
    [48]Ohto C, Ishida C, Nakane H, et al. A thermophilic cyanobacterium Synechococcus elongates has three different Class I preyltransferase genes. Plant Mol Biol,1999,40(2):307-321.
    [49]Norris SR, Shen XH, DellaPenna D. Complementation of the Arabidopsis pdsl mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol,1998,117(4):1317-1323.
    [50]Garcia I, Rodgers M, Pepin, et al. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol,1999,119(4):1507-1516.
    [51]Shigeoka S, Ishiko H, Nakano Y, et al. Isolation and propertises of alpha-tocopherol methyltransferase in Euglena gracilis. Biophy Acta,1992,1128:220-226.
    [52]Koch M, Lemke R, Heise KP, et al. Characterization of gamma-tocopherol methyltransferases from Capsicum L and Arabidopsis thaliana. Eur J Biochem,2003,270(3):84-92.
    [53]欧阳青,樊春涛,孙卉,等.结球甘蓝Y-生育酚甲基转移酶cDNA的克隆、分析及其异源表达酶蛋白的功能研究.自然科学进展,2003,13(7):709-715.
    [54]Van Eenennaam AL, Li G, Venkatramesh M, et al. Elevation of seed tocopherol levels using plant-based transcription factors targeted to an endogenous locus.Metabolic Engineering,2004, 102:101-108.
    [55]Pingali PL. World Maize facts and trends. Meeting world maize needs:technological opportunities and priorities for public sector. CIMMYT, Mexico,2001,1999-2000.
    [56]戴景瑞.发展玉米育种科学迎接21世纪的挑战.作物杂志,1998.6:1-4.
    [57]宋同明,苏胜宝,陈绍江,等.高油玉米前途光明.玉米科学,1997,5(3J:73-77.
    [58]Han Y, Parsons CM, Alexander DE. Nutritive value of high oil corn for poultry. Poultry Sci, 1987,66:103-111.
    [59]Goss J, Ken PS. Challenges and opportunities for identity preserved varieties. In:Proc 47~(th) Annu Corn and Sorghum Res Conf. American Seed Trade Association, Washington, D. C,1992, pp82-92.
    [60]宋同明.迎接高油玉米新世纪,玉米遗传育种国际学术讨论会论文集:中国农业科技出版社,2000.20-30.
    [61]Miller RL, Dudley JW, Alexander DE. High intensity selection for percent oil in corn. Crop Sci, 1981,21:433-437.
    [62]刘纪麟.玉米育种学.中国农业出版社,2002(第二版),141-200.
    [63]Zambryske P. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regulation capacity. EMBO,1983, (2):2143-2150.
    [64]闫新浦.转基因植物.科学出版社,2003.
    [65]张献龙,唐克轩.植物生物技术.科学出版社,2003.
    [66]王关林,方宏筠.植物基因工程.北京:科学出版社,2002.
    [67]Chan M T, chang H H, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing glucuronidase gene. Plant Mol Biol,1993,(22):491-506.
    [68]Stanton B, Gelvin. Agrobacterium-Mediated Plant Transformation:the Biology behind the "Gene-Jockeying" Tool. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS,2003, 67(1):16-37.
    [69]De Groot M. J. A, Burdock P, Hooykaas P. J. J, Beijersbergen A. G. M. Nature Biotechnol,1998, 16:839-842.
    [70]Kunik T, Terra T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. Proc. Natl. Acad. Sci. USA, 2001,98:1871-1876.
    [71]李卫,郭光沁,郑国.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798-807.
    [72]Bechtold N, Ellis J, et al. In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci.1993,316:1194-1199.
    [73]华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1):1-5.
    [74]Christou P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica,1995,85:13-27.
    [75]许新萍,卫剑文.基因枪转化籼稻的影响因素.中山大学学报自然科学版,1998,37(1):88-92.
    [76]刘金元,时香玉,陈晓等.利用基因枪技术转化小麦.玉米的研究.山东农业科学,1999,2:5-8.
    [77]董云洲,段胜军,赵连元等.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学,1999,32(2):9-13.
    [78]曹植仪.拟南芥.高等教育出版社,2004,45-66.
    [79]Meyerowitz EM, Pruit RE. Arabidopsis thaliana and plant molecular genetics. Science,1985, 229:1214-1218.
    [80]初立业,邵宏波,曲德业.拟南芥的核基因组研究,生命科学,1994,6(4):16-18.
    [81]巩振辉,Milner JJ,何玉科.拟南芥基因转移新方法-真空渗人法的研究.西北植物学报, 1996,16(3):277-283.
    [82]Clough SJ, Bent A. Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16:735-743.
    [83]Richard C, Granier C, Inze D, et al. Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions. Journal of Experimental Botany,2001,52(361):1625-1633.
    [84]Forreiter C, kirschner M, Nover L. Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. The Plant Cell,1997,9:2171-2181.
    [85]. Munne-Bosch S, Falk J. New insights into the function of tocopherols in plants. Planta. 2004,218:323-326.
    [86]周建,王磊,杜进民,范云六.拟南芥γ-生育酚甲基转移酶(γ-TMT)启动子的分离及表达特性分析.生物工程学报.2006,22:835-839.
    [87]刘宾,王磊,张伟.拟南芥2-甲基-6-叶绿基-1,4-苯醌甲基转移酶(MPBQ MT)启动子在转基因烟草中的表达特性分析.中国农学通报.2007,23:33-37.
    [88]朱永兴,王磊,张兰,张伟,范云六.拟南芥尿黑酸叶绿醇转移酶(HPT)基因启动子的分离及表达特性分析.作物学报.2007,33(4):554-559.
    [89]Henry E, Kim Lincoln, Farhad Moshiri, et al. The Arabidopsis Vitamin E pathway gene5-1 Mutant Reveals a Critical Role for Phytol Kinase in Seed Tocopherol Biosynthesis. The Plant Cell, 2006,18:212-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700