用户名: 密码: 验证码:
动物细胞生物反应器关键技术研究及其结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛顿力学统治了世界几百年,未来生物技术将成为主导21世纪科学技术发展的关键力量。生物反应器是人类进行生物目标产品开发及生产的关键设备。我国在生物反应器的开发研究中存在基础理论研究投入少、细胞的剪切敏感性认知不足、半经验方式设计、反应器效能低下、仿制国外低端产品等问题。针对这些问题,本文从CHO细胞入手,CHO细胞即中国仓鼠卵巢细胞,是动物细胞工程产业应用最为广泛的细胞之一,首先对CHO细胞力学特性进行了研究;以其力学特性为基础分别对生物反应器的搅拌器、罐体结构、温度维持、供料位置进行仿真优化;气泡分布器作为生物反应器中的供氧装置十分关键,但生成的气泡直径不好度量以及破裂过程中高速剪切损伤细胞,通过仿真及实验方法使得这些问题得到很好的解决;本文提出一种新的方法——剪切率参量法,在未制造样机的前提下,利用现有设备可以对新研制反应器剪切环境进行验证评价,剪切率参量法验证方法简单可靠,缩短研发周期,节约成本。
     为了给生物反应器设计提供基础性的依据,借助原子力显微镜,对CHO细胞进行成像及力学测量,测量得到生理状态CHO细胞的弹性模量为5.278±0.395kPa,借助数值计算及细胞培养实验分析CHO细胞在生物反应器中的受力环境,得到CHO细胞培养时能够承受的合理的剪切力约为0.392Pa,此时流场剪切率为391.41(1/s),在此剪切应力作用下对于20μm的细胞来说U方向的最大位移量大约为12.9μm。为反应器的设计中解决流体剪切的问题提供依据。
     规模化细胞培养生物反应器研发主要需要解决两个关键要素,首先是保证流场混合的均匀性,同时要解决好流场剪切力对细胞的影响,以CHO细胞承受的合理剪切力为参考,在降低流场剪切作用以及满足流场混合效果的前提下,优化后的反应器结构采用45o叶片夹角的Elephant Ear搅拌器,下吸式安装,罐体高径比为1、罐底半径为罐体直径的一半为、搅拌器安装高度与罐体高度比为、挡板数量为3对,此优化结构流场效果最好。细胞培养过程中温度需要严格控制,建立该反应器的温度场仿真模型,对三种供热保温结构进行对比仿真分析,表明当采用整体壁面加热时,反应器内的流体能较快的达到温度均衡。反应器供料位置对物料混合效果影响明显,利用示踪剂法,找到反应器较优的供料位置,缩短混合时间。
     气泡分布器作为反应器的供氧装置用于生成气泡,在细胞培养过程中气泡在分布器孔口形成上升破裂主要与三个参量有关,通过研究得到了一定范围内气泡平均直径大小与孔口通气速度、表面张力系数和孔口直径之间的关系式。定量角度分析了直径在4mm-10mm范围内变化的气泡破裂过程中产生的在0.97-1.91Pa之间变化,根据CHO细胞的承受的最大剪切力为0.392Pa左右,可知在此范围的气泡破裂过程中均会造成细胞的损伤。而气泡越小,气液表面积比越大,这样反应器内溶氧越好,为了满足细胞培养过程中的溶氧需求,因此气泡直径控制在4mm左右为宜。气泡分布器安装时通气孔离生物反应器底部的距离对气含率的影响不大,大分布环的使得气含率更加均匀,而且大分布环通气结构能有效防止气体直接由搅拌器区直接上升至液面溢出,降低气含率,所以实际应用中可以根据需要应尽量选用大分布环气泡分布器。
     生物反应器设计制造中的需要解决的关键问题之一就是流场混合过程中产生的剪切力对细胞的损伤,反应器研发初期很难对这一问题进行度量验证,一般通过制造样机进行实验验证,一种新的验证方法剪切率参量法应运而生,它可以在现有实验室设备的基础上通过实验和仿真方法,使得这一问题得到解决。针对本论文提出的多项技术,设计了反应器实验系统,利用该实验系统验证了本文提出的剪切率参量法,当采用上通气的情况下,转速为180r/min时,细胞密度增量最大,其主流场区域平均剪切率为14.5,符合本文提出的剪切率参量法的适宜细胞生长的平均剪切率范围11.6~17.4(1/s);实验系统包括搅拌器、罐体结构、加热保温装置、气泡分布器均采用本文的优化结果,在此结构参数下采用上通气转速在180r/min时可以获得较好的培养效果,当采用下通气转速为80r/min时气泡直径为在4~8mm范围获得较好的培养效果,其性能与美国NBS商品化生物反应器相近。
     本文对CHO细胞生物反应器的关键技术进行了研究,得到了CHO细胞的力学特性、反应器结构及其流场效果、气泡分布器结构及气泡生成破裂过程,反应器剪切率参量验证方法等研究成果,为CHO细胞规模培养生物反应器的实用化奠定了基础。
Newtonian mechanics has ruled the world for hundreds of years;biotechnology will become a pivotal force in leading the development of scienceand technology in the21st century. And bioreactor is the key device for human toproduce and develop the biologic target products. China has many problems in thedevelopment of bioreactor, such as less investment in basic theoretical research,cognitive deficiency on cells’ shear sensitivity semi-empirical method design, lowefficiency reactor, foreign low-end products imitation, etc. CHO cells, also knownas Chinese hamster ovary cells, are one of the most widely used cells in the animalcell engineering. For these problems, the dissertation studied the mechanicalcharacters of CHO cells from the basis; simulation optimized bioreactor’s stirrertank structure, temperature maintenance and feeding mode. The bubble distributoris critical as the supply of oxygen in the bioreactor device, however, the generatedbubble diameter is hard to measure and the high-speed shear can damage cells inthe process of rupture. Thus, these problems can be solved well through simulationand experiments. The dissertation put forward a new method--Shear RateParameter Method (SRPM). It uses existing equipment to verify and evaluate thereactor’s newly developed shear environment in the precondition of non-manufacturing mockup. The SRPM is simple and reliable; it not only shortens thedevelopment cycle, but saves cost.
