用户名: 密码: 验证码:
基于ARM的光纤Bragg光栅传感信号解调方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤Bragg光栅(FBG)传感器以其优异的电气绝缘性以及抗电磁干扰、抗腐蚀、灵敏度高、体积小、重量轻等优点,被广泛应用于大型复合材料和混凝土的结构监测、智能材料的性能监测、电力、医药和化工等多个领域,是目前光纤传感领域的一个研究热点。而FBG传感信号解调技术的研究又是FBG传感领域的重点和难点,并引起人们更多的关注。目前国内不少部门和研究单位对其解调技术进行了很多研究,但是大多数处于实验室研究阶段,离实用化、工程化、产品化的标准还有相当距离。针对上述问题,本文进行了光纤光栅传感解调技术的研究,具体工作如下:
     详细地介绍了光纤光栅传感解调技术的国内外研究和应用现状,系统地介绍了光纤光栅传感器特点;系统地阐述了光纤光栅传光的耦合模理论;推导出了Bragg公式和反射/透射率公式;分析了FBG的应变、压力和温度传感器的传感机理。
     设计了一种基于ARM处理器和可调谐光纤F-P滤波技术的光纤光栅传感信号解调系统,具体包括解调系统的总体设计方案;设计了一种基于光纤F-P滤波器的光信号解调单元;设计了一种基于压电陶瓷的电信号解调单元;进行了压电器件扫描控制电路和信号整形电路的设计;设计了一种基于S3C44B0X的ARM信号处理系统,包括电源电路、复位电路、SRAM和Flash电路、显示电路、RS-232电路、JTAG接口调试电路等ARM解调外围扩展电路。
Due to all its merit, such as excellent electric insulation, resistance of the interference of electromagnetic, high sensitivity, small volume, light weight, Fiber Bragg grating (FBG) sensor is widely used in structure monitoring of the large compound material and concrete, the performance monitoring of the intelligent materials, electric power, medicine, chemical engineering. Now, it’s becomes one of the most important part of the sensing research, while among this the sensing signal demodulation technique is the more important and difficult part, and get more attention. Although a large number of research and investigations on the demodulation methods of FBG have been done in domestic research institutes,most of the researches are still in lab-experimental stage, and have not yet met the requirements of the practical industrial mass productions.
     Tthe recent development in the area of optical fiber grating sensors are reviewed in this paper. The method of fiber grating fabrication is introdeced briefly. The characteristics and applications of FBG sensor are introduced systematically. In the article, both advantages and disadvantages of all kinds of FBG demodulation scheme are analyzed. Tthe coupled-mode theory of the light transmitting in fiber is expatiated and based on which the Bragg formula and reflectivity/transmission formula is deduced. We also analyzed the sensing principle of FBG strain sensor, press sensor and temperature sensor.
     Signal processing and embedded systems based on ARM are popular research fields now. ARM has many merits such as high operation speed、low power consumption、abundant interfaces、convenience in embedding real-time operating systems, etc. The demodulation system asopted in this paper demodulates signal with ARM, and it has many benefits:Above all, high processing capability improves the precision and speed of signal demodulation secondly, abundant interfaces make the demodulation system have a good man-machine interface. Last, the system’s cost decreases because ARM integrates many components. The tunable F-P cavity method applied to the demodulation system based on ARM system is proposed. In order to improve the speed and accuracy of demodulation, the ARM system based on S3C44B0X is used in the system. In this paper, the Flash ROM operation and the Boot Loader in ARM system are explained. The demodulation system also has serial ports and JTAG ports, using serial port to transfer the demodulation data. So the system can not only demodulate FBG signals, but also provide a extended interface, which would be convenient for future use.
引文
1 K.O.Hill, Y.Fuji, D.C.Jonson and B.S.Kawasaki. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication Appl.Phys.Lett.,1978,32(10):647-649.
    2 G.Meltz,W.W.Morey and H.Glenn. Formation of Bragg Gratings in Optical Fibers By a Transverse Holographic Method. Opt.Lett., 1989,14:823-825
    3 V.M.Murukeshan, P.Y.Chan, L.S.Ong, L.K.Seah. Cure monitoring of smart composites using Fiber Bragg Grating based embedded sernsors. Sensors and Actuators,2000, 79:153-161
