用户名: 密码: 验证码:
振动离心机系统工作原理与初步设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动离心机是国际上公认的土工抗震研究最先进、最有效的试验设备之一,一些发达国家已经将其应用于岩土动力问题研究中。而我国到目前为止还没有一台大型振动离心机设备,与我国辽阔的地域、复杂的工程地质条件、高速发展的经济建设以及严峻的地震形势极不相称。为此,中国地震局工程力学研究所拟建设一台国内领先、国际先进的大型振动离心机。
     动力离心模型试验设备属于尖端试验技术,离心机、振动台、试验辅助系统等方面均存在难点,振动台研制技术目前仍处于研发和探索阶段,其中垂直+水平2D振动台是世界性难题。目前世界上成功建设的具有水平单向振动台的离心机约20余台,而振动容量10g-t以上振动离心机仅有6台。垂直+水平2D振动台目前能够良好使用的仅有美国NEES系统中UC Davis的振动离心机,其研制花费巨大,且仍存在一些问题。
     本论文目标是为我国和我所振动离心机系统建设提供指导和帮助,完成的工作主要有以下几个方面:
     1.系统地介绍和总结了国内外土工离心机与振动离心机的发展历史以及其应用,阐述了振动离心机系统的基本构成和试验原理,总结了振动离心机系统在机械设计方面的主要特点和应遵循的基本机械设计原则,归纳了当前动力离心模型试验的一些应用及其成果。
     2.阐述了我国大型振动离心机系统建设的必要性,总结了国际振动离心机的发展趋势,以此为基础,提出了我国振动离心机的设计构想和指标要求,最后指出了实现指标的关键问题和技术难点。
     3.根据国际上几个具有代表性振动离心机的离心机系统的构造对比,提出了我所离心机系统设计的详细技术指标和结构布局,分析离心机系统各关键部件的设计难点,提出了其基本设计原则和各关键部件设计建议。同时,阐明了离心机运行功率的计算方法,提出了我所主机室的降温措施及离心机系统的监控系统设计建议。
     4.阐明了振动离心机中振动台系统的特点及技术要点,对比国际现有设备性能指标和结构,分析其优点,指出其缺欠,在此基础上提出了我所振动台结构初步设想和难点。分析了振动台控制系统、液压源系统和安全监控系统组成和要点。
     5.对比国内外振动离心机试验辅助系统发展现状,根据我所设备功能要求,完成了我所试验辅助系统基本设计,包括试验数据采集与摄影摄像观测系统设计要求与要点,振动离心机的模型箱设计构想,制模设备组成和模型制作过程基本原则等。
The centrifugal shaker is internationally acknowledged as the most advanced and the most effective testing equipment in the field of seismic resistance of geotechnical engineering. It has been applied to research fields of geotechnical dynamics by many developed countries. However, China hasn’t constructed a large-scale centrifugal shaker until now, which is remarkably not adaptable to the wide territory, complicated engineering geotechnical conditions, rapid economy growth and serious seismic risks in China. Consequently, the Institute of Engineering Mechanics(IEM), China Earthquake Administration plans to construct a large-scale centrifugal shaker,which will hold a leading position in China and can be comparable with the advanced ones in the world as well.
     The dynamical centrifugal model test is highly-sophisticated testing technology, As difficult points also exist in centrifuges, shakers, and testing auxiliary systems. the manufactural technology of shakers is still under development, and the vertical-horizontal biaxial shaker is a challenging problem in the world. At present, about 20 centrifugal shakers with horizontal uniaxial shakers have been successfully constructed in the world, but only six of them hold the shaking capacity above 10g-t. Furthermore, currently, only UC Davis centrifugal shaker of NEES owns a vertical-horizontal biaxial shaker in the United States which can work well in the world, Some problems of the vertical-horizontal biaxial shaker still exist, though the outlay of its development is quite large.
     Purposes of the thesis are to provide guidance and assistance for construction of centrifugal shaker at IEM and in China. The main works of the thesis are as follows:
     1.It is systematically introduced and summarized that the historical development and applications of geotechnical centrifuge and centrifugal shakers. The basic structure and testing principles of centrifugal shaker are also explained. In addition, the thesis summarizes the main characteristics and basic principles in mechanical layout of centrifugal shakers. Also, it is summarized that the current applications and achievements of dynamical centrifugal model tests.