     In order to provide the fundamental basis for bioreactor design, it appliesatomic force microscope to have imaging and mechanical measurement on CHOcells. The measured modulus of elasticity of physiological state CHO cells is5.278±0.395kPa. With the numerical calculation and cell culture experiments, toanalyze the force environment of CHO cells in the bioreactor. It shows that theCHO cells can endure the reasonable shear force is approximately0.392Pa,meanwhile, the shearing rate of flow field is391.41(1/s), the maximumdisplacement of U-direction for20μm cell under such shear force is12.9μm. Thus,it offers the basis for the problems solving of fluid shear in the bioreactor design.
     The homogenization of mixed flow fields and the stirring shear force inbioreactor are the two key factors in process of the cell scale culture. Based on the CH cells’ enduring reasonable shear force in the condition of reducing flow filedshear force and satisfying mixed effect, the flow field effect of optimizing structureis the best, when bioreactor adopts the Elephant Ear stirrer with45oblade includedangle by downdraft installation, the tank high-diameter ratio H/T=1, the radium ofthe tank bottom, the installation height of stirrer C/H=1/3and the number of baffleis3pairs. Temperature in the cell culture process requires strict control. It buildsthe bioreactor’s simulation model of temperature field aiming to have comparativesimulation analyzing for the three heating structure. It indicates that when theoverall wall heating, the fluid within the reactor can be faster to reach temperatureequilibrium. The bioreactor feeding position has an obvious influence on materialmixed effect. It can use tracer method to find better feeding position of the reactoras well as to shorten the mixing time.
     The bubble distributor as the oxygen supply device of the reactor used togenerate bubble. In process of the cell culture, bubble at reactor orifices from risingto bursting is concerned with three parameters. Study supports, within a certainrange the relation between bubble’s average diameter and orifice ventilation speed,surface coefficient of tension and orifice diameter. It analyzes from the quantitativeangle, the produced in the process of bursting with bubble diameters from4mm-10mm varies from0.97-1.91Pa. It is clear that cell damage happens in the processin terms of the maximum shear force the CHO cell enduring is about0.392Pa.However, the smaller the bubble, the higher the gas-liquid surface area ratio and thebetter the dissolved oxygen in the reactor, in order to meet the dissolved oxygenrequirements in the process of cell culture, the bubble diameter should be controlledat about4mm. During the bubble distributor installation, the distance from orificeto bottom of the bioreactor has little effect on gas holdup. And bubble distributorwith larger distribution ring can balance gas holdup better. Moreover, largedistribution ring ventilation structure can effectively prevent the gas overflowingfrom the area of stirrer raise directly up to the fluid level. It decreases gas holdup;thus, try to choose the large bubble distributor as required in practical application.
     One of the key problems needs to be solved in bioreactor design andmanufacture is the damage caused by shear force to cell in the process of flowfields mixed. It is hard to measure and verify the problem at the early stage of thebioreactor’s research and development It normally uses mockup to experiment Anew verification method is developed, namely, shear rate parameter method. It can solve the problem through experiments and simulation based on the existingequipments. The dissertation presented a number of techniques, designed reactorexperiment system and verified the SRPM by it. When adopt upper ventilation androtate speed is180r/min, the increment of cell density is the maximum, meanwhile,the average shear rate in main flow field is14.5. It fits the appropriate cell growthshear rate range from11.6-17.4(1/s) presented in the SRPM. The stirrer, tankstructure, heating insulation device in the experiment system all use theoptimization results. It can get better culture effect with such structural parameterswhen adopts upper ventilation and rotate speed is180r/min. It also can get betterculture effect when the bubble diameter is4-8mm, the rotate speed is80r/min andventilate down. The experiment system and commercialization bioreactor havesimilar performance.