    4 M.A.Davis,A.D.Kersey. Fiber Bragg Grating sensors for infrastors sensing. OFS’97 Technical Digest:177-178.
    5姜德生.专题报告-我国光纤传感器的发展与产业化,世界仪表与自动化,2002,6(1):8-10
    6 Mieczyslaw Szustakowski, Norbert Palka, Wieslaw Ciurapinski. Optimal Contrast Function in the Unbalanced Fiber Optic Michelson Interferometer for Dislocation Sensor. Proc. of SPIE,2004,(5576):324-329
    7 F.Bilodeau, K.O.Hill, and B.Malo. Efficient Narrow Band LP01 LP02 Mode Converter Fabricated in Photosensitive Fiber: Spectral Response. Electron. Lett.,1991,27(8):682-684
    8 Tuan Guo, Qida Zhao, Qingying Dou. Temperature-Insensitive Fiber Bragg Grating Liquid-Level Sensor Based on Bending Cantilever Beam. Photonics Technology Letters, 2005,17(11):2400-2402
    9 D.C.Johnson, F.Bilodeau, and B.Malo. Long Length, Long Period Rocking Filters Fabricated from Conventional Monomode Telecommunications Optical Fibers. Opt. Lett.,1992,17(22):1635-1637
    10 K.O.Hill, B.Malo, and F.Bilodeau. Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Thorough a Phase Mask. Appl. Phys.Lett,1993,(62):1035-1037
    11 Shoichi Takashima, Hiroshi Asanuma, Hiroaki Niitsuma, a Water Flowmeter Using Dual Fiber Bragg Grating Sensors And Cross-CorrelationTechnique, Sensors and Actuators,2004,116:66-74
    12 T. Allsop, M. Dubov, and A. Martinez. Long Period Grating Directional Bend Sensor Based on Asymmetric Index Modification of Cladding. Electron. Lett.,2005,41(2):59-60
    13 K.C.Byron, K.Sugden. Fabrication of Chirped Bragg Grating in Photosensitive Fibre. Electron. Lett.,1993,29(18):1651-1652
    14 S.Mihailov, M.Gower. Recording of Efficient High-Order Bragg Reflectors in Optical Fibers by Mask Image Projection and Single Pulse Exposure within Excimer Laser. Electron. Lett.,1994,30(9):707-708
    15 G.A.Ball, W.W.Morey. Compression-tuned single frequency Bragg grating fiber grating laser. Opt.Lett.,1994,19(21):1979-1981
    16 Yong Zhao, Chengbo Yu, and Yanbiao Liao. Differential FBG Sensor for Temperature Compensated High-Pressure (or Displacement) Measurement. Optics & Laser Technology,2004,36(1):39-42
    17 G.P.Agrawal, S.Radic. Phase-shifted fiber Bragg grating and their application for wavelength demultiplexing. IEEE Photon Technol Lett.,1994,6(8):995-997
    18 D.Pastor, et al. Design of Apodized Linearly Chirped Fiber Grating for Dispersion Compensation. Lightwave Tech.,1996,14(11):2581-2588
    19 R.Kashyap, R.Wyatt, R.J.Cambell. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electron. Lett.,1993,29:154-156
    20 Jin Fei Ding, A Ping Zhang, and Li-Yang Shao. Fiber-Taper Seeded Long-Period Grating Pair as a Highly Sensitive Refractive-Index Sensor. IEEE Photon. Technol. Lett., 2005,17(6):1247-1249
    21杨亦飞,刘波,张伟刚等.工程化光纤光栅应变传感器的制作及其应用.仪表技术与传感器,2005(4):1-2
    22刘丽辉,赵启大,张昊,王志,金龙,赵路明,陈少华,张伟刚,董孝义.双波长高灵敏度Bragg光纤光栅压力传感器.光子学报,2005,34(2):319
    23 Feng Xinhuan, Sun Lei, Xiong Lingyun, Liu Yange, Yuan Shuzhong, Kai Guiyun, and Dong Xiaoyi Switchable and tunable dual-wavelength erbium-doped fiber laser based on one fiber Bragg grating, Optical Fiber Technology, 2004,10:275-282
    24 M.G.Xu, H.Geiger, J.P.Dakin. Modeling and Performance Analysis of a Fiber Bragg Grating Interrogation System Using an Acousto-Optic Tunable Filter. Lightwave Technology, 2003,14(3): 391-396
    25 A. Cusano, A. Cutolo, and J. Nasser. Dynamic Strain Measurements by Fiber Bragg Grating Sensor. Sensors and Actuators, 2004,A(110):276-281
