用户名: 密码: 验证码:
体外扩增巨核细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨采用脐血单个核细胞为起始细胞在无血清培养基中体外扩增巨核细胞;观察胎儿肺部组织来源的间充质干细胞对脐血单个核细胞诱导分化为巨核细胞的影响。方法:分取脐血单个核细胞,在TPO,IL—11,肝素的扩增体系中分为两组培养,第一组以CD34~+细胞作为对照,单独培养,第二组与间充质干细胞共培养,在7天,10天,14天时,取细胞进行活细胞计数,流式细胞仪分析CD41a和CD61的表达情况。取14天细胞采用免疫组化和透射电镜分析细胞形态与结构,通过流式细胞仪分析细胞DNA含量。结果:MNC经细胞因子诱导后,CD41a和CD61阳性比例明显上升,与0天时相比,培养14天后,CD41a~+细胞平均扩增了429.5倍,CD61~+细胞平均扩增了339倍。第二组在10天时得到的CD41~+细胞和CD61~+细胞最多,分别是第一组的4.5倍和4.7倍,免疫组化和电镜结果表明,两组细胞核发育不成熟。结论:在TPO,IL—11,肝素的扩增体系下以MNC为起始细胞能够诱导得到大量的巨核细胞,胎肺间充质干细胞能有效刺激CD41~+细胞和CD61~+细胞生成,对细胞核发育影响。
Aim:In order to expand megakaryocyte from umbilical cord blood mononuclear cells,and analysis the effect of fetal lung mesenchymal stem cell(FL-MSC) on differentiation of umbilical cord blood mononuclear cells(MNC) toward megakaryocyte.Method:umbilical cord blood fresh MNC was isolated,and divided into two groups under TPO and IL-11 with heparin.First group:MNC was cultured alone and CD34~+cells were selected as control:second group: MNC was cocultured with FL-MSC.The cells were taken out at day 7,10,14 for cell counting and flow cytometry analysis CD41a and CD61.The morphous and uhrastructur of megakaryocyte,were observed by histochemis and analyzed by transmission electron microscopy at day 14.The content of DNA was analyzed at day 14. Result:After induction CD41a~+ cells and CD61~+ cells were largely increasly. At day 14,CD41a~+ cells were 429.5-fold versus initial CD41a~+ cell number at day 0 and CD61~+ cells were 339.1-fold versus initial CD61~+ cell number at day 0.The most CD41a~+ cells and CD61~+ cells were obtained at day 10 by second group,respectively 4.5 and 4.7 fold versus MNC alone.The morphous and uhrastructur of megakaryocyte showed cell nucleus of megakaryocyte were not mature both of two groups.Conclusion: MNC can generate larger amount MKs under TPO and IL-11 with heparin in serum free.FL-MSC can enhance production of CD41a~+ cells and CD61~+ cells,and had effect on cell nucleus development.
引文
1. Webb IJ, Anderson KC. Risks, costs, and alternatives to platelet transfusions.Leukemia & lymphoma 34:71-84,1999.
    
    2. Stroncek DF, Rebulla P. Platelet transfusions. Lancet 370:427-438,2007.
    
    3. Goodnough LT. Platelet transfusion therapy. Journal of clinical apheresis 16:43-48,2001.
    
    4. Almici C, Carlo-Stella C, Mangoni L, Garau D, Cottafavi L, Ventura A, Armanetti M,Wagner JE, Rizzoli V. Density separation of umbilical cord blood and recovery of hemopoietic progenitor cells: implications for cord blood banking. Stem cells (Dayton,Ohio) 13:533-540, 1995.
    
    5. Bojanic I, Golubic Cepulic B. [Umbilical cord blood as a source of stem cells]. Acta Med Croatica 60:215-225, 2006.
    
    6. Gluckman E. Umbilical cord blood biology and transplantation. Current opinion in hematology 2:413-416, 1995.
    
    7. Harris DT, Schumacher MJ, Rychlik S, Booth A, Acevedo A, Rubinstein P, Bard J,Boyse EA. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone marrow transplantation 13:135-143, 1994.
    
    8. Regidor C, Posada M, Monteagudo D, Garaulet C, Somolinos N, Fores R, Briz M,Fernandez MN. Umbilical cord blood banking for unrelated transplantation: evaluation of cell separation and storage methods. Experimental hematology 27:380-385,1999.
    
    9. Brichard B, Vermylen C, Ninane J, Cornu G, Deneys V, De Bruyere M.Transplantation of umbilical cord blood in a refractory lymphoma. Pediatric hematology and oncology 12:79-81, 1995.
    
    10. Broxmeyer HE. Cord blood as an alternative source for stem and progenitor cell transplantation. Current opinion in pediatrics 7:47-55,1995.
    
    11. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Amy M,Thomas L, Boyse EA. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 86:3828-3832, 1989.
    
    12. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J,Vadhan-Raj S, Benninger L, Rubinstein P, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults.Proceedings of the National Academy of Sciences of the United States of America 89:4109-4113,1992.
    