     The dissertation studied the key technology of CHO cell bioreactor; the majorfindings including the mechanical characters of CHO cell, bioreactor structure andthe effect of flow field in bioreactor, bubble distributor structure and the process ofits generation to rupture, verification methods for SRPM in bioreactor, etc, whichlaid a foundation for the practicality of CHO cell scale culture bioreactor.
引文
[1] Briggle A. Biotechnology[M]. Academic Press,2012:300-308.
    [2] Wohlgemuth R. Industrial biotechnology–past, present and future[J]. NewBiotechnologyIndustrial Biotechnology,2012,29(2):165.
    [3]张嗣良,张恂,唐寅,等.发展我国大规模细胞培养生物反应器装备制造业[J].中国生物工程杂志,2005,25(7):1-8.
    [4]张嗣良.生物技术产业化与微生物过程优化[J].药品评价,2004,1(2):99-104.
    [5]刘国诠.生物工程下游技术[M].化学工业出版社,2003:3-15.
    [6]张前程,张凤宝,姚康德,等.动物细胞培养生物反应器研究进展[J].化工进展,2002,21(8):560-562.
    [7] Barrett T A, Wu A, Zhang H, et al. Microwell engineering characterization formammalian cell culture process development [J]. Biotechnology andBioengineering,2010,105(2):260-275.
    [8] Gramer Michael J, Poeschl Douglas M. Comparison of cell growth in T-flasks,in micro hollow fiber bioreactors, and in an industrial scale hollow fiberbioreactor system [J]. Cyto-technology,2000,34(1-2):111-119.
    [9]张元兴.生物反应器工程[M].华东理大学出版社,2001:8-19.
    [10]李会成,李文辉,郭军,等.基因工程菌的发酵研究[Z].1997,17:40-43.
    [11] Huang T, McDonald K A. Bioreactor engineering for recombinant proteinproduction in plant cell suspension cultures[J]. Biochemical EngineeringJournal,2009,45(3):168-184.
    [12] Ugay S, Escudie R. and Line A. Experimental analysis of hydrodynamics inaxially agitated tank[J]. AIChE J,2002,48:463–475.
    [13] Aubin. J, Sauze N L, Bertrand J, et al. PIV measurements of flow in anaerated tank stirred by a down-and an up-pumping axial flow impeller[J]. ExpTherm Fluid Sci,2004,28:447–456.
    [14] Martin Y, Vermette P. Bioreactors for tissue mass culture: Design,characterization, and recent advances[J]. Biomaterials,2005,26(35):7481-7503.
    [15] Powell E E, Hill G A. Economic assessment of an integrated bioethanol-biodiesel-microbial fuel cell facility utilizing yeast and photosyntheticalgae[J]. Chemical Engineering Research and Design,2009,87(9):1340-1348.
    [16] Wang S J, Zhong J J. A novel centrifugal impeller bioreactor: Fluidcirculation, mixing, and liquid velocity profiles [J]. Biotechnol Bioeng,1996,51(a):511-519.
    [17]Hadjizadeh A, Mohebbi-Kalhori D. Porous hollow membrane sheet for tissueengineering applications[J]. Journal of Biomedical Materials Research-PartA,2010,93(3):1140-1150.
    [18] Villain L, Meyer L, Kroll S, et al. Development of a novel membrane aeratedhollow-fiber microbioreactor[J]. Biotechnology Progress,2008,24(2):367-371.
    [19] Liu C, Hong L. Development of a Shaking Bioreactor System for Animal CellCultures[J]. Biochemical Engineering Journal,2001,7(2):121-125.
    [20]白力,张淑香,唐寅,等.锥底生物反应器的动物细胞培养[J].华东理工大学学报,2008,34(3):338-341.
    [21] Fernandes-Platzgummer A, Diogo M M, Baptista R P, et al. Scale-up ofmouse embryonic stem cell expansion in stirred bioreactors[J]. BiotechnologyProgress,2011,27(5):1421-1432.
    [22] Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate inmicrobial processes: An overview[J]. Biotechnology Advances,2009,27(2):153-176.
    [23] Islam R S, Tisi D, Levy M S, et al. Scale-up of Escherichia coli growth andrecombinant protein expression conditions from microwell to laboratory andpilot scale based on matched Kla[J]. Biotechnology and Bioengineering,2008,99(5):1128-1139.
    [24]邹寿长,李千祥,杨葆生等.大规模动物细胞培养技术研究进展[J].生命科学研究,2001,5(2):102-108.