     2.The thesis explains the necessity of constructing a large-scale centrifugal shaker in China, and summarizes the development trend of centrifugal shakers in the world. Based on these, it is proposed that the design ideas and index demands of centrifugal shakers in China. In addition, the key problems and technical difficulties of obtaining the technical indices are indicated.
     3 . Through contrasting structures of centrifuges of some representative centrifugal shakers in the world, the detailed technical indices and structural layout of the centrifugal shaker at IEM are provided. Analyzing the difficulties of each critical component of the centrifuge at IEM, it is given that the basic principles and advices of the design of each critical component. Meanwhile, the thesis gives advices to the computational method of running power of centrifuges, the measures of cooling in the machine hall and the design of centrifuge monitored control system.
     4.The thesis summarizes characteristics and technical points of shakers in centrifugal shakers. By contrasting and analyzing the performance indices and structures of existing facilities in the world, defects are indicated. Based on works above, the thesis further advances preliminary ideas of the structure and difficulties of the shaker at IEM. In addition, it is also analyzed that the components and points of control system, the hydraulic power system and the safety monitoring system of the shaker.
     5.Through contrasting the development of testing auxiliary system at home and abroad, the basic designs of testing auxiliary system at IEM are accomplished according to the functional requirements of our facilities, including test data acquisition and video cameras system design requirements and points , model containers design ideas , modeling facilities components and modeling basic principles etc.
引文
[1]安培浚,赵纪东编译.美国国家地震减灾计划2008-2012年战略计划介绍[J].科学研究动态检测快报,2008,42:1-6
    [2]白冰,周健.土工离心模型试验技术的一些进展[J].大坝观测与土工测试,2001,25(1):36-39
    [3]包承纲.我国离心模拟试验技术的现状和展望[J].岩土工程学报,1991,13(6):92-97
    [4]包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报,1998,15(2):1-7
    [5]陈正发,刘桂凤.关于土工离心机振动台发展的思考[J].岩土工程界, 2004,7(1):18-19
    [6]陈正发,于玉贞.土工动力离心模型试验研究进展[J].岩石力学与工程学报,2006,25(2):4026-4033
    [7]邓丽军,陈正发,于玉贞等.电液伺服土工离心机振动台数据采集系统开发[J].试验技术与管理,2006,23(8):58-61
    [8]董龙雷,闰桂荣,廖红建.岩土工程中动态离心模型试验技术的应用[J].岩石力学与工程学报,2000,19(6):789-793
    [9]杜延龄.大型土工离心机基本设计原则[J].1993,15(6):10-17
    [10]郭迅.地震工程试验联网最新进展[J].地震工程与工程振动,2006,26(4):37-41
    [11]侯瑜京.LXJ-4-450土工离心机在岩土工程中的应用[J].北京水利,1998,(5):55-56
    [12]侯瑜京.土工离心机振动台及其试验技术[J].中国水利水电科学研究院学报,2006,4(1):15-22
    [13]胡黎明.离心模型试验技术在环境岩土工程中的应用与展望[J].土壤与环境,2001,10(4):327-330
    [14]刘守华.土工离心机的研制与应用.水利水运科学研究[J],1989,(4):60-64
    [15]吕建民,郭玉荣,肖岩.结构远程协同试验研究进展[J].建筑科学与工程学报,2006,23(4):38-43
    [16]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报,1996,18(5):92-94
    [17]濮家骝,李树勤.土工离心模型试验及其在岩土工程中的应用[A].首届全国岩土力学与工程青年工作会议论文集[C],杭州:浙江大学出版社,1992.11-16
    [18]冉光斌.土工离心机及振动台发展概述[J].环境技术,2007,(3):25-29
    [19]饶芳编译.美国国家地震减灾计划中的三大网络系统[J],e-Science 2008,(2):76-77
    [20]茹继平,肖岩.美国地震工程模拟网络系统NEES计划及其在我国试验远程协同结构试验的设想[J].建筑结构学报,2002, 23(6):91-94
    [21]孙锐,袁晓铭,王永志,等.NEES系统中振动离心机最新进展及国内振动离心机发展设想[J].世界地震工程,2010,26(1):31-39