    13. Cetrulo CL, Sbarra AJ, Cetrulo CL, Jr. Collection and cryopreservation of cord blood for the treatment of hematopoietic disorders: the obstetrician's overview. Journal of hematotherapy 5:149-151, 1996.
    
    14. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R,Ortega J, Souillet G, Ferreira E, Laporte JP, Fernandez M, Chastang C. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. The New England journal of medicine 337:373-381,1997.
    
    15. McNiece I, Briddell R. Ex vivo expansion of hematopoietic progenitor cells and mature cells. Experimental hematology 29:3-11,2001.
    
    16. Kanamaru S, Kawano Y, Watanabe T, Nakagawa R, Suzuya H, Onishi T, Yamazaki J,Nakayama T, Kuroda Y, Takaue Y. Low numbers of megakaryocyte progenitors in grafts of cord blood cells may result in delayed platelet recovery after cord blood cell transplant.Stem cells (Dayton, Ohio) 18:190-195,2000.
    
    17. Feng Y, Zhang L, Xiao ZJ, Li B, Liu B, Fan CG, Yuan XF, Han ZC. An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11. Experimental hematology 33:1537-1543,2005.
    
    18. Kohler T, Plettig R, Wetzstein W, Schaffer B, Ordemann R, Nagels HO, Ehninger G,Bornhauser M. Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells. Influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels. Stem cells (Dayton, Ohio) 17:19-24, 1999.
    
    19. Mohamed AA, Ibrahim AM, El-Masry MW, Mansour IM, Khroshied MA, Gouda HM, Riad RM. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab Hematol 12:86-93,2006.
    
    20. Fujiki H, Kimura T, Minamiguchi H, Harada S, Wang J, Nakao M, Yokota S, Urata Y,Ueda Y, Yamagishi H, Sonoda Y. Role of human interleukin-9 as a megakaryocyte potentiator in culture. Experimental hematology 30:1373-1380,2002.
    
    21. Lazzari L, Henschler R, Lecchi L, Rebulla P, Mertelsmann R, Sirchia G.Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41~+ and CD61~+ megakaryocytic cells.Haematologica 85:25-30, 2000.
    
    22. Sigurjonsson OE, Gudmundsson KO, Haraldsdottir V, Rafnar T, Gudmundsson S. Flt3/Flk-2-ligand in synergy with thrombopoietin delays megakaryocyte development and increases the numbers of megakaryocyte progenitor cells in serum-free cultures initiated with CD34~+ cells. Journal of hematotherapy & stem cell research 11:389-400,2002.
    
    23. Kie JH, Yang WI, Lee MK, Kwon TJ, Min YH, Kim HO, Ann HS, Im SA, Kim HL,Park HY, Ryu KH, Chung WS, Shin MH, Jung YJ, Woo SY, Park HK, Seoh JY. Decrease in apoptosis and increase in polyploidization of megakaryocytes by stem cell factor during ex vivo expansion of human cord blood CD34~+ cells using thrombopoietin. Stem cells (Dayton, Ohio) 20:73-79,2002.
    
    24. Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM. Large generation of megakaryocytes from serum-free expanded human CD34~+ cells. Biochemical and biophysical research communications 378:112-117,2009.
    
    25. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87:2162-2170, 1996.
    
    26. Carver-Moore K, Broxmeyer HE, Luoh SM, Cooper S, Peng J, Burstein SA, Moore MW, de Sauvage FJ. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 88:803-808, 1996.
    
    27. Basser R. Clinical biology and potential use of thrombopoietin. Canadian journal of gastroenterology = Journal canadien de gastroenterologie 14 Suppl D:73D-78D, 2000.
    
    28. Shen ZX, Basara N, Xi XD, Caen J, MarTrand JP, Pascal M, Petitou M, Lormeau JC,Han ZC. Fraxiparin, a low-molecular-weight heparin, stimulates megakaryocytopoiesis in vitro and in vivo in mice. British journal of haematology 88:608-612, 1994.
    
    29. Han ZC, Bellucci S, Shen ZX, Maffrand JP, Pascal M, Petitou M, Lormeau J, Caen JP. Glycosaminoglycans enhance megakaryocytopoiesis by modifying the activities of hematopoietic growth regulators. Journal of cellular physiology 168:97-104,1996.
    
    30. Lebkowski JS, Schain LR, Okarma TB. Serum-free culture of hematopoietic stem cells: a review. Stem cells (Dayton, Ohio) 13:607-612,1995.
    
    31. Wickenhauser C, Hillienhof A, Jungheim K, Lorenzen J, Ruskowski H, Hansmann ML, Thiele J, Fischer R. Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia 9:310-315, 1995.
    
    32. Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proceedings of the National Academy of Sciences of the United States of America 93:1470-1474,1996.
    
    33. Mitjavila MT, Vinci G, Villeval JL, Kieffer N, Henri A, Testa U, Breton-Gorius J,Vainchenker W. Human platelet alpha granules contain a nonspecific inhibitor of megakaryocyte colony formation: its relationship to type beta transforming growth factor (TGF-beta). Journal of cellular physiology 134:93-100,1988.
    