    [25]郑之明.生物反应器的研究及其相关问题思考[J].安徽化工,2005,13(1):54-57.
    [26]张明菊.生物反应器产业概况[J].黄冈职业技术学院学报,2005,7(03):87-90.
    [27]刘兴茂.CHO工程细胞无血清流加培养代谢动力学及转录谱特征研究
    [D].中国人民解放军军事医学科学院博士学位论文,2009.
    [28]曹竹安,陈必强.工业生物技术发展状况分析及前景展望[J].中国基础科学,2009(05):8-12.
    [29]胡红杰,张文忠,刘晓波,等.使用美国NBS40L全自动发酵罐的几点体会[J].山东医药工业,2001,20(03):32-33.
    [30]黄斌,牛红星,朱明龙,等.rCHO细胞无血清适应及悬浮培养[J].华东理工大学学报,2004,30(1):38-42.
    [31]林福玉,陈昭烈,刘红,等.5L生物反应器中长期灌流培养CHO工程细胞生产rt-PA[J].军事医学科学院院刊,2000,24(1):44-48.
    [32] Wheaton Industries Inc[EB/OL]. http://www.wheaton.com.
    [33]仓基勇,于会贤,徐岩.小型全自动发酵罐的使用与维护[J].河北工业科技,2006(02):92-94.
    [34]赵晓伟.采用Elephant Ear桨叶的生物反应器结构优化和细胞剪切特性研究[D].哈尔滨工业大学硕士学位论文,2010.
    [35]韩国发酵机株式会社发酵罐[EB/OL].http://www.gaobaite.com.
    [36]动物细胞培养技术用于疫苗的研究进展:中国畜牧兽医学会2008年学术年会暨第六届全国畜牧兽医青年科技工作者学术研讨会主题报告,中国广东广州,2008.
    [37]刘轶,朱国强.动物细胞培养及微载体技术研究进展[J].吉林农业大学学报,2007(02):203-206.
    [38]王志江,郑裕国.动植物细胞培养生物反应器的研究进展[J].药物生物技术,2005,12(2):117-120.
    [39]洪厚胜,张庆文.搅拌生物反应器混合特性的数值模拟与试验研究[J].过程工程学报,2005,5(2):131-134.
    [40]侯雪芹,林小桦,李薇.动物细胞培养技术研究的现状与思考[J].辽宁中医药大学学报,2010(11):37-39.
    [41]孔永,秦秀云.动物细胞培养技术研究进展[J].重庆文理学院学报,2007(04):54-56.
    [42]何秀权.激流式生物反应器监控系统的研究[D].哈尔滨工业大学硕士论文,2009.
    [43] Nienow A W. Reactor engineering in large scale animal cell culture[J].Cytotechnology,2006,50:9-33.
    [44] Tyo M, Bulbulian B, Menken B. Large-scale mammalian cell culture utilizingAcusyst technology[J]. Animal cell biotechnology,1988,Vol.3:358-371.
    [45]姚素梅,王强.温度对培养心肌细胞力学特性的影响[J].环境与职业医学,2007,24(1):85-86.
    [46] Wohlgemuth R. The locks and keys to industrial biotechnology[J]. NewBiotechnology,2009,25(4):204-213.
    [47] Hermann B G, Blok K, Patel M K. Producing bio-based bulk chemicals usingindustrial biotechnology saves energy and combats climate change[J].Environmental Science&Technology,2007,41(22):7915-7921.
    [48] Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate inmicrobial processes: An overview[J]. Biotechnology Advances,2009,27(2):153-176.
    [49]戚以政,汪叔权.生物反应动力学与反应器(第三版)[M].化学工业出版社,2007:81-98.
    [50] Slyper A, Le A, Jurva J, et al. The influence of lipoproteins on whole-bloodviscosity at multiple shear rates[J]. Metabolism,2005,54(6):764-768.
    [51] Shenoy A V. Non-Newtonian Fluid Heat Transfer in Porous Media[J].1994,24:101-190.
    [52] Delgado M, Lázaro A, Mazo J, et al. Review on phase change materialemulsions and microencapsulated phase change material slurries: Materials,heat transfer studies and applications[J]. Renewable and Sustainable EnergyReviews,2012,16(1):253-273.
    [53] Saidur R, Leong K Y, Mohammad H A. A review on applications andchallenges of nanofluids[J]. Renewable and Sustainable Energy Reviews,2011,15(3):1646-1668.
    [54] Jin J, Liu G, Shi S, et al. Studies on the performance of a rotating drumbioreactor for bioleaching processes—Oxygen transfer, solids distributionand power consumption[J]. Hydrometallurgy,2010,103(4):30-34.
