用户名: 密码: 验证码:
HZSM-5分子筛负载稀土复合氧化物催化剂上CVOCs催化氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含卤VOCs是VOCs中对大气环境的危害尤为显著的一类污染物,卤代烃类尤其是氯代烃类(CVOCs)不仅可以破坏大气的臭氧层(1个Cl自由基最多可消耗106个臭氧分子),而且对人类的身体健康和生态造成持久的、积累性的影响。CVOCs由于具有良好的溶解性能和反应惰性而作为一种重要的化工原料和有机溶剂被广泛地应用。国内外关于含氯有机化合物的消除方法,主要包括热消除、生物学处理、光催化降解、加氢脱氯等,其中催化氧化净化以转化温度低、选择性高而成为最经济、最可靠的方法,在消除CVOCs方面的应用也愈来愈受到人们的关注。氯代烃类与非氯代烃类的催化氧化区别在于C-Cl的断裂取代了C-H的断裂,虽然从热力学上分析C-C1的断裂应该更有利,但所生成的C1可强吸附在催化剂的表面上,一方面更容易导致催化剂的失活,另一方面生成的C12可与烃类反应生成多氯烃类,造成二次污染。
     本论文中,我们选择HZSM-5分子筛为载体,比较系统地研究了硅铝比对HZSM-5及其负载Ce02催化剂上DCE催化氧化性能的影响。在此基础上,研究了掺杂过渡金属MOx(M=Cr、Mn、Fe、Co、Ni和Cu)对CeO2/HZSM-5催化剂上DCE氧化性能的影响和规律,探讨了CrOx-CeO2/HZSM-5催化剂上DCE、DCM和TCE催化降解机理。同时利用XRD、N2吸脱附、H2-TPR、NH3-TPD、DCE-TPSR等手段对负载型催化剂的织构-结构、氧化还原性质和表面酸性等进行了表征分析,得到了如下结果:
     1.对比研究了不同硅铝比的HZSM-5分子筛及其负载Ce02催化剂上DCE的催化氧化性能。结果表明,低硅铝比(SiO2/Al2O3=22)的HZSM-5(22)分子筛及其负载Ce02催化剂对DCE的催化降解活性最高。Ce02与HZSM-5之间的相互作用明显提高了氧物种的流动性,同时也增加了催化剂中弱酸与强酸的密度比例,从而提高了DCE脱氯生成C2H3C1的能力及其中间产物的深度氧化。
     2.对比研究了9%M/HZSM-5(22)和9%M-12%CeO2/HZSM-5(22)催化剂上DCE的催化降解性能。结果表明,与其单组分的9%M/HZSM-5(22)催化剂的催化降解活性比较,掺杂Ce02对9%Ni/HZSM-5(22)和9%Cu/HZSM-5(22)上DCE的降解活性有所下降,而对9%Cr/HZSM-5(22)催化剂的活性却有明显提高。9%M-12%CeO2/HZSM-5(22)催化剂对DCE的催化降解活性顺序为:9%Ni-12%CeO2/HZSM-5(22)> 9%Co-12%CeO2/HZSM-5(22)、9%Mn-12%CeO2/ HZSM-5(22)> 9%Cu-12%CeO2/HZSM-5(22)、9%Cr-12%CeO2/HZSM-5(22)> 9%Fe-12%CeO2/HZSM-5(22)> 12%CeO2/HZSM-5(22)。弱酸和中强酸位密度的增加对DCE脱氯生成C2H3C1有明显的促进作用。但掺杂Cu、Co和Mn的催化剂上生成了较多的C2HCl3和C2C14等多氯副产物,而掺杂Ni的催化剂上生成了较多的CH3Cl副产物,这可能与其金属阳离子的强酸性位有关。过渡金属与Ce02的共同掺杂,提供了活性氧物种及提高了其流动性,有利于提高DCE的深度氧化性能,尤其Cr的添加显著提高了中间产物C2H3C1进一步脱氯降解的能力,避免了多氯副产物和CH3Cl副产物的产生。
     3.比较研究了9%Cr-12%CeO2/HZSM-5(22)、9%Cr/HZSM-5(22)、12%CeO2/ HZSM-5(22)和HZSM-5(22)催化剂上各活性组分之间的协同作用对催化降解性能的影响及催化剂的稳定性。结果表明,由于CrOx-CeO2的相互作用,有助于活性组分的稳定,并促进了活性氧物种的流动性,从而有效地避免了积炭的形成和活性组分的流失,显著提高了CrOx-12%CeO2/HZSM-5(22)催化剂的活性和稳定性。不同反应物在9%Cr-12%CeO2/HZSM-5(22)催化剂上的反应活性顺序为:DCE>TCE>DCM。
Halogenated hydrocarbons, especially chlorinated volatile organic compounds (CVOCs), constitute a significant fraction of toxic air containments. They not only can destroy the ozone layer (one free radical of Cl consumes a maximum of 106 molecules of O3), but also cause long-lasting and cumulative effects on human health and the ecological system. Chlorinated hydrocarbons have been widely used as industrial chemicals and organic solvents because of their relative inertness in chemical processes and their ability to dissolve many compounds. Various disposal methods have been investigated for the abatement of CVOCs world-wide, mainly are thermal incineration, biological degradation, photocatalytic degradation, hydrodechlorination et. al. Catalytic oxidation has gained much attention as the most economic and efficient technique for CVOCs destruction due to its lower conversion temperature and higher selectivity. The difference between catalytic oxidation of chlorinated hydrocarbons and non-chlorinated hydrocarbons is the replacement of C-H bond breaking by C-Cl bond breaking. It is known that the cleavage of C-Cl bond is more easily through thermal analysis. However, the strong adsorption of Cl species on the catalyst surface not only causes the deactivation of catalyst, but also results in the production of polychlorinated hydrocarbons, which will lead to the secondary pollution.