    34. Ratajczak MZ, Ratajczak J, Machalinski B, Mick R, Gewirtz AM. In vitro and in vivo evidence that ex vivo cytokine priming of donor marrow cells may ameliorate posttransplant thrombocytopenia. Blood 91:353-359,1998.
    
    35. Ratajczak J, Machalinski B, Samuel A, Pertusini E, Majka M, Czajka R, Ratajczak MZ. A novel serum free system for cloning human megakaryocytic progenitors (CFU-Meg). The role of thrombopoietin and other cytokines on bone marrow and cord blood CFU-Meg growth under serum free conditions. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 36:61-66, 1998.
    
    36. Ratajczak J, Zhang Q, Pertusini E, Wojczyk BS, Wasik MA, Ratajczak MZ. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions-comparison to other cytokines and growth factors. Leukemia 12:371-381, 1998.
    
    37. Hodohara K, Fujii N, Yamamoto N, Kaushansky K. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 95:769-775, 2000.
    
    38. Faraday N, Rade JJ, Johns DC, Khetawat G, Noga SJ, DiPersio JF, Jin Y, Nichol JL,Haug JS, Bray PF. Ex vivo cultured megakaryocytes express functional glycoprotein IIb-IIIa receptors and are capable of adenovirus-mediated transgene expression. Blood 94:4084-4092,1999.
    
    39. Kawada H, Ando K, Tsuji T, Shimakura Y, Nakamura Y, Chargui J, Hagihara M,Itagaki H, Shimizu T, Inokuchi S, Kato S, Hotta T. Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system. Experimental hematology 27:904-915, 1999.
    
    40. Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T, Todokoro K. Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood 87:1309-1316, 1996.
    
    41. Xie CG, Wang JF, Xiang Y, Jia BB, Qiu LY, Wang LJ, Wang GZ, Huang GP. Marrow mesenchymal stem cells transduced with TPO/FL genes as support for ex vivo expansion of hematopoietic stem/progenitor cells. Cell Mol Life Sci 62:2495-2507, 2005.
    42. Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells.Journal of cellular physiology 184:58-69,2000.
    
    43. Surbek DV, Holzgreve W. [Stem cells from cord blood: current status and future potential]. Therapeutische Umschau 59:577-582,2002.
    
    44. Smith FO, Thomson BG. Umbilical cord blood collection, banking, and transplantation: current status and issues relevant to perinatal caregivers. Birth (Berkeley,Calif 27:127-135,2000.
    
    45. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Experimental hematology 28:1197-1205,2000.
    
    46. Schipper LF, Brand A, Reniers N, Melief CJ, Willemze R, Fibbe WE. Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood. Experimental hematology 31:324-330,2003.
    
    47. Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan HJ.Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34~+ cells are correlated with different levels of platelet release. Blood 99:888-897,2002.
    
    48. Miyazaki R, Ogata H, Iguchi T, Sogo S, Kushida T, Ito T, Inaba M, Ikehara S,Kobayashi Y. Comparative analyses of megakaryocytes derived from cord blood and bone marrow. British journal of haematology 108:602-609, 2000.
    
    49. Slayton WB, Wainman DA, Li XM, Hu Z, Jotwani A, Cogle CR, Walker D, Fisher RC, Wingard JR, Scott EW, Sola MC. Developmental differences in megakaryocyte maturation are determined by the microenvironment. Stem cells (Dayton, Ohio) 23:1400-1408,2005.
    
    50. Bertolini F, Battaglia M, Pedrazzoli P, Da Prada GA, Lanza A, Soligo D, Caneva L,Sarina B, Murphy S, Thomas T, della Cuna GR. Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood 89:2679-2688, 1997.
    
    51. Taguchi K, Saitoh M, Arai Y, Momose K, Ogawa Y, Yasuda S, Miyata K. Disparate effects of interleukin 11 and thrombopoietin on megakaryocytopoiesis in vitro. Cytokine 15:241-249,2001.
    
    52. Feng R, Shimazaki C, Inaba T, Takahashi R, Hirai H, Kikuta T, Sumikuma T,Yamagata N, Ashihara E, Fujita N, Nakagawa M. CD34~+/CD41a~+ cells best predict platelet recovery after autologous peripheral blood stem cell transplantation. Bone marrow transplantation 21:1217-1222, 1998.
    53. Begemann PG, Hassan HT, Kroger N, Kruger W, Kabisch H, Zander AR. Correlation of time to platelet engraftment with amount of transplanted CD34~+CD41~+ cells after allogeneic bone marrow transplantation. Journal of hematotherapy & stem cell research 11:321-326,2002.
    
    54. Meldgaard Knudsen L, Jensen L, Jarlbaek L, Hansen PG, Hansen SW, Drivsholm L,Nikolaisen K, Gaarsdal E, Johnsen HE. Subsets of CD34~+ hematopoietic progenitors and platelet recovery after high dose chemotherapy and peripheral blood stem cell transplantation. Haematologica 84:517-524, 1999.
    