    [55] Collignon M, Delafosse A, Crine M, et al. Axial impeller selection foranchorage dependent animal cell culture in stirred bioreactors: Methodologybased on the impeller comparison at just-suspended speed of rotation[J].Chemical Engineering Science,2010,65(22):5929-5941.
    [56] Ahmed S U, Ranganathan P, Pandey A, et al. Computational fluid dynamicsmodeling of gas dispersion in multi impeller bioreactor[J]. Journal ofBioscience and Bioengineering,2010,109(6):588-597.
    [57] Martín M, Montes F J, Galán M A. Mass transfer rates from bubbles in stirredtanks operating with viscous fluids[J]. Chemical Engineering Science,2010,65(12):3814-3824.
    [58] Wang Y, Chu J, Zhuang Y, et al. Industrial bioprocess control andoptimization in the context of systems biotechnology[J]. BiotechnologyAdvances,2009,27(6):989-995.
    [59]孙庆丰.搅拌釜式生物反应器设计及优化[D].哈尔滨工业大学硕士学位论文,2007.
    [60] Zhu H, Nienow A W, Bujalski W, et al. Mixing studies in a model aeratedbioreactor equipped with an up-or a down-pumping ‘Elephant Ear’ agitatorPower, hold-up and aerated flow field measurements[J]. ChemicalEngineering Research and Design,2009,87(3):307-317.
    [61] Pandit A B, Rielly C D, Niranjan K, et al. The convex bladed mixed flowimpeller and the marine propeller: A multipurpose agitator[J]. ChemicalEngineering Science,1989,44(11):2463-2474.
    [62] Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels:hydrodynamic of the modified Rushton turbine agitators in gas—liquiddispersions[J]. The Chemical Engineering Journal and the BiochemicalEngineering Journal,1996,61(2):83-93.
    [63] Van'T Riet K, Smith J M. The trailing vortex system produced by Rushtonturbine agitators[J]. Chemical Engineering Science,1975,30(9):1093-1105.
    [64] Liu X, Bao Y, Li Z, et al. Particle Image Velocimetry Study of TurbulenceCharacteristics in a Vessel Agitated by a Dual Rushton Impeller[J]. ChineseJournal of Chemical Engineering,2008,16(5):700-708.
    [65] Collignon M, Delafosse A, Crine M, et al. Axial impeller selection foranchorage dependent animal cell culture in stirred bioreactors: Methodologybased on the impeller comparison at just-suspended speed of rotation[J].Chemical Engineering Science,2010,65(22):5929-5941.
    [66] Simmons M J H, Zhu H, Bujalski W, et al. Mixing in a Model BioreactorUsing Agitators with a High Solidity Ratio and Deep Blades[J]. ChemicalEngineering Research and Design,2007,85(5):551-559.
    [67] Gabriele A, Nienow A W, Simmons M J H. Use of angle resolved PIV toestimate local specific energy dissipation rates for up-and down-pumpingpitched blade agitators in a stirred tank[J]. Chemical Engineering Science,2009,64(1):126-143.
    [68] Leckie F, Scragg A H, Cliffe K C. Effect of bioreactor design and agitatorspeed on the growth and alkaloid accumulation by cultures of Catharanthusroseus[J]. Enzyme and Microbial Technology,1991,13(4):296-305.
    [69] Roman R V, Tudose R Z. Studies on transfer processes in mixing vessels:hydrodynamic of the modified Rushton turbine agitators in gas—liquiddispersions[J]. The Chemical Engineering Journal and the BiochemicalEngineering Journal,1996,61(2):83-93.
    [70] Diaz C, Dieu P, Feuillerat C, et al. Adaptive predictive control of dissolvedoxygen concentration in a laboratory-scale bioreactor[J]. Journal ofBiotechnology,1995,43(1):21-32.
    [71]Hocaoglu S M, Insel G, Cokgor E U, et al. Effect of low dissolved oxygen onsimultaneous nitrification and denitrification in a membrane bioreactortreating black water[J]. Bioresource Technology,2011,102(6):4333-4340.
    [72] Ertunc S, Akay B, Boyacioglu H, et al. Self-tuning control of dissolvedoxygen concentration in a batch bioreactor[J]. Food and BioproductsProcessing,2009,87(1):46-55.
    [73] Sarioglu M, Insel G, Artan N, et al. Model evaluation of simultaneousnitrification and denitrification in a membrane bioreactor operated without ananoxic reactor[J]. Journal of Membrane Science,2009,337(2):17-27.
    [74] Dong W, Wang H, Li W, et al. Effect of DO on simultaneous removal ofcarbon and nitrogen by a membrane aeration/filtration combined bioreactor[J].Journal of Membrane Science,2009,344(1–2):219-224.
    [75] Puthli M S, Rathod V K, Pandit A B. Gas–liquid mass transfer studies withtriple impeller system on a laboratory scale bioreactor[J]. BiochemicalEngineering Journal,2005,23(1):25-30.