     In this paper, HZSM-5 zeolite was chosen as the support, the influences of different SiO2/Al2O3 ratios and the introduction of CeO2 to HZSM-5 on the catalytic performance for DCE destruction were systematically studied. Based on the above results, further investigation of the effect of transition metal oxides MOX (M=Cr, Mn, Fe, Co, Ni and Cu) added to CeO2/HZSM-5 catalysts on the catalytic performance for DCE destruction was done. Moreover, the mechanisms of catalytic decomposition of DCE, DCM and TCE over CrOx-CeO2/HZSM-5 catalysts were also studied. The texture-structure, surface acidity distribution and redox properties of these catalysts were characterized by XRD, N2 adsorption/desorption, NH3-TPD, H2-TPR and DCE-TPSR techniques. Some specific conclusions from this work are drawn as follows:
     1. Catalytic performances for DCE destruction over HZSM-5 zeolites with different SiO2/Al2O3 ratios and CeO2/HZSM-5 catalysts were studied. The results show that HZSM-5(22) and CeO2/HZSM-5(22) exhibit the highest catalytic activity. The interactions between CeO2 and HZSM-5 improve the migration of oxygen species and increase the ratio of strong acid concentration to weak acid concentration, which promote the dehydrochlorination of DCE to form C2H3Cl and the deep oxidation of the intermediates.
     2. The catalytic performances for DCE destruction over 9%M/HZSM-5(22) and 9%M-12%CeO2/HZSM-5(22) catalysts were investigated. It is found that the addition of CeO2 to 9%Ni/HZSM-5(22) and 9%Cu/HZSM-5(22) catalysts causes a decline in catalytic activity, whereas the catalytic performance of 9%Cr-12%CeO2/HZSM-5(22) is significantly prompted compared with that of 9%Cr/HZSM-5(22). The sequence of the catalytic activity of 9%M-12%CeO2/HZSM-5(22) catalysts for DCE destruction is as follows:9%Ni-12%CeO2/HZSM-5(22)> 9%Co-12%CeO2/HZSM-5(22), 9%Mn-12%CeO2/HZSM-5(22)> 9%Cu-12%CeO2/HZSM-5(22),9%Cr-12%CeO2/ HZSM-5(22)> 9%Fe-12%CeO2/HZSM-5(22)> 12%CeO2/HZSM-5(22). With regard to the production of intermediates, the increasing concentration of weak and medium strong acid sites promotes the formation of C2H3Cl from dehydrochlorination of DCE. Due to the strong acidity of metal cations, large amount of C2HCl3 and C2Cl4 are generated over Cu, Co and Mn impregnated catalysts, and more CH3Cl is formed over Ni contained catalysts. The co-existence of transition metal oxides and CeO2 improves the mobility of active oxygen species in the catalysts, which is in favor of the deeper oxidation of DCE. The doping of Cr significantly improves the further dehydrochlorination of C2H3C1 and inhibits the formation of polychlorinated by-products.