    55. Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J,Vainchenker W. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 88:1284-1296,1996.
    
    56. Nakorn TN, Miyamoto T, Weissman IL. Characterization of mouse clonogenic megakaryocyte progenitors. Proceedings of the National Academy of Sciences of the United States of America 100:205-210,2003.
    
    57. Halle P, Rouzier C, Kanold J, Boiret N, Rapatel C, Mareynat G, Tchirkov A, Berger M, Travade P, Bonhomme J, Demeocq F. Ex vivo expansion of CD34~+/CD41~+ late progenitors from enriched peripheral blood CD34+ cells. Annals of hematology 79:13-19,2000.
    
    58. Decaudin D, Vantelon JM, Bourhis JH, Farace F, Bonnet ML, Guillier M,Greissenger N, Marracho MC, Assari S, Bennaceur AL, Nemati F, Michon J, Turhan AG,Boccaccio C. Ex vivo expansion of megakaryocyte precursor cells in autologous stem cell transplantation for relapsed malignant lymphoma. Bone marrow transplantation 34:1089-1093,2004.
    
    59. Lefebvre P, Winter JN, Meng Y, Cohen I. Ex vivo expansion of early and late megakaryocyte progenitors. Journal of hematotherapy & stem cell research 9:913-921,2000.
    
    60. McNiece IK, Briddell RA. Stem cell factor. Journal of leukocyte biology 58:14-22,1995.
    
    61. Lisovsky M, Braun SE, Ge Y, Takahira H, Lu L, Savchenko VG, Lyman SD,Broxmeyer HE. Flt3-ligand production by human bone marrow stromal cells. Leukemia 10:1012-1018, 1996.
    
    62. Kawano Y, Kobune M, Chiba H, Nakamura K, Takimoto R, Takada K, Ito Y, Kato J,Hamada H, Niitsu Y. Ex vivo expansion of G-CSF-mobilized peripheral blood CD133~+ progenitor cells on coculture with human stromal cells. Experimental hematology 34:150-158,2006.
    63. Kawano Y, Kobune M, Yamaguchi M, Nakamura K, Ito Y, Sasaki K, Takahashi S,Nakamura T, Chiba H, Sato T, Matsunaga T, Azuma H, Ikebuchi K, Ikeda H, Kato J,Niitsu Y, Hamada H. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells. Blood 101:532-540,2003.
    
    64. Su RJ, Li K, Zhang XB, Pan Yuen PM, Li CK, James AE, Liu J, Fok TF. Platelet-derived growth factor enhances expansion of umbilical cord blood CD34~+ cells in contact with hematopoietic stroma. Stem cells and development 14:223-230,2005.
    
    65. Li WM, Huang WQ, Huang YH, Jiang DZ, Wang QR. Positive and negative hematopoietic cytokines produced by bone marrow endothelial cells. Cytokine 12:1017-1023,2000.
    
    66. Goldfarb AN, Delehanty LL, Wang D, Racke FK, Hussaini IM. Stromal inhibition of megakaryocytic differentiation correlates with blockade of signaling by protein kinase C-epsilon and ERK/MAPK. The Journal of biological chemistry 276:29526-29530, 2001.
    
    67. in't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB,van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential.Haematologica 88:845-852, 2003.
    1. Ratajczak MZ, Gewirtz AM. Current experimental strategies for investigating human hematopoietic stem cell biology. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 34:59-67,1996.
    
    2. Gewirtz AM. Megakaryocytopoiesis: the state of the art. Thrombosis and haemostasis 74:204-209,1995.
    
    3. Alemany M, Levin J. The effects of arsenic trioxide (As2O3) on human megakaryocytic leukemia cell lines. With a comparison of its effects on other cell lineages. Leukemia & lymphoma 38:153-163, 2000.
    
    4. Liu RY, Fan C, Garcia R, Jove R, Zuckerman KS. Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. Blood 93:2369-2379,1999.
    
    5. Rojnuckarin P, Drachman JG, Kaushansky K. Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: role in endomitosis. Blood 94:1273-1282,1999.
    
    6. Drachman JG, Millett KM, Kaushansky K. Thrombopoietin signal transduction requires functional JAK2, not TYK2. The Journal of biological chemistry 274:13480-13484,1999.
    
    7. Kaushansky K. Thrombopoietin: biological and preclinical properties. Leukemia 10 Suppl 1.S46-48, 1996.
    
    8. Broudy VC, Kaushansky K. Biology of thrombopoietin. Current opinion in pediatrics 10:60-64, 1998.
    
    9. Ratajczak MZ, Ratajczak J, Marlicz W, Pletcher CH, Jr., Machalinski B, Moore J, Hung H, Gewirtz AM. Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis. British journal of haematology 98:8-17, 1997.
    
    10. Majka M, Janowska-Wieczorek A, Ratajczak J, Kowalska MA, Vilaire G, Pan ZK,Honczarenko M, Marquez LA, Poncz M, Ratajczak MZ. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 96:4142-4151,2000.
    