    [76] Jin J, Liu G, Shi S, et al. Studies on the performance of a rotating drumbioreactor for bioleaching processes—Oxygen transfer, solids distributionand power consumption[J]. Hydrometallurgy,2010,103(4):30-34.
    [77] Mostafa S S, Papoutsakis T E, Miller W M. Oxygen Tension Modulates theExpression of Cytokine Receptors, Transcription Factors, and Lineage-specific Markers in Culture Human Megakaryocytes[J]. Exp Hematol,2001,29(8):73-83.
    [78]戴干策,陈敏恒.化工流体力学(第二版)[M].化学工业出版社,2005:56-68.
    [79] Znad H Bále awase Y odeling and scale up of airlift bioreactor[]Computers& Chemical Engineering,2004,28(12):2765-2777.
    [80]朱立宽.动物细胞生物反应器中鼓泡溶氧及远程监控的研究[D].哈尔滨工业大学硕士学位论文,2011.
    [81]张元兴,易小萍,等.动物细胞培养工程[M].化学工业出版社,2007:78-101.
    [82]唐江伟,吴振强.新型生物反应器结构研究进展[J].中国生物工程杂志,2007,27(05):146-152.
    [83]张海泉,符晓棠.生物技术发展现状及前景展望[J].江西农业学报,2006,18(3):69-74.
    [84] Choi K H, Chisti Y, Moo-Young M. Comparative evaluation of hydrodynamicand gas—liquid mass transfer characteristics in bubble column and airliftslurry reactors[J]. The Chemical Engineering Journal and the BiochemicalEngineering Journal,1996,62(3):223-229.
    [85] Yu P, Lee T S, Zeng Y, et al. A numerical analysis of effects of vortexbreakdown on oxygen transport in a micro-bioreactor[J]. InternationalCommunications in Heat and Mass Transfer,2008,35(9):1141-1146.
    [86] Swim HE P R. Effect of Pluronic F-68on growth of fibroblasts in suspensionon rotary shakers[Z].1960:252-254.
    [87] Bakker W A M, van Can H J L, Tramper J, et al. Hydrodynamics and mixingin a multiple air-lift loop reactor [J]. Biotech Bioeng,1993,42(8):994-1001.
    [88]梁世中.生物工程设备第一版[M].中国轻工业出版社,2002.
    [89] Choi H S, Park H C, Huh C, et al. Numerical simulation of fluid flow and heattransfer of supercritical CO2in micro-porous media[J]. Energy Procedia,2011,4(1):3786-3793.
    [90]谷红岩,李文哲.基于PLC和力控组态软件的沼气生产自动控制系统[J].农机化研究,2011(1):199-202.
    [91]王福军.计算流体动力学分析[M].清华大学出版社,2004:3-16.
    [92]蒋啸靖,夏建业,赵劼,等.生物搅拌反应器内混合情况的CFD模拟及在发酵中的应用[J].化学与生物工程,2008,25(7):54-57.
    [93] C M J, F P, M L P. Computations of flow fields and complex reaction yield inturbulent stirred reactors, and comparison with experimental data[J].Chemical Engineering Research&Design,1986,64(1):18-22.
    [94] H S, W W, Z M. Numerical simulation of the whole three-dimensional flow ina stirred tank with anisotropic algebraic stress model[J]. Chinese Journal ofChemical Engineering,2002,10(1):15-24.
    [95]李波,张庆文,洪厚胜,等.搅拌反应器中计算流体力学数值模拟的影响因素研究进展[J].化工进展,2009,28(1):7-12.
    [96]李遵涛.基于计算流体力学的生物反应器流场模拟及结构优化[D].哈尔滨工业大学硕士学位论文,2008.
    [97] Mousavi S M, Shojaosadati S A, Golestani J, et al. CFD simulation andoptimization of effective parameters for biomass production in a horizontaltubular loop bioreactor[J]. Chemical Engineering and Processing: ProcessIntensification,2010,49(12):1249-1258.
    [98] Zeng Y, Lee T, Yu P, et al. Numerical study of mass transfer coefficient in a3D flat-plate rectangular microchannel bioreactor[J]. InternationalCommunications in Heat and Mass Transfer,2007,34(2):217-224.
    [99] Xia J, Wang S, Zhang S, et al. Computational investigation of fluid dynamicsin a recently developed centrifugal impeller bioreactor[J]. BiochemicalEngineering Journal,2008,38(3):406-413.
    [100]Mousavi S M, Jafari A, Yaghmaei S, et al. Experiments and CFD simulationof ferrous biooxidation in a bubble column bioreactor[J]. Computers&Chemical Engineering,2008,32(8):1681-1688.
    [101]赵卫宁,潘家祯,陈双喜,等.生物搅拌反应器的CFD模拟及在肌苷发酵中的应用[J].华东理工大学学报,2006,32(5):548-551.