     3. The influence of the synergy between active phases on the catalytic performance and the stability of 9%Cr-12%CeO2/HZSM-5(22),9%Cr/HZSM-5(22),12%CeO2/ HZSM-5(22) and HZSM-5(22) catalysts were studied. The results indicate that the interactions between CrOx and CeO2 avoid coke deposition and loss of active components, since they stabilize the active components and prompt the mobility of active oxygen species. Consequently,9%Cr-12%CeO2/HZSM-5(22) shows the best catalytic activity and stability. The catalytic activity for the oxidation of different CVOCs over 9%Cr-12%CeO2/HZSM-5(22) is displayed as follows:DCE> TCE> DCM.
引文
[1]T.K. Tseng, H. Chu, The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst, Sci. Tot. Environ.,2001,275:83-93.
    [2]M. Harper, Sorbent trapping of volatile organic compounds from air, J. Chromatography A,2000,885:129-151.
    [3]吴忠标,大气污染控制技术,北京:化学工业出版社,2002.
    [4]王学海,方向晨,国外催化燃烧含氯挥发性有机物催化剂研究进展,当代化工,2008,37:46-48.
    [5]洪紫萍,挥发性有机化合物的污染与防治,环境污染与防治,1994,154:24-26.
    [6]A.D. Cortese, Clearing the air, Environ. Sci. Technol.,1990,24:442-448.
    [7]A. William, D.O. Karen, Ambient level volatile organic compound (VOC) monitoring using solid adsorbents-recent US EPA studies, Environ. Monit.,2002,4: 695-703.
    [8]国家环境保护局,大气污染物综合排放标准详解,北京:中国环境科学出版社,1997.
    [9]J. Pires, A. Cvaralho, M.B. Cvaralho, Adsorption of volatile organic compounds in Y zeolites and pillared clays, Microporous Mesoporous Mater.,2001,43:277-280.
    [10]吴永文,李忠,奚红霞等,VOCs污染控制技术与吸附催化材料,,离子交换与吸附,2003,19:88-95.
    [11]闫勇,有机废气中VOCs的回收方法,化工环保,1997,6:332-336.
    [12]陈平,陈俊,挥发性有机化合物的污染控制,石油化工环境保护,2006,29:20-23.
    [13]V.S. Engleman. Updates on choices of appropriate technology for control of VOC emissions, Metal finishing,2000,98:433-450.
    [14]J.G. Wijmans. A membrance system for separation and recovery of organic vapors from gas stream. AIChE Symposium Series[C]. New York,1989,74-85.
    [15]闫勇,有机废气中挥发性有机物(VOC)的净化回收技术,化工进展,1996,5:26-28.
    [16]张宇峰,邵春燕,张雪英等,挥发性有机化合物的污染控制技术,南京工业大学学报,2003,25:89-92.
    [17]陈宜菲,陈少瑾,光催化氧化法降解含氯有机物的研究进展,河北化工,2008,31:25-28.
    [18]段晓东,孙德智,胡松涛,光催化氧化法处理挥发性有机物研究进展,哈尔滨建筑大学学报,2002,35:55-59.
    [19]L. Stevens, C.Y. Ma, M. Gurdian, Investigation of the photo-catelytic oxidation of low-level carbonyl compounds. J. Air Waste Manage. Assoc.,1998,48:979-984.