    11. Lebkowski JS, Schain LR, Okarma TB. Serum-free culture of hematopoietic stem cells: a review. Stem cells (Dayton, Ohio) 13:607-612, 1995.
    
    12. Wickenhauser C, Hillienhof A, Jungheim K, Lorenzen J, Ruskowski H, Hansmann ML, Thiele J, Fischer R. Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia 9:310-315,1995.
    
    13. Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proceedings of the National Academy of Sciences of the United States of America 93:1470-1474,1996.
    
    14. Mitjavila MT, Vinci G, Villeval JL, Kieffer N, Henri A, Testa U, Breton-Gorius J,Vainchenker W. Human platelet alpha granules contain a nonspecific inhibitor of megakaryocyte colony formation: its relationship to type beta transforming growth factor (TGF-beta). Journal of cellular physiology 134:93-100, 1988.
    
    15. Ratajczak MZ, Ratajczak J, Machalinski B, Mick R, Gewirtz AM. In vitro and in vivo evidence that ex vivo cytokine priming of donor marrow cells may ameliorate posttransplant thrombocytopenia. Blood 91:353-359,1998.
    
    16. Ratajczak J, Machalinski B, Samuel A, Pertusini E, Majka M, Czajka R, Ratajczak MZ. A novel serum free system for cloning human megakaryocytic progenitors (CFU-Meg). The role of thrombopoietin and other cytokines on bone marrow and cord blood CFU-Meg growth under serum free conditions. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 36:61-66, 1998.
    
    17. Ratajczak J, Zhang Q, Pertusini E, Wojczyk BS, Wasik MA, Ratajczak MZ. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions-comparison to other cytokines and growth factors. Leukemia 12:371-381,1998.
    
    18. Hodohara K, Fujii N, Yamamoto N, Kaushansky K. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 95:769-775,2000.
    
    19. Faraday N, Rade JJ, Johns DC, Khetawat G, Noga SJ, DiPersio JF, Jin Y, Nichol JL,Haug JS, Bray PF. Ex vivo cultured megakaryocytes express functional glycoprotein IIb-IIIa receptors and are capable of adenovirus-mediated transgene expression. Blood 94:4084-4092, 1999.
    
    20. Long MW. Population heterogeneity among cells of the megakaryocyte lineage.Stem cells (Dayton, Ohio) 11:33-40, 1993.
    
    21. Jackson H, Williams N, Bertoncello I, Green R. Classes of primitive murine megakaryocytic progenitor cells. Experimental hematology 22:954-958, 1994.
    22. Han ZC. Identification of a murine high-proliferative-potential colony-forming cell (HPP-CFC) capable of producing a number of megakaryocytes and replating for secondary HPP-CFCs in culture. The Journal of laboratory and clinical medicine 123:610-616,1994.
    
    23. Lowry PA, Deacon DM, Whitefield P, Rao S, Quesenberry M, Quesenberry PJ. The high-proliferative-potential megakaryocyte mixed (HPP-Meg-Mix) cell: a trilineage murine hematopoietic progenitor with multiple growth factor responsiveness.Experimental hematology 23:1135-1140,1995.
    
    24. Bruno E, Murray Li, DiGiusto R, Mandich D, Tsukamoto A, Hoffman R. Detection of a primitive megakaryocyte progenitor cell in human fetal bone marrow. Experimental hematology 24:552-558, 1996.
    
    25. Grant BW, Nichols WL, Solberg LA, Yachimiak DJ, Mann KG Quantitation of human in vitro megakaryocytopoiesis by radioimmunoassay. Blood 69:1334-1339,1987.
    
    26. Briddell RA, Brandt JE, Straneva JE, Srour EF, Hoffman R. Characterization of the human burst-forming unit-megakaryocyte. Blood 74:145-151, 1989.
    
    27. Ramshaw HS, Haylock D, Swart B, Gronthos S, Horsfall MJ, Niutta S, Simmons PJ. Monoclonal antibody BB9 raised against bone marrow stromal cells identifies a cell-surface glycoprotein expressed by primitive human hemopoietic progenitors. Experimental hematology 29:981-992,2001.
    
    28. Mostafa SS, Papoutsakis ET, Miller WM. Oxygen tension modulates the expression of cytokine receptors, transcription factors, and lineage-specific markers in cultured human megakaryocytes. Experimental hematology 29:873-883, 2001.
    
    29. Dercksen MW, Rodenhuis S, Dirkson MK, Schaasberg WP, Baars JW, van der Wall E, Slaper-Cortenbach IC, Pinedo HM, Von dem Borne AE, van der Schoot CE, et al.Subsets of CD34~+ cells and rapid hematopoietic recovery after peripheral-blood stem-cell transplantation. J Clin Oncol 13:1922-1932, 1995.
    
    30. Takamatsu Y, Harada M, Teshima T, Makino S, Inaba S, Akashi K, Shibuya T, Niho Y. Relationship, of infused CFU-GM and CFU-Mk mobilized by chemotherapy with or without G-CSF to platelet recovery after autologous blood stem cell transplantation. Experimental hematology 23:8-13,1995.
    