    [102]蒋啸靖,夏建业,赵劼,等.生物搅拌反应器内混合情况的CFD模拟及在发酵中的应用[J].化学与生物工程,2008,25(7):54-57.
    [103]刘玉平.搅拌式生物反应器溶解氧性能研究[D].山东大学硕士学位论文,2006.
    [104]PoséS, Kirby A R, Mercado J A, et al. Structural characterization of cell wallpectin fractions in ripe strawberry fruits using AFM[J]. CarbohydratePolymers,2012,88(3):882-890.
    [105]Cai X, Xing X, Cai J, et al. Connection between biomechanics andcytoskeleton structure of lymphocyte and Jurkat cells: An AFM study[J].Micron,2010,41(3):257-262.
    [106]Bremmell K E, Evans A, Prestidge C A. Deformation and nano-rheology ofred blood cells: An AFM investigation[J]. Colloids and Surfaces B:Biointerfaces,2006,50(1):43-48.
    [107]顾树江,纪小龙.观察细胞形态的新工具-原子力显微镜[J].中国实用医药,2008,3(9):136-137.
    [108]Radmacher M, Fritz M, Kacher C M, et al. Measuring the ViscoelasticProperties of Human Platelets with the Atomic Force Microscope[J].Biophysical Journal,1996,70:556-567.
    [109]Schwaiger I. Angelika Kardinal, Michael Schleicher. A mechanical unfoldingintermediate in an Actin-crosslinking protein[Z].2004,81-85.
    [110]Lieber S C, Aubry N, Pain J, et al. Aging increases stiffness of cardiacmyocytes measured by atomic force microscopy nanoindentation[J]. Am JPhysiol Heart Circ Physiol,2004,287(2):H645-H651.
    [111]AA M, NI N, AA B. Local elastic properties of biological material studied bySFM[J]. Proceedings Nizhni Novgorod,2003.
    [112]郑维娟.基于AFM的癌细胞机械特性和表面形貌研究[D].哈尔滨工业大学硕士学位论文,2009.
    [113]于淼.癌细胞纳米力学性能测试方法的研究[D].哈尔滨工业大学硕士学位论文,2010.
    [114]徐洪顺.生物医药领域中的纳米科技[J].浙江化工,2004(12):25-28.
    [115]王莉娟,张英鸽,飒张,等.原子力显微镜对生理溶液中活细胞成像条件的研究[J].电子显微学报,2008,24(1):79-84.
    [116]侯旭,万昌秀,刘子佳,等.组织工程生物反应器的力学环境特点[J].医用生物力学,2005,20(4):260-264.
    [117]何辉,樊瑜波.动物细胞培养用生物反应器及其力学环境[J].生物医学工程学杂志,2004,21(3):498-501.
    [118]Davidson L A. Integrating Morphogenesis with Underlying Mechanics andCell Biology[J].2008,81:113-133.
    [119]Ateshian G A, Morrison III B, Holmes J W, et al. Mechanics of cell growth[J].Mechanics Research Communications,2012,42(1):118-125.
    [120]Lulevich V, Yang H, Rivkah Isseroff R, et al. Single cell mechanics ofkeratinocyte cells[J]. Ultramicroscopy,2010,110(12):1435-1442.
    [121]Lele T P, Sero J E, Matthews B D, et al. Tools to Study Cell Mechanics andMechanotransduction[J].2007,83:441-472.
    [122]Cai X, Xing X, Cai J, et al. Connection between biomechanics andcytoskeleton structure of lymphocyte and Jurkat cells: An AFM study[J].Micron,2010,41(3):257-262.
    [123]Puech P, Poole K, Knebel D, et al. A new technical approach to quantify cell–cell adhesion forces by AFM[J]. Ultramicroscopy,2006,106(8–9):637-644.
    [124]Lekka M, Gil D, Pogoda K, et al. Cancer cell detection in tissue sectionsusing AFM[J]. Archives of Biochemistry and Biophysics,2012,518(2):151-156.
    [125]叶志义,范霞.原子力显微镜在细胞弹性研究中的应用[J].生命科学,2009,21(01):156-162.
    [126]杨柳.原子力显微镜用于细胞表面结构与性质的研究以及单碱基错配的检测[D].湖南大学博士学位论文,2008.
    [127]高万峰,纪小龙.原子力显微镜在细胞形态学中应用的现状和前景[J].中华肿瘤防治杂志,2008,15(06):471-475.
    [128]吴金辉,张西正,郭勇,等.用于组织工程化培养生物反应器的研究进展[J].国外医学.生物医学工程分册,2003(02):63-68.
    [129]Puthli M S, Rathod V K, Pandit A B. Gas–liquid mass transfer studies withtriple impeller system on a laboratory scale bioreactor[J]. BiochemicalEngineering Journal,2005,23(1):25-30.