    [20]G. Raupp, Photocatalytic oxidation oxygenated air toxics. Appl. Surf. Sci.,1993, 72:321-332.
    [21]G. Dinelli, L. Civitano, M. Rea, Industrial experiments on pluse corona simultaneous removal of NOx and SO2 from flue gas. IEEE IAS Annual Meeting, 1998,1620-1627.
    [22]T. Torimoto, Effect of activated carbon on photodegradation behaviors of dichloromethane. J. Photochem. Photobiol. A,1997,103:153-157.
    [23]安莹玉,兴文,凤林,有机废气生物处理技术现状与展望,四川环境,2006,25:65-69.
    [24]吕唤春,潘洪明,陈英旭,低浓度挥发性有机废气的处理进展,化工环保,2001,21:324-327.
    [25]张晓辉,国外生物过滤器处理化工有机废气进展,化工环保,1999,19:84-88.
    [26]王家德,陈建孟,唐翔宇,有机废气的生物处理概述,上海环境科学,1998,17:21-24.
    [27]J.H. Okkersew, S.P.P. Otiengiaf, B. Osinga-Kuioers, Accumulation and clogging in biotreating filters for waste gas treatment, Biotechnol. Bioeng,1999,63:418-530.
    [28]朱伟,刘建新,石油化工中有机废气处理研究进展,化工时刊,2008,22:71-75.
    [29]王艳芳,沙昊雷,於建明,低浓度VOCs废气处理技术进展,能源环境保护,2007,21:8-11.
    [30]李锻,刘明辉,吴彦等,双极性脉冲高压介质阻挡放电降解氯苯和甲苯, 中国环境科学,2006,26:23-26.
    [31]孙德智等编著,环境工程中的高级氧化技术[M],北京:化学工业出版社,2002.
    [32]王军,沈美庆,王晓玲,燃烧法控制有机废气污染的催化剂性能研究,燃烧科学与技术,2001,7:242-244.
    [33]胡智华,祝建中,李宗宝,新型转式垃圾焚烧炉焚烧技术研究,环境污染与防治,2005,17:131-135.
    [34]徐睁颖,生活垃圾焚烧处理技术,城市环境与城市生态,2005,6:43-45.
    [35]J.J. Spivey, Complete catalytic oxidation of volatile organics, Ind. Eng. Chem. Res.,1987,26:2165-2180.
    [36]孟丹,祁永智,丁瑞星,有机废气的催化燃烧,洛阳工学院学报,2000,21:91-94.
    [37]何毅,王华,李光明,赵修华,赵健夫,有机废气催化燃烧技术,江苏环境科技,2004,1:35-38.
    [38]符嫦娥,吸附-催化燃烧含氯挥发性有机物催化剂的研究进展,云南化工,2009,36:32-34.
    [39]王学海,方向晨,国外催化燃烧含氯挥发性有机物催化剂研究进展,当代化工,2008,37:46-48.
    [40]R.W. Van den Brink, R. Louw, P. Mulder, Formation of chlorobenzene using a Pt/γ-Al2O3 catalyst, Appl. Catal. B,1998,16:219-226.
    [41]R. W. van den Brink, M. Krzan, M. M. R. Feijen-Jeurissen, R. Louw, P. Mulder, The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts, Appl. Catal. B,2000,24:255-264.
    [42]M. Taralunga, J. Mijoin, P. Magnoux, Catalytic destruction of chlorinated POPs-Catalytic oxidation of chlorobenzene over PtHFAU catalysts, Appl. Catal. B, 2005,60:163-171.
    [43]J.R. Gonzalez-Velasco, A. Aranzabal, J.I. Gutierrez-Ortiz, R. Lopez-Fonseca, M.A. Gutierrez-Ortiz, Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons, Appl. Catal. B,1998,19:189-197.
    [44]V. de Jong, M.K. Cieplik, W.A. Reints, F. Fernandez-Reino, R. Louw, A mechanistic study on the catalytic combustion of benzene and chlorobenzene, J. Catal,2002,211:355-365.