    31. Dercksen MW, Weimar IS, Richel DJ, Breton-Gorius J, Vainchenker W,Slaper-Cortenbach CM, Pinedo HM, von dem Borne AE, Gerritsen WR, van der Schoot CE. The value of flow cytometric analysis of platelet glycoprotein expression of CD34~+ cells measured under conditions that prevent P-selectin-mediated binding of platelets.Blood 86:3771-3782, 1995.
    32. Feng R, Shimazaki C, Inaba T, Takahashi R, Hirai H, Kikuta T, Sumikuma T,Yamagata N, Ashihara E, Fujita N, Nakagawa M. CD34~+/CD41a~+ cells best predict platelet recovery after autologous peripheral blood stem cell transplantation. Bone marrow transplantation 21:1217-1222, 1998.
    
    33. Mohamed AA, Ibrahim AM, El-Masry MW, Mansour IM, Khroshied MA, Gouda HM, Riad RM. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab Hematol 12:86-93,2006.
    
    34. Kashiwakura I, Takahashi K, Monzen S, Nakamura T, Takagaki K. Ex vivo expansions of megakaryocytopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free culture supplemented with proteoglycans extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of whale. Life Sci 82:1023-1031,2008.
    
    35. Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM. Large generation of megakaryocytes from serum-free expanded human CD34~+ cells. Biochemical and biophysical research communications 378:112-117,2009.
    
    36. Stanevsky A, Goldstein G, Nagler A. Umbilical cord blood transplantation: Pros,cons and beyond. Blood reviews, 2009.
    
    37. Tao H, Gaudry L, Rice A, Chong B. Cord blood is better than bone marrow for generating megakaryocytic progenitor cells. Experimental hematology 27:293-301, 1999.
    
    38. Feng Y, Zhang L, Xiao ZJ, Li B, Liu B, Fan CG, Yuan XF, Han ZC. An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11. Experimental hematology 33:1537-1543,2005.
    
    39. Halle P, Rouzier C, Kanold J, Boiret N, Rapatel C, Mareynat G, Tchirkov A, Berger M, Travade P, Bonhomme J, Demeocq F. Ex vivo expansion of CD34~+/CD41~+ late progenitors from enriched peripheral blood CD34~+ cells. Annals of hematology 79:13-19,2000.
    
    40. Slayton WB, Wainman DA, Li XM, Hu Z, Jotwani A, Cogle CR, Walker D, Fisher RC, Wingard JR, Scott EW, Sola MC. Developmental differences in megakaryocyte maturation are determined by the microenvironment. Stem cells (Dayton, Ohio) 23:1400-1408,2005.
    
    41. De Bruyn C, Delforge A, Martiat P, Bron D. Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem cells and development 14:415-424,2005.
    
    42. Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan HJ. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34~+ cells are correlated with different levels of platelet release. Blood 99:888-897,2002.
    
    43. Schipper LF, Brand A, Reniers N, Melief CJ, Willemze R, Fibbe WE. Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood. Experimental hematology 31:324-330,2003.
    
    44. Miyazaki R, Ogata H, Iguchi T, Sogo S, Kushida T, Ito T, Inaba M, Ikehara S,Kobayashi Y. Comparative analyses of megakaryocytes derived from cord blood and bone marrow. British journal of haematology 108:602-609,2000.
    
    45. van den Oudenrijn S, von dem Borne AE, de Haas M. Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Experimental hematology 28:1054-1061,2000.
    
    46. Mwamtemi HH, Higuchi T, Sawai N, Hidaka E, Koike K. Quantitative and qualitative differences in thrombopoietin-dependent hematopoietic progenitor development between cord blood and bone marrow. Transplantation 69:1645-1654,2000.
    
    47. Eto K, Murphy R, Kerrigan SW, Bertoni A, Stuhlmann H, Nakano T, Leavitt AD,Shattil SJ. Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America 99:12819-12824,2002.
    
    48. Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost 4:436-442, 2006.
    
    49. Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, Eto K,Nakauchi H. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.Blood 111:5298-5306,2008.
    
    50. Matsubara Y, Saito E, Suzuki H, Watanabe N, Murata M, Ikeda Y. Generation of megakaryocytes and platelets from human subcutaneous adipose tissues. Biochemical and biophysical research communications 378:716-720, 2009.
    
    51. Fujiki H, Kimura T, Minamiguchi H, Harada S, Wang J, Nakao M, Yokota S, Urata Y,Ueda Y, Yamagishi H, Sonoda Y. Role of human interleukin-9 as a megakaryocyte potentiator in culture. Experimental hematology 30:1373-1380,2002.
    
    52. Lazzari L, Henschler R, Lecchi L, Rebulla P, Mertelsmann R, Sirchia G.Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41~+ and CD61~+ megakaryocytic cells.Haematologica 85:25-30, 2000.
    
    53. Sigurjonsson OE, Gudmundsson KO, Haraldsdottir V, Rafnar T, Gudmundsson S.Flt3/Flk-2-ligand in synergy with thrombopoietin delays megakaryocyte development and increases the numbers of megakaryocyte progenitor cells in serum-free cultures initiated with CD34~+ cells. Journal of hematotherapy & stem cell research 11:389-400,2002.
    