    26 Jin Fei Ding, A Ping Zhang, and Li-Yang Shao. Fiber-Taper Seeded Long-Period Grating Pair as a Highly Sensitive Refractive-Index Sensor. IEEE Photon. Technol. Lett., 2005,17(6):1247-1249
    27 P.Friable. Fiber Bragg Grating Strain Sensors: Present and Future Applications in Smart Structures. Optics and Photonics News.1998,9:33-37
    28 T.G.Giallorenzi, J.A.Buchro. Optical Fiber Sensor Technology. IEEE.Quantum Electronics,1992,18(4):626-665
    29 Youlong Yu and Hongxia Zhao, A Novel Demodulation Scheme for Fiber Bragg Grating Sensor System, Photonics Technology Letters,2005,17(1):166-168
    30姜德生,何伟.光纤光栅传感器的应用概况.光电子·激光,2002,13(4):420-430
    31 K.Nakamura. Application of Optical Fiber Sensing Networks. Pacific Rim Conference on Laser and Electro-Optics,2001(1):498-499
    32 W.Ecke. Optical Fiber Grating Strain Sensor Network for X 38 Spacecraft Health Monitoring. Proc of the SPIE,2000,4185:888-891
    33 J.S.Stephanus. Temperature Insensitive Fiber Optic Accelerometer Using a Chirped Bragg Grating, Opt.Eng.,2000,38(8):2177-2181
    34 Nobuake Tadahashi. Characteristics of Fiber Bragg Grating Hydrophone. IEICE Trans. Electron,2000,E83-C(3):275-281
    35金秀梅,杜彦良,孙宝臣.预应力筋准分布光纤传感测试方法研究.石家庄铁道学院学报,2006,19(1):18-22
    36郭璐璐.光纤传感器在土木工程中的应用与发展综述.江苏建材,2006,(2):43-45
    37 T. Allsop, M. Dubov, and A. Martinez. Long Period Grating Directional Bend Sensor Based on Asymmetric Index Modification of Cladding. Electron. Lett.,2005,41(2):59-60
    38 Y.Liu, J. A.R.Williams, L.Zhang. Phase Shifted and Cascaded Long-period Fiber Gratings. Optics Communication,1999,164:27-31
    39 N.B.Ronald. The Fourier Transform and Its Applications. Boston:McGraw Hill, 2000:381-385
    40 A. Cusano, A. Cutolo, and J. Nasser. Dynamic Strain Measurements by Fiber Bragg Grating Sensor. Sensors and Actuators, 2004,A(110):276-281
    41靳伟,廖廷彪,张志鹏等著.导波光学传感器:原理与技术.北京:科学出版社, 1998: 321-322
    42 Yong Zhao, Chengbo Yu, and Yanbiao Liao. Differential FBG Sensor for Temperature Compensated High-Pressure (or Displacement) Measurement. Optics & Laser Technology,2004,36(1):39-42
    43朱丹丹,王海芳,张冉,李亚萍,闫利娟,张俊杰.啁啾光栅结合边缘线性滤波解调的FBG应变测量系统,应用光学,2005, 26(4):50-52
    44 R.S.Weis, A.D.Kersey, T.A.Berkoff. A four-element Fiber Grating Sensor array with Phase sensitive Detection. IEEE. Photonics Tech.Lett.,1994,6(12):1469-1472
    45 L.A.Ferreira, J.L.Santos, F.Farahi. Pseudo heterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings. IEEE.Photonics Technology.Lett.,1997,9(4):487-489
    46饶云江,袁慎芳等.非本征型法布里-珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用.光学,2002,22(1):85-88
    47孙腾阁,朱彤,杨广辉等.土木工程结构健康监测的现状与发展.山东建筑工程学院学报,2006,21(1):81-85
    48李学金,谢盛辉,黄东兴,等.多模光纤微弯应变传感器研究.仪表技术与传感器, 2006,(3):41-42
    49 M. G. Xu, H. Geiger, J. P. Dakin. Modeling and Performance Analysis of a FiberBragg Grating Interrogation System Using an Acousto-Optic Tunable Filter. Lightwave Technology, 2003,14(3): 391-396
    50吴明晖,徐睿等.基于ARM的嵌入式系统开发与应用.人民邮电出版社,2004:97-121
    51智能交通中的嵌入式系统.慧聪智能交通商务网. 2003
    52熊浩宇,高雪清. FBG传感信号处理及采集系统的设计与实现.电子技术, 2005,02:37-40
    53周立功等. ARM嵌入式系统基础教程.北京航空航天大学出版社, 2005:30-71
    54 Arnold Berger著.吕骏译.嵌入式系统设计.电子工业出版社, 2002:1-56, 75-95, 132-163
    55李驹光,聂雪媛等. ARM应用系统开发详解——基于S3C44B0的系统设计.清华大学出版社, 2003:1-282
    56三恒星科技编著. ARM嵌入式系统入门.中国电力出版社. 2008:184-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700