    [45]R.W. van den Brink, R. Louw, P. Mulder, Increased combustion rate of chlorobenzene on Pt/Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide, Appl. Catal. B,2000,25:229-237.
    [46]J.R. Gonzalez-Velasco, A. Aranzabal, R. Lopez-Fonseca, R. Ferret, J.A. Gonzalez-Marcos, Enhancement of the catalytic oxidation of hydrogen-lean chlorinated VOCs in the presence of hydrogen-supplying compounds, Appl. Catal. B, 2000,24:33-43.
    [47]L.F. Wang, M. Sakurai, H. Kameyama, Catalytic oxidation of dichloromethane and toluene over platinum alumite catalyst, J. Hazard. Mater.,2008,154:390-395.
    [48]T.F. Garetto, C.I. Vignatti, A. Borgna, A. Monzon, Deactivation and regeneration of Pt/Al2O3 catalysts during the hydrodechlorination of carbon tetrachloride, Appl. Catal. B,2009,87:83-94.
    [49]M.M.R. Feijen-Jeurissen, J.J. Jorna, B.E. Nieuwenhuys, G. Sinquin, C. Petit, Jean-Paul Hindermann, Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts, Catal. Today,1999,54:65-79.
    [50]Y. Liu, M.F. Luo, Catalytic oxidation of chlorobenzene on support manganese oxide catalysts, Appl. Catal. B,2001,29:61-67.
    [51]崔龙哲,丁泰燮,尹炳硕,过渡金属催化剂对邻二氯苯的催化氧化研究,环境科学与技术,2004,27:22-24.
    [52]F. Bertinchamps, C. Gregoire, E.M. Gaigneaux, Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics Part Ⅱ:Influence of the nature and addition protocol of secondary phases to VOx/TiO2, Appl. Catal. B,2006,66:10-22.
    [53]J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, S. Martin, J.R. Gonzalez-Velasco, Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons, Chemosphere,2007,68: 1004-1012.
    [54]M. Kulazynski, J.G. van Ommenb, J. Trawczynski, J. Walendziewski, Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts, Appl. Catal. B, 2002,36:239-247.
    [55]M. Tajima, M. Niwa, Y. Fujii, Y. Koinuma, R. Aizawa, S. Kushiyama, S. Kobayashi, K. Mizuno, H. Ohuchi, Decomposition of chlorofluorocarbons in the presence of water over zeolite catalyst, Appl. Catal. B,1996,9:167-177.
    [56]R. Lopez-Fonseca, A. Aranzabal, P. Steltenpohl, J.I. Gutierrez-Ortiz, J.R. Gonzalez-Velasco, Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane, Catal. Today,2000,62:367-377.
    [57]J. R. Gonzalez-Velasco, R. Lopez-Fonseca, A. Aranzabal, J.I. Gutierrez-Ortiz, P. Steltenpohl, Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds, Appl. Catal. B,2000,24:233-242.
    [58]R. Lopez-Fonseca, A. Aranzabal, J.I. Gutierrez-Ortiz, J.I. Alvarez-Uriarte, J.R. Gonzalez-Velasco, Comparative study of the oxidative decomposition of trichloroethylene over H-type zeolites under dry and humid conditions, Appl. Catal. B, 2001,30:303-313.
    [59]R. Lopez-Fonseca, J.I. Gutierrez-Ortiz, M.A. Gutierrez-Ortiz, J.R. Gonzalez-Velasco, Dealuminated Y zeolites for destruction of chlorinated volatile organic compounds, J. Catal.,2002,209:145-150.
    [60]R. Lopez-Fonseca, B. de Rivas, J.I. Gutierrez-Ortiz, A. Aranzabal, J. R. Gonzalez-Velasco, Enhanced activity of zeolites by chemical dealumination for chlorinated VOC abatement, Appl. Catal. B,2003,41:31-42.
    [61]L. Intriago, E. Diaz, S. Ordonez, A. Vega, Combustion of trichloroethylene and dichloromethane over protonic zeolites:Influence of adsorption properties on the catalytic performance, Microporous Mesoporous Mater.,2006,91:161-169.