    54. Kie JH, Yang WI, Lee MK, Kwon TJ, Min YH, Kim HO, Ahn HS, Im SA, Kim HL,Park HY, Ryu KH, Chung WS, Shin MH, Jung YJ, Woo SY, Park HK, Seoh JY. Decrease in apoptosis and increase in polyploidization of megakaryocytes by stem cell factor during ex vivo expansion of human cord blood CD34~+ cells using thrombopoietin. Stem cells (Dayton, Ohio) 20:73-79, 2002.
    
    55. Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F. A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell 63:1137-1147, 1990.
    
    56. Vigon I, Momon JP, Cocault L, Mitjavila MT, Tambourin P, Gisselbrecht S, Souyri M. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proceedings of the National Academy of Sciences of the United States of America 89:5640-5644, 1992.
    
    57. Skoda RC, Seldin DC, Chiang MK, Peichel CL, Vogt TF, Leder P. Murine c-mpl: a member of the hematopoietic growth factor receptor superfamily that transduces a proliferative signal. The EMBO journal 12:2645-2653, 1993.
    
    58. Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ,Heipel MD, Burkhead SK, Kramer JM, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369:565-568,1994.
    
    59. Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B,Nichol JL, Swift S, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77:1117-1124,1994.
    
    60. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87:2162-2170, 1996.
    
    61. Carver-Moore K, Broxmeyer HE, Luoh SM, Cooper S, Peng J, Burstein SA, Moore MW, de Sauvage FJ. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 88:803-808, 1996.
    
    62. Basser R. Clinical biology and potential use of thrombopoietin. Canadian journal of gastroenterology = Journal canadien de gastroenterologie 14 Suppl D:73D-78D, 2000.
    
    63. Li K, Yang M, Lam AC, Yau FW, Yuen PM. Effects of flt-3 ligand in combination with TPO on the expansion of megakaryocytic progenitors. Cell transplantation 9:125-131,2000.
    
    64. Lu L, Wang LS, Cooper RJ, Liu HJ, Turner K, Weich N, Broxmeyer HE.Suppressive effects of TNF-alpha, TGF-betal, and chemokines on megakaryocytic colony formation in CD34~+ cells derived from umbilical cord blood compared with mobilized peripheral blood and bone marrow. Journal of hematotherapy & stem cell research 9:195-204,2000.
    
    65. Balducci E, Azzarello G, Valenti MT, Capuzzo GM, Pappagallo GL, Pilotti I, Ausoni S, Bari M, Rosetti F, Sartori D, Ciappa A, Porcellini A, Vinante O. The impact of progenitor enrichment, serum, and cytokines on the ex vivo expansion of mobilized peripheral blood stem cells: a controlled trial. Stem cells (Dayton, Ohio) 21:33-40,2003.
    
    66. Maurer AM, Liu Y, Caen JP, Han ZC. Ex vivo expansion of megakaryocytic cells. International journal of hematology 71:203-210, 2000.
    
    67. Williams JL, Pipia GG, Datta NS, Long MW. Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood 91:4118-4126, 1998.
    
    68. Kashiwakura I, Takahashi TA. Basic fibroblast growth factor-stimulated ex vivo expansion of haematopoietic progenitor cells from human placental and umbilical cord blood. British journal of haematology 122:479-488,2003.
    
    69. Shen ZX, Basara N, Xi XD, Caen J, Maffrand JP, Pascal M, Petitou M, Lormeau JC, Han ZC. Fraxiparin, a low-molecular-weight heparin, stimulates megakaryocytopoiesis in vitro and in vivo in mice. British journal of haematology 88:608-612, 1994.
    
    70. Han ZC, Betlucci S, Shen ZX, Maffrand JP, Pascal M, Petitou M, Lormeau J, Caen JP. Glycosaminoglycans enhance megakaryocytopoiesis by modifying the activities of hematopoietic growth regulators. Journal of cellular physiology 168:97-104, 1996.
    
    71. Majka M, Baj-Krzyworzeka M, Kijowski J, Reca R, Ratajczak J, Ratajczak MZ. In vitro expansion of human megakaryocytes as a tool for studying megakaryocytic development and function. Platelets 12:325-332,2001.
    
    72. Kawano Y, Kobune M, Chiba H, Nakamura K, Takimoto R, Takada K, Ito Y, Kato J,Hamada H, Niitsu Y. Ex vivo expansion of G-CSF-mobilized peripheral blood CD133~+ progenitor cells on coculture with human stromal cells. Experimental hematology 34:150-158,2006.
    
    73. Kawano Y, Kobune M, Yamaguchi M, Nakamura K, Ito Y, Sasaki K, Takahashi S,Nakamura T, Chiba H, Sato T, Matsunaga T, Azuma H, Ikebuchi K, Ikeda H, Kato J,Niitsu Y, Hamada H. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells. Blood 101:532-540, 2003.
    
    74. Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T, Todokoro K. Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood 87:1309-1316,1996.
    