    [22]孙述祖.土工离心机设计综述(一)[J].水利水运科学研究,1991,(1):109-121
    [23]王进廷,金峰,张楚汉.结构抗震试验方法的发展[J].地震工程与工程振动,2005,(25)4:37-43
    [24]王年香,章为民.深层搅拌法加固码头软基离心模型试验研究[J].岩土工程学报,2001,23(5):634-638
    [25]王年香,章为民.混凝土面板堆石坝动态离心模型试验研究[J].岩土工程学报,2003,(4):503-507
    [26]王自法.地震工程研究的科学大平台[J].地震工程与工程振动,2007,27(6):1-9
    [27]吴宏伟,侯瑜京,Vanlaak P.A..饱和堤坝单向及双向动力离心模型试验[A].第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003.1049-1052
    [28]邢建营,邢义川,梁建辉.土工离心模型试验研究的进展与思考[J].水利与建筑工程学报,2005,3(1):27-31
    [29]袁晓铭,地震工程学与地震灾害预防发展规划研究[J].大地测量与地球动力学,2008,28: 80-91
    [30]于玉贞,陈正发.土工离心机振动台系统的发展研究[J].水利水电技术,2005,36(5):19-21
    [31]张建民,于玉贞,濮家骝,等.电液伺服控制离心机振动台系统研制[J].岩土工程学报,2004,26(6):843-845
    [32]张俊,杨志银.土工离心模型试验的发展与应用[J].岩土工程界,2005,8(6)29-30
    [33]章为民,窦宜.土工离心模拟技术的发展[J].南京水利科学研究院水利水运科学研究,1995,(3):294-301
    [34]章为民,赖忠中,徐光明.电液式土工离心机振动台的研制[J].水利水运工程学报,2002,(1):63-66
    [35]张先康等.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异[J].地震地质,2003,(1):53
    [36]周健,刘宁.离心模型试验技术应用的新进展[J].上海地质,2002,(1):52-56
    [37]朱维新.土工离心模型试验研究综述[J].岩土工程学报,1986,(2):82-95
    [38] Aboim, C., R.F. Scott, J.R. Lee and W.H. Roth. Centrifuge Earth Dam Studies:Earthquake Tests and Analyses. Report to National Science Foundation, Grant No. CEE-7926691,1983
    [39] Adalier K., Elgamal A.W.. Experimental results of model No.7 at RPI[A].In: Arulanandan K, Scott R F ed. Proceeding of the International Conference on Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems[C].Rotterdam: A.A.Balkema,1993.799-808.
    [40] Arulanandan K., Canclini J., and Anandarjah A.. Simulation of Earthquake Motion in the Centrifuge[J]. Journal of Geotechnical Division, ASCE.1982.Vol.108.730-742
    [41] Arulanandan K., Scott R.F.. Project VELACS control test results[J]. Journal of the Geotechnical Engineering,ASCE,1993,119(8):1276-1292
    [42] Brandenberg S.J., Boulanger R.W., Kutter B.L., et al. Behavior of Pile Foundations in Laterally Spreading Gground During Centrifuge Tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(11):1378–1391
    [43] B.L.Kutter. Deformation of Centrifuge Models of Clay Embankments Due to‘Bumpy Road’Earthquakes[A]. Pro. of the Conference on Soil Dynamics and Earthquake Engineering, Southampton,1982.Vol.1.331-349
    [44] Daniel W., Ross W., Xin Feng, et al. The NEES Geotechnical Centrifuge at UC Davis[C]. 13WCEE, Canada, 2004
    [45] Dief H.M., Figueroa J.L.. Shake Table Calibration and Specimen Preparation for Liquefaction Studies in the Centrifuge[J]. Geotechnical Testing Journal, 2003,26(4):402-409
    [46] Esposito G., Allersma H.G.B., Selvadural A.P.S.. Centrifuge Modeling of LNAPL Transport in Partially Saturated Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(12): 1066-1071
    [47] Fiegel G.L., Hudson M., Idriss M., Kutter B.L., Zeng X.. Effect of model containers on dynamic soil response[A]. Centrifuge 94[C]. 1994.145-150
    [48] Fujii N., Development of an electromagnetic centrifuge earthquake simulator[A]. In Proc. of Centrifuge[C]. 1991. 351-354
    [49] J.Takemura, A.Takahashi, Y.Aoki. Development of Horizontal-Vertical 2D Shaker in a Centrifuge[A]. Pro. of Centrifuge 2002, 163-168
    [50] P.A.Van Laak, K.Adalier, R.Dobry and A.W.Elgamal. Design of RPI‘s Large Servohydraulic Centrifuge shaker [A]. Pro. of Centrifuge 98,105-110