    [130]Contreras A, Garc a F, Molinaa E, et al. Influence of sparger on energydissipation, shear rate, and mass transfer to sea water in a concentric-tubeairlift bioreactor[J]. Enzyme and Microbial Technology,1999,25(10):820-830.
    [131]Kilonzo P M, Margaritis A, Bergougnou M A. Hydrodynamics and masstransfer characteristics in an inverse internal loop airlift-driven fibrous-bedbioreactor[J]. Chemical Engineering Journal,2010,157(1):146-160.
    [132]Yazdian F, Shojaosadati S A, Nosrati M, et al. Investigation of gas properties,design, and operational parameters on hydrodynamic characteristics, masstransfer, and biomass production from natural gas in an external airlift loopbioreactor[J]. Chemical Engineering Science,2009,64(10):2455-2465.
    [133]Jamshidi A M, Sohrabi M, Vahabzadeh F, et al. Hydrodynamic and masstransfer characterization of a down flow jet loop bioreactor[J]. BiochemicalEngineering Journal,2001,8(3):241-250.
    [134]张波,李文哲,王伟东,等.不同高径比反应器对厌氧发酵产气特性的影响[J].黑龙江八一农垦大学学报,2009,21(2):42-44.
    [135]李滨,周楠,王述洋,等.生物质旋转锥反应器的瞬态传热有限元模拟分析[J].机电产品开发与创新,2010(04):21-22.
    [136]Matsunaga N, Kano K, Maki Y, et al. Culture scale-up studies as seen fromthe viewpoint of oxygen supply and dissolved carbon dioxide stripping[J].Journal of Bioscience and Bioengineering,2009,107(4):412-418.
    [137]Ventini D C, Astray R M, Lemos M A N, et al. Recombinant rabies virusglycoprotein synthesis in bioreactor by transfected Drosophila melanogasterS2cells carrying a constitutive or an inducible promoter[J]. Journal ofBiotechnology,2010,146(4):169-172.
    [138]Ertunc S, Akay B, Boyacioglu H, et al. Self-tuning control of dissolvedoxygen concentration in a batch bioreactor[J]. Food and BioproductsProcessing,2009,87(1):46-55.
    [139]Jin J, Liu G, Shi S, et al. Studies on the performance of a rotating drumbioreactor for bioleaching processes—Oxygen transfer, solids distributionand power consumption[J]. Hydrometallurgy,2010,103(1–4):30-34.
    [140]Kilonzo P M, Margaritis A. The effects of non-Newtonian fermentation brothviscosity and small bubble segregation on oxygen mass transfer in gas-liftbioreactors: a critical review[J]. Biochemical Engineering Journal,2004,17(1):27-40.
    [141]Ranganathan P, Sivaraman S. Investigations on hydrodynamics and masstransfer in gas–liquid stirred reactor using computational fluid dynamics[J].Chemical Engineering Science,2011,66(14):3108-3124.
    [142]Matsunaga N, Kano K, Maki Y, et al. Culture scale-up studies as seen fromthe viewpoint of oxygen supply and dissolved carbon dioxide stripping[J].Journal of Bioscience and Bioengineering,2009,107(4):412-418.
    [143]Cerri M O, Futiwaki L, Jesus C D F, et al. Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor[J]. BiochemicalEngineering Journal,2008,39(1):51-57.
    [144]Van Dyke W S, Sun X, Richard A B, et al. Novel mechanical bioreactor forconcomitant fluid shear stress and substrate strain[J]. Journal of Biomechanics,2012,45(7):1323-1327.
    [145]Abu-Reesh I, Kargi F. Biological responses of hybridoma cells tohydrodynamic shear in an agitated bioreactor[J]. Enzyme and MicrobialTechnology,1991,13(11):913-919.
    [146]Khalili-Garakani A, Mehrnia M R, Mostoufi N, et al. Analyze and controlfouling in an airlift membrane bioreactor: CFD simulation and experimentalstudies[J]. Process Biochemistry,2011,46(5):1138-1145.
    [147]赵学明.搅拌生物反应器的结构模型放大及搅拌器改型[J].化学反应工程与工艺,1996,9(1):12-18.
    [148]Van t Riet K, Tramper J. Basic bioreactor design[M]. Marcel Dekker, N.Y,1991.
    [149]王鹏程,李德群,周华民.玻璃成型工艺数值模拟技术的发展[J].玻璃与搪瓷,2003,31(6):44-46.
    [150]崔旭峰,杜复亮.浅谈曲面玻璃幕墙的实现新方法——冷弯玻璃成型方法[J].才智,2012(7):52.
    [151]王师尹.浮法玻璃成型锡槽中玻璃带的温度与热流分布[J].硅酸盐学报,1987,15(2):19-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700