    [62]A. Aranzabal, J.A. Gonzalez-Marcos, M. Romero-Saez, J.R. Gonzalez-Velasco, M. Guillemot, P. Magnoux, Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane),Appl. Catal. B,2009,88:533-541.
    [63]H.L. Greene, D.S. Prakash, K.V. Athota, Combined sorbent/catalyst media for destruction of halogenated VOC, Appl. Catal. B,1996,7:213-224.
    [64]J.I. Gutierrez-Ortiz, R. Lopez-Fonseca, U. Aurrekoetxea, J.R. Gonzalez-Velasco, Low-temperature deep oxidation of dichloromethane and trichloroethylene by H-ZSM-5-supported manganese oxide catalysts, J. Catal.,2003,218:148-154.
    [65]J.M. Zhou, L. Zhao, Q.Q. Huang, R.X. Zhou, Catalytic activity of Y zeolite supported CeO2 catalysts for deep oxidation of 1,2-dichloroethane (DCE), Catal. Lett, 2009,127:277-284.
    [66]X.L. Tang, B.C. Zhang, Y. Li, YD. Xu, Q. Xin, W.J. Shen, Carbon monoxide oxidation over CuO/CeO2 catalysts, Catal.Today,2004,93:191-198.
    [67]X.T. Sayle, S.C. Parkerb, D.C. Sayle, Oxidising CO to CO2 using ceria nanoparticles, Phys. Chem. Chem. Phys.,2005,7:2936-2941.
    [68]S.S. Lin, D.J. Chang, C.H. Wang, C.C. Chen, Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions, Water Res.,2003,37:793-800.
    [69]C.H. Wang, S.S. Lin, Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons, Appl. Catal. A,2004,268:227-233.
    [70]Q.G. Dai, X.Y. Wang, G.Z Lu, Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide, Catal. Commun.,2007,8:1645-1649.
    [71]Q.G. Dai, X.Y. Wang, G.Z Lu, Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation, Appl. Catal. B,2008, 81:192-202.
    [72]X.Y. Wang, Q. Kang, D. Li, Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts, Appl. Catal. B,2009,86:166-175.
    [73]X.Y. Wang, Q. Kang, D. Li, Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts, Catal. Commun.,2008,9: 2158-2162.
    [74]J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, Combustion of aliphatic C2 chlorohydrocarbons over ceria-zirconia mixed oxides catalysts, Appl. Catal. A,2004,269:147-155.
    [75]J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions, Appl. Catal. B,2006,65:191-200.
    [76]B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, J.I. Gutierrez-Ortiz, On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts, J. Mol. Catal. A,2007,278:181-188.
    [77]罗斯,王晓栋,高树梅,秦良,季力,杨旭曙,王连生,纳米双金属体系催化降解有机氯化物研究进展,环境科学与技术,2009,32:72-75.
    [1]U. Quaβ, M. Fermann, G. Broker, The European Dioxin Air Emission Inventory Project-Final results, Chemosphere,2004,54:1319-1327.
    [2]G.J. Hutchings, S.H. Taylor, Designing oxidation catalysts, Catal. Today,1999, 49:105-113.
    [3]S. Minico, S. Scire, C. Crisafulli, R. Maggiore, S. Galvagno, Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts, Appl. Catal. B,2000,28: 245-251.
    [4]J. R. Gonzalez-Velasco, R. Lopez-Fonseca, A. Aranzabal, J.I. Gutierrez-Ortiz and P. Steltenpohl, Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds, Appl. Catal. B,2000,24:233:242.
    [5]R. Lopez-Fonseca, A. Aranzabal, P. Steltenpohl, J.I. Gutierrez-Ortiz, J.R. Gonzalez-Velasco, Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane, Catal. Today,2000,62:367-377'.
    [6]L. Intriago, E. Diaz, S. Ordonez, A. Vega, Combustion of trichloroethylene and dichloromethane over protonic zeolites:Influence of adsorption properties on the catalytic performance, Microporous Mesoporous Mater.,2006,91:161-169.