    [51] http://cgmfileserver.ucdavis.edu/
    [52] http://www.nees.org/
    [53] http://www.nsf.gov/
    [54] Kutter B.L., et al. Design of a Large Earthquake Simulator at UC Davs,Proceedings of Centrifuge[C]. International Conference on Centrifuge Modeling,Singapore,1994
    [55] Kutter B.L., James R.G.. Dynamic Centrifuge Model Tests on Clay Embankments[J]. Geotechnique,1989,39(1):91-106
    [56] Lenart Gonzalez, Tarek Abdoun, et al. Physical Modeling and Visualization of Soil Liquefaction under High Confining Stress. Earthquake Engineering and Engineering Vibration[J]. 2005. Vol.4, No.1
    [57] Ling H.I., Liu H., Kaliakin V.N., et al. Analyzing Dynamic Behavior of Geosynthetic-reinforced Soil Retaining Walls[J]. Journal of Engineering Mechanics, 2004, 130(8):911-920
    [58] Madabhushi S.P.G., Schofield A.N.. Simulation of Earthquake in a Geotechnical Centrifuge[J], Proceedings of the International Conference on Earthquake Geotechnical Engineering, ISTokyo’95,Tokyo,Japan,1995
    [59] Peires L.M.N.. Centrifuge Modeling of Rock-fill Embankments on Deep Loose Saturated Sand Deposits[PH D thesis][D], University of Cambridge, UK.1998
    [60] S.J.Bradenberg, R.W.Boulanger, B.L.Kutter, et al. Load Transfer Between Pile Groups and Laterally Spreading Ground During Earthquakes[C]. 13WCEE, Canada, 2004
    [61] Takemura J., Izawa J.. Horizontal-vertical Two-dimensional Shaker in a Centrifuge[A]. In Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground[C]. 2006. 268-281
    [62] Takemura J, Takahashi A, Aoki Y. Development of horizontal-vertical 2D shaker in a centrifuge. In: R.Phllips, P.J.Guo & R.Popescu eds[J]. Physical Modeling in Geotechnics: ICPMG’02. Cannda:163-168
    [63] Tani K., Craig W.H.. Development of Centrifuge Cone Penetration Test to Evaluate the Undrained Shear Strength Profile of a Model Clay Bed. Soils and Foundations. 1995,35(2):37-47
    [64] Tani K.and Craig W.H.. Shake Down Physical Modeling of Huge Foundations Subjected to Wave Loading[C], Proceeding of 39th Symposium of JSSMFE, Japan,1993
    [65] Taylor R.N.. Geotechnical Centrifuge Technology[M].Glasgow,UK:Blackie Academic and Profeesional,1995.168-169
    [66] T.Kimura, J.Takemura and K.Saitoh.. Development of a Simple Mechanical Shaker Using a Cam Shaft[A]. Pro. of Centrifuge 88,107-110
    [67] T.Shibata, K.Kita. Geotechnical Centrifuge Model Testing and Its Application to Dynamic Problems[J].Japan Society for Natural Disaster Science 1992
    [68] Van Laak P.A., Elgamal A.W., Dobry R.. Design and Performance of An Electrohydraulic Shaker for the RPI Centrifuge [A]. Centrifuge 94 [C], 1994:139-144
    [69] Van Laak P.A., Taboada V.M., Dobry R., et al. Earthquake Centrifuge Modeling using a Laminar Box[A]. In Dynamic Geotechnical Testing[C],1994. 370-384
    [70] Zelikson A., Devaure B. and Badel D.. Scale Modeling of Soil Structure Interaction During Earthquake Using a Programmed Series of Explosions During Centrifuge[J]. Proc. Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,1981.Vol.1,361-366
    [71] Zeng X., Schofield A.N., Design and performance of an equivalentshear- beam container for earthquake centrifuge modeling[J]. Geotechnique,1996,46(1):83–102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700