    75. Zweegman S, Veenhof MA, Huijgens PC, Schuurhuis GJ, Drager AM. Regulation of megakaryocytopoiesis in an in vitro stroma model: preferential adhesion of megakaryocytic progenitors and subsequent inhibition of maturation. Experimental hematology 28:401-410,2000.
    
    76. Zweegman S, Veenhof MA, Debili N, Schuurhuis GJ, Huijgens PC, Drager AM.Megakaryocytic differentiation of human progenitor cells is negatively influenced by direct contact with stroma. Leukemia 13:935-943, 1999.
    
    77. Delehanty LL, Mogass M, Gonias SL, Racke FK, Johnstone B, Goldfarb AN.Stromal inhibition of megakaryocytic differentiation is associated with blockade of sustained Rap1 activation. Blood 101:1744-1751, 2003.
    
    78. Goldfarb AN, Delehanty LL, Wang D, Racke FK, Hussaini IM. Stromal inhibition of megakaryocytic differentiation correlates with blockade of signaling by protein kinase C-epsilon and ERK/MAPK. The Journal of biological chemistry 276:29526-29530, 2001.
    
    79. Li WM, Huang WQ, Huang YH, Jiang DZ, Wang QR. Positive and negative hematopoietic cytokines produced by bone marrow endothelial cells. Cytokine 12:1017-1023,2000.
    
    80. Mattia G, Milazzo L, Vulcano F, Pascuccio M, Macioce G, Hassan HJ, Giampaolo A. Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34~+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Experimental hematology 36:244-252, 2008.
    
    81. Bruno S, Gunetti M, Gammaitoni L, Dane A, Cavalloni G, Sanavio F, Fagioli F,Aglietta M, Piacibello W. In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution.Haematologica 88:379-387, 2003.
    
    82. Bertolini F, Battaglia M, Pedrazzoli P, Da Prada GA, Lanza A, Soligo D, Caneva L, Sarina B, Murphy S, Thomas T, della Cuna GR. Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood 89:2679-2688,1997.
    
    83. Woo SY, Kie JH, Ryu KH, Moon HS, Chung WS, Hwang DH, Kim SK, Han TH,Hahn MJ, Chong YH, Park HK, Seoh JY. Megakaryothrombopoiesis during ex vivo expansion of human cord blood CD34~+ cells using thrombopoietin. Scandinavian journal of immunology 55:88-95, 2002.
    1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science (New York, NY 276:71-74,1997.
    
    2. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental hematology 4:267-274,1976.
    
    3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY 284:143-147, 1999.
    
    4. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & nerve 18:1417-1426,1995.
    
    5. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research 61:364-370,2000.
    
    6. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615-2625,2001.
    
    7. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69-80, 1992.
    
    8. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66-76, 1993.
    
    9. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of cellular physiology 181:67-73, 1999.
    
    10. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N,Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419-427,2005.
    
    11. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells.Experimental hematology 31:890-896, 2003.
    
    12. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA,Maini RN. Mesenchymal precursor cells in the blood of normal individuals. Arthritis research 2:477-488,2000.
    
    13. Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM. Disparate mesenchyme-Iineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem cells (Dayton, Ohio) 24:679-685,2006.
    
    14. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C,Bron D, Lagneaux L. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity.Stem cells (Dayton, Ohio) 23:1105-1112,2005.
    
    15. De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P,Hedrick MH, Fraser JK. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology letters 89:267-270,2003.
    
    16. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells.Molecular biology of the cell 13:4279-4295,2002.
    
    17. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H,Ochiya T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology (Baltimore, Md 46:219-228,2007.
    
    18. Bacigalupo A, Tong J, Podesta M, Piaggio G, Figari O, Colombo P, Sogno G, Tedone E, Moro F, Van Lint MT, et al. Bone marrow harvest for marrow transplantation: effect of multiple small (2 ml) or large (20 ml) aspirates. Bone marrow transplantation 9:467-470,1992.
    
    19. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A,Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7-14,2004.
    
    20. Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem cells (Dayton, Ohio) 25:646-654,2007.
    
    21. Gotherstrom C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le Blanc K.Immunologic properties of human fetal mesenchymal stem cells. American journal of obstetrics and gynecology 190:239-245,2004.
    
    22. Olivier EN, Rybicki AC, Bouhassira EE. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem cells (Dayton, Ohio) 24:1914-1922,2006.
    
    23. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK. Derivation of clinically compliant MSCs from CD105~+, CD24- differentiated human ESCs. Stem cells (Dayton, Ohio) 25:425-436,2007.
    
    24. Tsai MS, Hwang SM, Chen KD, Lee YS, Hsu LW, Chang YJ, Wang CN, Peng HH,Chang YL, Chao AS, Chang SD, Lee KD, Wang TH, Wang HS, Soong YK. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem cells (Dayton, Ohio) 25:2511-2523,2007.
    
    25. Roche S, Richard MJ, Favrot MC. Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. Journal of cellular biochemistry 101:271-280,2007.
    
    26. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662-1668,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700