    [7]R. Lopez-Fonseca, J.I. Gutierrez-Ortiz, M.A. Gutierrez-Ortiz, J.R. Gonzalez-Velasco, Dealuminated Y zeolites for destruction of chlorinated volatile organic compounds, J. Catal.,2002,209:145-150.
    [8]H.L. Tuller, P.K. Moon, Fast ion conductors:future trends, Mater. Sci. Eng. B, 1998,1:171-191.
    [9]Q.G. Dai, X.Y. Wang, G.Z Lu, Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation, Appl. Catal. B,2008, 81:192-202.
    [10]J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, Combustion of aliphatic C2 chlorohydrocarbons over ceria-zirconia mixed oxides catalysts, Appl. Catal. A,2004,269:147-155.
    [11]J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, Effect of the presence of n-hexane on the catalytic combustion of chlororganics over ceria-zirconia mixed oxides, Catal. Today,2005,107-108:933-941.
    [12]J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions, Appl. Catal. B,2006,65:191-200.
    [13]B. de Rivas, J.I. Gutierrez-Ortiz, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides, Appl. Catal. B,2006,314:54-63.
    [14]B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, J.I. Gutierrez-Ortiz, On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts, J. Mol. Catal. A:Chem.,2007,278:181-188.
    [15]S. Brunauer, L.S. Demming, W.S. Demming, E.J. Teller, A theory of the van der Waals adsorption of gases, J. Am. Chem. Soc.,1940,62:1723-1732.
    [16]Wenjuan Shan, Zhaochi Feng, Zhonglai Li, Jing Zhang, Wenjie Shen, Can Li, Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods, J. Catal.,2004,228:206-217.
    [17]C. Bigey, L. Hilaire, G. Maire, WO3-CeO2 and Pd/WO3-CeO2 as Potential Catalysts for Reforming Applications:Ⅰ. Physicochemical Characterization Study, J. Catal.,2001,198:208-222.
    [18]C. Resini, T. Montanari, L. Nappi, G. Bagnasco, M. Turco, G. Busca, F. Bregani, M. Notaro, G. Rocchini, Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation and catalytic activity, J. Catal.,2003,214:179-190.
    [19]C.A. Vogel, H.L. Greene, Development of transition metal oxide-zeolite catalysts to control chlorinated VOC air emissions, Stud. Environ. Sci.,1994,61:469-477.
    [20]L. Becker, H. Forster, Oxidative Decomposition of Chlorobenzene Catalyzed by Palladium-Containing Zeolite Y, J. Catal.,1997,170:200-203.
    [21]V. de Jong, M.K. Cieplik, W.A. Reints, F. Fernandez-Reino, R. Louw, A mechanistic study on the catalytic combustion of benzene and chlorobenzene, J. Catal.,2002,211:355-365.
    [22]R. Lopez-Fonseca, J.I. Gutierrez-Ortiz, M.A. Gutierrez-Ortiz, J.R. Gonzalez-Velasco, Dealuminated Y Zeolites for Destruction of Chlorinated Volatile Organic Compounds, J. Catal.,2002,209:145-150.
    [23]R.W. Van den Brink, R. Louw, P. Mulder, The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts, Appl. Catal. B,2000,24:255-268.
    [24]A. Musialik-Piotrowska, K. Syczewska, Catalytic oxidation of trichloroethylene in two-component mixtures with selected volatile organic compounds, Catal. Today, 2002,73:333-342.
    [25]S.D. Yim, K-H. Chang, D.J. Koh, I.S. Nam, Y.G. Kim, Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts, Catal. Today, 2000,63:215-222.
    [26]J.I. Gutierrez-Ortiz, R. Lopez-Fonseca, U. Aurrekoetxea, J.R. Gonzalez-Velasco, Low-temperature deep oxidation of dichloromethane and trichloroethylene by H-ZSM-5-supported manganese oxide catalysts, J. Catal.,2003,218:148-154.
    [27]D.H. Cho, Y.G. Kim, M.J. Chung, J.S. Chung, Preparation and characterization of magnesia-supported chromium catalysts for the fluorination of 1,1,1-trifluoro-2-chloroethane (HCFC-133a), Appl.Catal. B,1998,18:251-261.
    [28]S.H. Kang, J.W. Bae, P.S. Sai Prasad, K.W. Jun, Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons, Catal. Lett., 2008,125:264-270.
    [29]Moon Hyeon Kim, Kwang-Ho Choo, Low-temperature continuous wet oxidation of trichloroethylene over CoOx/TiO2 catalysts, Catal. Commun.,2007,8:462-466.
    [30]H.G. El-Shobaky, Surface and catalytic properties of Co, Ni and Cu binary oxide systems, Appl. Catal. A,2004,278:1-9.
    [31]朱波,陈平,罗孟飞,袁贤鑫,吴红丽,吕光烈,CuO-Ag2O/γ-A1203催化剂的TPR特性及氧化活性的研究,ACTA CHEMICA SINIC,1997,55:42-48.
    [32]A.M. Diskin, R.H. Cunningham, R.M. Ormerod, The oxidative chemistry of methane over supported nickel catalysts, Catal. Today,1998,46:147-154.
    [33]王开,季生福,李秀金,张美丽,万会军,李成岳,Ni/SBA-15/Al2O3/FeCrAl金属基结构化催化剂及其催化性能研究,中国科技论文在线,2007,8:612-616.
    [34]周玮,房克功,陈建刚,孙予罕,在Co/SiO2作催化剂的Fischer-Tropsch反应中温度对合成气吸附行为及稳定性的影响,高等学校化学学报,2006,6:1080-1085.
    [35]D. Schanke, S. Vada, E.A. Blekkan, A.M. Hilmen, A. Hoff, A. Holmen, Study of Pt-promoted cobalt Co hydrogenation catalysts, J. Catal.,1995,156:85-95.
    [36]陈开东,范以宁,郭明,颜其洁,氧化锆负载氧化铁催化剂上CO加氢反应的研究,分子催化,1995,9:451-456.
    [37]Qinqin Huang, Xiaomin Xue, Renxian Zhou, Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts:Effect of acidity and redox property on the catalytic behavior, J. Hazard. Mater.,2010,18:694-700.
    [38]A. Aranzabal, J.A. Gonzalez-Marcos, M. Romero-Saez, J.R. Gonzalez-Velasco,. M. Guillemot, P. Magnoux, Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane), Appl. Catal. B,2009,88:533-541.
    [39]R. Rachapudi, P.S. Chintawar, H.L. Greene, Aging and structure/activity characteristics of Cr-ZSM-5 Catalysts during exposure to chlorinated VOCs, J. Catal., 1999,185:58-72.
    [40]R.W. van den Brink, P. Mulder, R. Louw, G. Sinquin, C.Petit, J.P. Hindermann, Catalytic oxidation of dichloromethane on γ-Al2O3:A combined flow and infrared spectroscopic study, J. Catal.,1998,180:153-160.
    [41]K. Ramanathan, J.J. Spivey, Catalytic oxidation of 1,1-dichloroethane, Combust. Sci.Tech.,1989,63:247-255.
    [42]G. Sinquin, C. Petit, S. Libs, J.P. Hindermann, A. Kiennemann, Catalytic destruction of chlorinated C2 compounds on a LaMnO3+δ perovskite catalyst, Appl. Catal. B,2001,32:37-47.
    [43]M.M.R. Feijen-Jeurissen, J.J. Jorna, B.E. Nieuwenhuys, G. Sinquin, C.Petit, J.P. Hindermann, Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts, Catal. Today,1999,54:65-79.
    [44]B. Ramachandran, H.L. Greene, S. Chatterjee, Decomposition characteristics and reaction mechanisms of methylene chloride and carbon tetrachloride using metal-loaded zeolite catalysts, Appl. Catal. B,1996,8:157-182.
    [45]B. de Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, J.I.Gutierrez-Ortiz, Adsorption and oxidation of trichloroethylene on Ce/Zr mixed oxides:In situ FTIR and flow studies, Catal. Commun.,2008,9:2018-2021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700